Files
blockly/generators/python/math.js
Christopher Allen 4d2201a427 chore(generators): Migrate generators to ES Modules (#7103)
* feat(j2ts): Add support for migrating renaming imports

  Convert
      const {foo: bar} = require(/*...*/);
  into
      import {foo as bar} from /*...*/;
              ^^^^^^^^^^

  Also fix a bug that caused relative paths to ESM in the same
  directory to be missing a leading "./".

* fix(build): Fix trivial error exports for generators

  The UMD wrapper was inadvertently exporting the contents of (e.g.)
  the Blockly.JavaScript closure module rather than the intended
  export of Blockly.JavaScript.all module - which went unnoticed
  because the latter just reexported the former - but we are
  about to convert the former to ESM.

* chore(generators): Migrate language generators to ESM

  Migrate the main language generators in generators/*.js to ESM.

  This was done by running js2ts on the files, renaming them back
  to .js, and commenting out "import type" statements, which are
  legal TS but not needed in JS (at least if you are not actually
  letting Closure Compiler do type checking, which we are not.)

* chore(generators): Migrate block generators to ESM

  Migrate generators/*/*.js (except all.js) to ESM.

  This was done by running js2ts on the files, renaming them back
  to .js, and removing now-spurious @suppress {extraRequire}
  directives.

* chores(generators): Migrate generator chunk entrypoints to ESM

  This was done by running js2ts on the files, renaming them back
  to .js, and manually fixing the export statements.

  An additional change to the chunk exports configuration in
  build_tasks.js was necessary in order for the UMD wrapper to
  find the new module object, which is given a different name
  than the old exports object.
2023-05-19 23:09:37 +01:00

