Files
blockly/generators/python/math.js
Rachel Fenichel 931499295e refactor: convert python block generators to goog.module (#5771)
* refactor: convert generators/python/colour.js to goog.module

* refactor: convert generators/python/colour.js to named requires

* chore: run clang-format

* refactor: convert generators/python/lists.js to goog.module

* refactor: convert generators/python/lists.js to named requires

* chore: run clang-format

* refactor: convert generators/python/logic.js to goog.module

* refactor: convert generators/python/logic.js to named requires

* chore: run clang-format

* refactor: convert generators/python/loops.js to goog.module

* refactor: convert generators/python/loops.js to named requires

* chore: run clang-format

* refactor: convert generators/python/math.js to goog.module

* refactor: convert generators/python/math.js to named requires

* chore: run clang-format

* refactor: convert generators/python/procedures.js to goog.module

* refactor: convert generators/python/procedures.js to named requires

* chore: run clang-format

* refactor: convert generators/python/text.js to goog.module

* refactor: convert generators/python/text.js to named requires

* chore: run clang-format

* refactor: convert generators/python/variables_dynamic.js to named requires

* refactor: convert generators/python/variables.js to named requires

* chore: run clang-format

* refactor: convert generators/python.js to goog.module

* refactor: convert generators/python.js to named requires

* chore: run clang-format

* chore: remove spurious @private annotations

* chore: rebuild
2021-12-01 20:43:08 -08:00

376 lines
13 KiB
JavaScript

/**
* @license
* Copyright 2012 Google LLC
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @fileoverview Generating Python for math blocks.
*/
'use strict';
goog.module('Blockly.Python.math');
const Python = goog.require('Blockly.Python');
const {NameType} = goog.require('Blockly.Names');
// If any new block imports any library, add that library name here.
Python.addReservedWords('math,random,Number');
Python['math_number'] = function(block) {
// Numeric value.
let code = Number(block.getFieldValue('NUM'));
let order;
if (code === Infinity) {
code = 'float("inf")';
order = Python.ORDER_FUNCTION_CALL;
} else if (code === -Infinity) {
code = '-float("inf")';
order = Python.ORDER_UNARY_SIGN;
} else {
order = code < 0 ? Python.ORDER_UNARY_SIGN : Python.ORDER_ATOMIC;
}
return [code, order];
};
Python['math_arithmetic'] = function(block) {
// Basic arithmetic operators, and power.
const OPERATORS = {
'ADD': [' + ', Python.ORDER_ADDITIVE],
'MINUS': [' - ', Python.ORDER_ADDITIVE],
'MULTIPLY': [' * ', Python.ORDER_MULTIPLICATIVE],
'DIVIDE': [' / ', Python.ORDER_MULTIPLICATIVE],
'POWER': [' ** ', Python.ORDER_EXPONENTIATION]
};
const tuple = OPERATORS[block.getFieldValue('OP')];
const operator = tuple[0];
const order = tuple[1];
const argument0 = Python.valueToCode(block, 'A', order) || '0';
const argument1 = Python.valueToCode(block, 'B', order) || '0';
const code = argument0 + operator + argument1;
return [code, order];
// In case of 'DIVIDE', division between integers returns different results
// in Python 2 and 3. However, is not an issue since Blockly does not
// guarantee identical results in all languages. To do otherwise would
// require every operator to be wrapped in a function call. This would kill