374 lines
13 KiB
JavaScript

/**
* @license
* Copyright 2012 Google LLC
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @fileoverview Generating Python for math blocks.
*/
import * as goog from '../../closure/goog/goog.js';
goog.declareModuleId('Blockly.Python.math');
import {NameType} from '../../core/names.js';
import {pythonGenerator as Python} from '../python.js';
// If any new block imports any library, add that library name here.
Python.addReservedWords('math,random,Number');
Python['math_number'] = function(block) {
// Numeric value.
let code = Number(block.getFieldValue('NUM'));
let order;
if (code === Infinity) {
code = 'float("inf")';
order = Python.ORDER_FUNCTION_CALL;
} else if (code === -Infinity) {
code = '-float("inf")';
order = Python.ORDER_UNARY_SIGN;
} else {
order = code < 0 ? Python.ORDER_UNARY_SIGN : Python.ORDER_ATOMIC;
}
return [code, order];
};
Python['math_arithmetic'] = function(block) {
// Basic arithmetic operators, and power.
const OPERATORS = {
'ADD': [' + ', Python.ORDER_ADDITIVE],
'MINUS': [' - ', Python.ORDER_ADDITIVE],
'MULTIPLY': [' * ', Python.ORDER_MULTIPLICATIVE],
'DIVIDE': [' / ', Python.ORDER_MULTIPLICATIVE],
'POWER': [' ** ', Python.ORDER_EXPONENTIATION],
};
const tuple = OPERATORS[block.getFieldValue('OP')];
const operator = tuple[0];
const order = tuple[1];
const argument0 = Python.valueToCode(block, 'A', order) || '0';
const argument1 = Python.valueToCode(block, 'B', order) || '0';
const code = argument0 + operator + argument1;
return [code, order];
// In case of 'DIVIDE', division between integers returns different results
// in Python 2 and 3. However, is not an issue since Blockly does not
// guarantee identical results in all languages. To do otherwise would
// require every operator to be wrapped in a function call. This would kill
// legibility of the generated code.
};
Python['math_single'] = function(block) {
// Math operators with single operand.
const operator = block.getFieldValue('OP');
let code;
let arg;
if (operator === 'NEG') {
// Negation is a special case given its different operator precedence.
code = Python.valueToCode(block, 'NUM', Python.ORDER_UNARY_SIGN) || '0';
return ['-' + code, Python.ORDER_UNARY_SIGN];
}
Python.definitions_['import_math'] = 'import math';
if (operator === 'SIN' || operator === 'COS' || operator === 'TAN') {
arg = Python.valueToCode(block, 'NUM', Python.ORDER_MULTIPLICATIVE) || '0';
} else {
arg = Python.valueToCode(block, 'NUM', Python.ORDER_NONE) || '0';
}
// First, handle cases which generate values that don't need parentheses
// wrapping the code.
switch (operator) {
case 'ABS':
code = 'math.fabs(' + arg + ')';
break;
case 'ROOT':
code = 'math.sqrt(' + arg + ')';
break;
case 'LN':
code = 'math.log(' + arg + ')';
break;
case 'LOG10':
code = 'math.log10(' + arg + ')';
break;
case 'EXP':
code = 'math.exp(' + arg + ')';
break;
case 'POW10':
code = 'math.pow(10,' + arg + ')';
break;
case 'ROUND':
code = 'round(' + arg + ')';
break;
case 'ROUNDUP':
code = 'math.ceil(' + arg + ')';
break;
case 'ROUNDDOWN':
code = 'math.floor(' + arg + ')';
break;
case 'SIN':
code = 'math.sin(' + arg + ' / 180.0 * math.pi)';
break;
case 'COS':
code = 'math.cos(' + arg + ' / 180.0 * math.pi)';
break;
case 'TAN':
code = 'math.tan(' + arg + ' / 180.0 * math.pi)';
break;
}
if (code) {
return [code, Python.ORDER_FUNCTION_CALL];
}
// Second, handle cases which generate values that may need parentheses
// wrapping the code.
switch (operator) {
case 'ASIN':
code = 'math.asin(' + arg + ') / math.pi * 180';
break;
case 'ACOS':
code = 'math.acos(' + arg + ') / math.pi * 180';
break;
case 'ATAN':
code = 'math.atan(' + arg + ') / math.pi * 180';
break;
default:
throw Error('Unknown math operator: ' + operator);
}
return [code, Python.ORDER_MULTIPLICATIVE];
};
Python['math_constant'] = function(block) {
// Constants: PI, E, the Golden Ratio, sqrt(2), 1/sqrt(2), INFINITY.
const CONSTANTS = {
'PI': ['math.pi', Python.ORDER_MEMBER],
'E': ['math.e', Python.ORDER_MEMBER],