// legibility of the generated code.
};
Python['math_single'] = function(block) {
// Math operators with single operand.
const operator = block.getFieldValue('OP');
let code;
let arg;
if (operator === 'NEG') {
// Negation is a special case given its different operator precedence.
code = Python.valueToCode(block, 'NUM', Python.ORDER_UNARY_SIGN) || '0';
return ['-' + code, Python.ORDER_UNARY_SIGN];
}
Python.definitions_['import_math'] = 'import math';
if (operator === 'SIN' || operator === 'COS' || operator === 'TAN') {
arg = Python.valueToCode(block, 'NUM', Python.ORDER_MULTIPLICATIVE) || '0';
} else {
arg = Python.valueToCode(block, 'NUM', Python.ORDER_NONE) || '0';
}
// First, handle cases which generate values that don't need parentheses
// wrapping the code.
switch (operator) {
case 'ABS':
code = 'math.fabs(' + arg + ')';
break;
case 'ROOT':
code = 'math.sqrt(' + arg + ')';
break;
case 'LN':
code = 'math.log(' + arg + ')';
break;
case 'LOG10':
code = 'math.log10(' + arg + ')';
break;
case 'EXP':
code = 'math.exp(' + arg + ')';
break;
case 'POW10':
code = 'math.pow(10,' + arg + ')';
break;
case 'ROUND':
code = 'round(' + arg + ')';
break;
case 'ROUNDUP':
code = 'math.ceil(' + arg + ')';
break;
case 'ROUNDDOWN':
code = 'math.floor(' + arg + ')';
break;
case 'SIN':
code = 'math.sin(' + arg + ' / 180.0 * math.pi)';
break;
case 'COS':
code = 'math.cos(' + arg + ' / 180.0 * math.pi)';
break;
case 'TAN':
code = 'math.tan(' + arg + ' / 180.0 * math.pi)';
break;
}
if (code) {
return [code, Python.ORDER_FUNCTION_CALL];
}
// Second, handle cases which generate values that may need parentheses
// wrapping the code.
switch (operator) {
case 'ASIN':
code = 'math.asin(' + arg + ') / math.pi * 180';
break;
case 'ACOS':
code = 'math.acos(' + arg + ') / math.pi * 180';
break;
case 'ATAN':
code = 'math.atan(' + arg + ') / math.pi * 180';
break;
default:
throw Error('Unknown math operator: ' + operator);
}
return [code, Python.ORDER_MULTIPLICATIVE];
};
Python['math_constant'] = function(block) {
// Constants: PI, E, the Golden Ratio, sqrt(2), 1/sqrt(2), INFINITY.
const CONSTANTS = {
'PI': ['math.pi', Python.ORDER_MEMBER],
'E': ['math.e', Python.ORDER_MEMBER],
'GOLDEN_RATIO': ['(1 + math.sqrt(5)) / 2', Python.ORDER_MULTIPLICATIVE],
'SQRT2': ['math.sqrt(2)', Python.ORDER_MEMBER],
'SQRT1_2': ['math.sqrt(1.0 / 2)', Python.ORDER_MEMBER],
'INFINITY': ['float(\'inf\')', Python.ORDER_ATOMIC]
};
const constant = block.getFieldValue('CONSTANT');
if (constant !== 'INFINITY') {
Python.definitions_['import_math'] = 'import math';
}
return CONSTANTS[constant];
};
Python['math_number_property'] = function(block) {
// Check if a number is even, odd, prime, whole, positive, or negative
// or if it is divisible by certain number. Returns true or false.
const number_to_check =
Python.valueToCode(
block, 'NUMBER_TO_CHECK', Python.ORDER_MULTIPLICATIVE) ||
'0';
const dropdown_property = block.getFieldValue('PROPERTY');
let code;
if (dropdown_property === 'PRIME') {
Python.definitions_['import_math'] = 'import math';
Python.definitions_['from_numbers_import_Number'] =
'from numbers import Number';
const functionName = Python.provideFunction_('math_isPrime', [
'def ' + Python.FUNCTION_NAME_PLACEHOLDER_ + '(n):',
' # https://en.wikipedia.org/wiki/Primality_test#Naive_methods',
' # If n is not a number but a string, try parsing it.',
' if not isinstance(n, Number):', ' try:', ' n = float(n)',
' except:', ' return False',
' if n == 2 or n == 3:', ' return True',
' # False if n is negative, is 1, or not whole,' +
' or if n is divisible by 2 or 3.',
' if n <= 1 or n % 1 != 0 or n % 2 == 0 or n % 3 == 0:',
' return False',
' # Check all the numbers of form 6k +/- 1, up to sqrt(n).',
' for x in range(6, int(math.sqrt(n)) + 2, 6):',
' if n % (x - 1) == 0 or n % (x + 1) == 0:', ' return False',
' return True'
]);
code = functionName + '(' + number_to_check + ')';
return [code, Python.ORDER_FUNCTION_CALL];
}
switch (dropdown_property) {
case 'EVEN':
code = number_to_check + ' % 2 == 0';
break;
case 'ODD':
code = number_to_check + ' % 2 == 1';
break;
case 'WHOLE':
code = number_to_check + ' % 1 == 0';
break;
case 'POSITIVE':
code = number_to_check + ' > 0';
break;
case 'NEGATIVE':
code = number_to_check + ' < 0';
break;
case 'DIVISIBLE_BY': {
const divisor =
Python.valueToCode(block, 'DIVISOR', Python.ORDER_MULTIPLICATIVE);
// If 'divisor' is some code that evals to 0, Python will raise an error.
if (!divisor || divisor === '0') {
return ['False', Python.ORDER_ATOMIC];
}
code = number_to_check + ' % ' + divisor + ' == 0';
break;
}
}
return [code, Python.ORDER_RELATIONAL];
};
Python['math_change'] = function(block) {
// Add to a variable in place.
Python.definitions_['from_numbers_import_Number'] =
'from numbers import Number';
const argument0 =
Python.valueToCode(block, 'DELTA', Python.ORDER_ADDITIVE) || '0';
const varName =
Python.nameDB_.getName(block.getFieldValue('VAR'), NameType.VARIABLE);
return varName + ' = (' + varName + ' if isinstance(' + varName +
', Number) else 0) + ' + argument0 + '\n';
};
// Rounding functions have a single operand.
Python['math_round'] = Python['math_single'];
// Trigonometry functions have a single operand.
Python['math_trig'] = Python['math_single'];
Python['math_on_list'] = function(block) {
// Math functions for lists.
const func = block.getFieldValue('OP');
const list = Python.valueToCode(block, 'LIST', Python.ORDER_NONE) || '[]';
let code;
switch (func) {
case 'SUM':
code = 'sum(' + list + ')';
break;
case 'MIN':
code = 'min(' + list + ')';
break;
case 'MAX':
code = 'max(' + list + ')';
break;
case 'AVERAGE': {
Python.definitions_['from_numbers_import_Number'] =
'from numbers import Number';
const functionName = Python.provideFunction_(
'math_mean',
// This operation excludes null and values that aren't int or float:
// math_mean([null, null, "aString", 1, 9]) -> 5.0
[
'def ' + Python.FUNCTION_NAME_PLACEHOLDER_ + '(myList):',
' localList = [e for e in myList if isinstance(e, Number)]',
' if not localList: return',
' return float(sum(localList)) / len(localList)'
]);
code = functionName + '(' + list + ')';
break;
}
case 'MEDIAN': {
Python.definitions_['from_numbers_import_Number'] =
'from numbers import Number';
const functionName = Python.provideFunction_(
'math_median',
// This operation excludes null values:
// math_median([null, null, 1, 3]) -> 2.0
[
'def ' + Python.FUNCTION_NAME_PLACEHOLDER_ + '(myList):',
' localList = sorted([e for e in myList if isinstance(e, Number)])',
' if not localList: return', ' if len(localList) % 2 == 0:',
' return (localList[len(localList) // 2 - 1] + ' +
'localList[len(localList) // 2]) / 2.0',
' else:', ' return localList[(len(localList) - 1) // 2]'
]);
code = functionName + '(' + list + ')';