'GOLDEN_RATIO': ['(1 + math.sqrt(5)) / 2', Python.ORDER_MULTIPLICATIVE],
'SQRT2': ['math.sqrt(2)', Python.ORDER_MEMBER],
'SQRT1_2': ['math.sqrt(1.0 / 2)', Python.ORDER_MEMBER],
'INFINITY': ['float(\'inf\')', Python.ORDER_ATOMIC],
};
const constant = block.getFieldValue('CONSTANT');
if (constant !== 'INFINITY') {
Python.definitions_['import_math'] = 'import math';
}
return CONSTANTS[constant];
};
Python['math_number_property'] = function(block) {
// Check if a number is even, odd, prime, whole, positive, or negative
// or if it is divisible by certain number. Returns true or false.
const PROPERTIES = {
'EVEN': [' % 2 == 0', Python.ORDER_MULTIPLICATIVE, Python.ORDER_RELATIONAL],
'ODD': [' % 2 == 1', Python.ORDER_MULTIPLICATIVE, Python.ORDER_RELATIONAL],
'WHOLE': [' % 1 == 0', Python.ORDER_MULTIPLICATIVE,
Python.ORDER_RELATIONAL],
'POSITIVE': [' > 0', Python.ORDER_RELATIONAL, Python.ORDER_RELATIONAL],
'NEGATIVE': [' < 0', Python.ORDER_RELATIONAL, Python.ORDER_RELATIONAL],
'DIVISIBLE_BY': [null, Python.ORDER_MULTIPLICATIVE,
Python.ORDER_RELATIONAL],
'PRIME': [null, Python.ORDER_NONE, Python.ORDER_FUNCTION_CALL],
}
const dropdownProperty = block.getFieldValue('PROPERTY');
const [suffix, inputOrder, outputOrder] = PROPERTIES[dropdownProperty];
const numberToCheck = Python.valueToCode(block, 'NUMBER_TO_CHECK',
inputOrder) || '0';
let code;
if (dropdownProperty === 'PRIME') {
// Prime is a special case as it is not a one-liner test.
Python.definitions_['import_math'] = 'import math';
Python.definitions_['from_numbers_import_Number'] =
'from numbers import Number';
const functionName = Python.provideFunction_('math_isPrime', `
def ${Python.FUNCTION_NAME_PLACEHOLDER_}(n):
# https://en.wikipedia.org/wiki/Primality_test#Naive_methods
# If n is not a number but a string, try parsing it.
if not isinstance(n, Number):
try:
n = float(n)
except:
return False
if n == 2 or n == 3:
return True
# False if n is negative, is 1, or not whole, or if n is divisible by 2 or 3.
if n <= 1 or n % 1 != 0 or n % 2 == 0 or n % 3 == 0:
return False
# Check all the numbers of form 6k +/- 1, up to sqrt(n).
for x in range(6, int(math.sqrt(n)) + 2, 6):
if n % (x - 1) == 0 or n % (x + 1) == 0:
return False
return True
`);
code = functionName + '(' + numberToCheck + ')';
} else if (dropdownProperty === 'DIVISIBLE_BY') {
const divisor = Python.valueToCode(block, 'DIVISOR',
Python.ORDER_MULTIPLICATIVE) || '0';
// If 'divisor' is some code that evals to 0, Python will raise an error.
if (divisor === '0') {
return ['False', Python.ORDER_ATOMIC];
}
code = numberToCheck + ' % ' + divisor + ' == 0';
} else {
code = numberToCheck + suffix;
};
return [code, outputOrder];
};
Python['math_change'] = function(block) {
// Add to a variable in place.
Python.definitions_['from_numbers_import_Number'] =
'from numbers import Number';
const argument0 =
Python.valueToCode(block, 'DELTA', Python.ORDER_ADDITIVE) || '0';
const varName =
Python.nameDB_.getName(block.getFieldValue('VAR'), NameType.VARIABLE);
return varName + ' = (' + varName + ' if isinstance(' + varName +
', Number) else 0) + ' + argument0 + '\n';
};
// Rounding functions have a single operand.
Python['math_round'] = Python['math_single'];
// Trigonometry functions have a single operand.
Python['math_trig'] = Python['math_single'];
Python['math_on_list'] = function(block) {
// Math functions for lists.
const func = block.getFieldValue('OP');
const list = Python.valueToCode(block, 'LIST', Python.ORDER_NONE) || '[]';
let code;
switch (func) {
case 'SUM':
code = 'sum(' + list + ')';
break;
case 'MIN':
code = 'min(' + list + ')';
break;
case 'MAX':
code = 'max(' + list + ')';
break;
case 'AVERAGE': {
Python.definitions_['from_numbers_import_Number'] =
'from numbers import Number';
// This operation excludes null and values that aren't int or float:
// math_mean([null, null, "aString", 1, 9]) -> 5.0
const functionName = Python.provideFunction_('math_mean', `
def ${Python.FUNCTION_NAME_PLACEHOLDER_}(myList):
localList = [e for e in myList if isinstance(e, Number)]
if not localList: return
return float(sum(localList)) / len(localList)
`);
code = functionName + '(' + list + ')';
break;
}
case 'MEDIAN': {
Python.definitions_['from_numbers_import_Number'] =
'from numbers import Number';
// This operation excludes null values:
// math_median([null, null, 1, 3]) -> 2.0
const functionName = Python.provideFunction_( 'math_median', `
def ${Python.FUNCTION_NAME_PLACEHOLDER_}(myList):
localList = sorted([e for e in myList if isinstance(e, Number)])
if not localList: return
if len(localList) % 2 == 0:
return (localList[len(localList) // 2 - 1] + localList[len(localList) // 2]) / 2.0
else:
return localList[(len(localList) - 1) // 2]
`);
code = functionName + '(' + list + ')';
break;
}
case 'MODE': {
// As a list of numbers can contain more than one mode,
// the returned result is provided as an array.
// Mode of [3, 'x', 'x', 1, 1, 2, '3'] -> ['x', 1]
const functionName = Python.provideFunction_('math_modes', `
def ${Python.FUNCTION_NAME_PLACEHOLDER_}(some_list):
modes = []
# Using a lists of [item, count] to keep count rather than dict
# to avoid "unhashable" errors when the counted item is itself a list or dict.
counts = []
maxCount = 1
for item in some_list:
found = False
for count in counts:
if count[0] == item:
count[1] += 1
maxCount = max(maxCount, count[1])
found = True
if not found:
counts.append([item, 1])
for counted_item, item_count in counts:
if item_count == maxCount:
modes.append(counted_item)
return modes
`);
code = functionName + '(' + list + ')';
break;
}
case 'STD_DEV': {
Python.definitions_['import_math'] = 'import math';
const functionName = Python.provideFunction_('math_standard_deviation', `
def ${Python.FUNCTION_NAME_PLACEHOLDER_}(numbers):
n = len(numbers)
if n == 0: return
mean = float(sum(numbers)) / n
variance = sum((x - mean) ** 2 for x in numbers) / n
return math.sqrt(variance)
`);
code = functionName + '(' + list + ')';
break;
}
case 'RANDOM':
Python.definitions_['import_random'] = 'import random';
code = 'random.choice(' + list + ')';
break;
default:
throw Error('Unknown operator: ' + func);
}
return [code, Python.ORDER_FUNCTION_CALL];
};
Python['math_modulo'] = function(block) {
// Remainder computation.
const argument0 =
Python.valueToCode(block, 'DIVIDEND', Python.ORDER_MULTIPLICATIVE) || '0';
const argument1 =
Python.valueToCode(block, 'DIVISOR', Python.ORDER_MULTIPLICATIVE) || '0';
const code = argument0 + ' % ' + argument1;
return [code, Python.ORDER_MULTIPLICATIVE];
};
Python['math_constrain'] = function(block) {
// Constrain a number between two limits.
const argument0 =
Python.valueToCode(block, 'VALUE', Python.ORDER_NONE) || '0';
const argument1 = Python.valueToCode(block, 'LOW', Python.ORDER_NONE) || '0';
const argument2 =
Python.valueToCode(block, 'HIGH', Python.ORDER_NONE) || 'float(\'inf\')';
const code =
'min(max(' + argument0 + ', ' + argument1 + '), ' + argument2 + ')';
return [code, Python.ORDER_FUNCTION_CALL];
};
Python['math_random_int'] = function(block) {
// Random integer between [X] and [Y].
Python.definitions_['import_random'] = 'import random';
const argument0 = Python.valueToCode(block, 'FROM', Python.ORDER_NONE) || '0';
const argument1 = Python.valueToCode(block, 'TO', Python.ORDER_NONE) || '0';
const code = 'random.randint(' + argument0 + ', ' + argument1 + ')';
return [code, Python.ORDER_FUNCTION_CALL];
};
Python['math_random_float'] = function(block) {
// Random fraction between 0 and 1.
Python.definitions_['import_random'] = 'import random';
return ['random.random()', Python.ORDER_FUNCTION_CALL];
};
Python['math_atan2'] = function(block) {
// Arctangent of point (X, Y) in degrees from -180 to 180.
Python.definitions_['import_math'] = 'import math';
const argument0 = Python.valueToCode(block, 'X', Python.ORDER_NONE) || '0';
const argument1 = Python.valueToCode(block, 'Y', Python.ORDER_NONE) || '0';
return [
'math.atan2(' + argument1 + ', ' + argument0 + ') / math.pi * 180',
Python.ORDER_MULTIPLICATIVE
];
};