break;
}
case 'MODE': {
const functionName = Python.provideFunction_(
'math_modes',
// As a list of numbers can contain more than one mode,
// the returned result is provided as an array.
// Mode of [3, 'x', 'x', 1, 1, 2, '3'] -> ['x', 1]
[
'def ' + Python.FUNCTION_NAME_PLACEHOLDER_ + '(some_list):',
' modes = []',
' # Using a lists of [item, count] to keep count rather than dict',
' # to avoid "unhashable" errors when the counted item is ' +
'itself a list or dict.',
' counts = []', ' maxCount = 1', ' for item in some_list:',
' found = False', ' for count in counts:',
' if count[0] == item:', ' count[1] += 1',
' maxCount = max(maxCount, count[1])',
' found = True',
' if not found:', ' counts.append([item, 1])',
' for counted_item, item_count in counts:',
' if item_count == maxCount:',
' modes.append(counted_item)', ' return modes'
]);
code = functionName + '(' + list + ')';
break;
}
case 'STD_DEV': {
Python.definitions_['import_math'] = 'import math';
const functionName = Python.provideFunction_('math_standard_deviation', [
'def ' + Python.FUNCTION_NAME_PLACEHOLDER_ + '(numbers):',
' n = len(numbers)', ' if n == 0: return',
' mean = float(sum(numbers)) / n',
' variance = sum((x - mean) ** 2 for x in numbers) / n',
' return math.sqrt(variance)'
]);
code = functionName + '(' + list + ')';
break;
}
case 'RANDOM':
Python.definitions_['import_random'] = 'import random';
code = 'random.choice(' + list + ')';
break;
default:
throw Error('Unknown operator: ' + func);
}
return [code, Python.ORDER_FUNCTION_CALL];
};
Python['math_modulo'] = function(block) {
// Remainder computation.
const argument0 =
Python.valueToCode(block, 'DIVIDEND', Python.ORDER_MULTIPLICATIVE) || '0';
const argument1 =
Python.valueToCode(block, 'DIVISOR', Python.ORDER_MULTIPLICATIVE) || '0';
const code = argument0 + ' % ' + argument1;
return [code, Python.ORDER_MULTIPLICATIVE];
};
Python['math_constrain'] = function(block) {
// Constrain a number between two limits.
const argument0 =
Python.valueToCode(block, 'VALUE', Python.ORDER_NONE) || '0';
const argument1 = Python.valueToCode(block, 'LOW', Python.ORDER_NONE) || '0';
const argument2 =
Python.valueToCode(block, 'HIGH', Python.ORDER_NONE) || 'float(\'inf\')';
const code =
'min(max(' + argument0 + ', ' + argument1 + '), ' + argument2 + ')';
return [code, Python.ORDER_FUNCTION_CALL];
};
Python['math_random_int'] = function(block) {
// Random integer between [X] and [Y].
Python.definitions_['import_random'] = 'import random';
const argument0 = Python.valueToCode(block, 'FROM', Python.ORDER_NONE) || '0';
const argument1 = Python.valueToCode(block, 'TO', Python.ORDER_NONE) || '0';
const code = 'random.randint(' + argument0 + ', ' + argument1 + ')';
return [code, Python.ORDER_FUNCTION_CALL];
};
Python['math_random_float'] = function(block) {
// Random fraction between 0 and 1.
Python.definitions_['import_random'] = 'import random';
return ['random.random()', Python.ORDER_FUNCTION_CALL];
};
Python['math_atan2'] = function(block) {
// Arctangent of point (X, Y) in degrees from -180 to 180.
Python.definitions_['import_math'] = 'import math';
const argument0 = Python.valueToCode(block, 'X', Python.ORDER_NONE) || '0';
const argument1 = Python.valueToCode(block, 'Y', Python.ORDER_NONE) || '0';
return [
'math.atan2(' + argument1 + ', ' + argument0 + ') / math.pi * 180',
Python.ORDER_MULTIPLICATIVE
];
};