Files
blockly/generators/python/math.js
Christopher Allen f9c865b1b3 refactor(generators)!: CodeGenerator per-block-type generator function dictionary (#7150)
* feat(generators): Add block generator function dictionary

  Add a dictionary of block generator functions, provisionally
  called .forBlock.  Look up generator functions there first, but
  fall back to looking up on 'this' (with deprecation notice)
  for backwards compatibility.

  Also tweak error message generation to use template literal.

* refactor(generators)!: Update generator definitions to use dictionary

* fix(tests): Have blockToCodeTest clean up after itself

  Have the blockToCodeTest helper function delete the block generator
  functions it adds to generator once the test is done.

* refactor(tests): Use generator dictionary in insertion marker test

  The use of generators in insertion_marker_test.js was overlooked
  in the earlier commit making such updates, and some test here
  were failing due to lack of cleanup in
  cleanup in the generator_test.js.

BREAKING CHANGE: this PR moves the generator functions we provide
from their previous location directly on the CodeGenerator instances
to the new .forBlock dictionary on each instance. This does not oblige
external developers to do the same for their custom generators, but
they will need to update any code that references the generator
functions we provide (in generators/*/*, i.e. on javascriptGenerator,
dartGenerator etc.) e.g. to replace the implementation or reuse the
implementation for a different block type.
2023-06-13 20:41:14 +01:00

374 lines
13 KiB
JavaScript

/**
* @license
* Copyright 2012 Google LLC
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @fileoverview Generating Python for math blocks.
*/
import * as goog from '../../closure/goog/goog.js';
goog.declareModuleId('Blockly.Python.math');
import {NameType} from '../../core/names.js';
import {pythonGenerator as Python} from '../python.js';
// If any new block imports any library, add that library name here.
Python.addReservedWords('math,random,Number');
Python.forBlock['math_number'] = function(block) {
// Numeric value.
let code = Number(block.getFieldValue('NUM'));
let order;
if (code === Infinity) {
code = 'float("inf")';
order = Python.ORDER_FUNCTION_CALL;
} else if (code === -Infinity) {
code = '-float("inf")';
order = Python.ORDER_UNARY_SIGN;
} else {
order = code < 0 ? Python.ORDER_UNARY_SIGN : Python.ORDER_ATOMIC;
}
return [code, order];
};
Python.forBlock['math_arithmetic'] = function(block) {
// Basic arithmetic operators, and power.
const OPERATORS = {
'ADD': [' + ', Python.ORDER_ADDITIVE],
'MINUS': [' - ', Python.ORDER_ADDITIVE],
'MULTIPLY': [' * ', Python.ORDER_MULTIPLICATIVE],
'DIVIDE': [' / ', Python.ORDER_MULTIPLICATIVE],
'POWER': [' ** ', Python.ORDER_EXPONENTIATION],
};
const tuple = OPERATORS[block.getFieldValue('OP')];
const operator = tuple[0];
const order = tuple[1];
const argument0 = Python.valueToCode(block, 'A', order) || '0';
const argument1 = Python.valueToCode(block, 'B', order) || '0';
const code = argument0 + operator + argument1;
return [code, order];
// In case of 'DIVIDE', division between integers returns different results
// in Python 2 and 3. However, is not an issue since Blockly does not
// guarantee identical results in all languages. To do otherwise would
// require every operator to be wrapped in a function call. This would kill
// legibility of the generated code.
};
Python.forBlock['math_single'] = function(block) {
// Math operators with single operand.
const operator = block.getFieldValue('OP');
let code;
let arg;
if (operator === 'NEG') {
// Negation is a special case given its different operator precedence.
code = Python.valueToCode(block, 'NUM', Python.ORDER_UNARY_SIGN) || '0';
return ['-' + code, Python.ORDER_UNARY_SIGN];
}
Python.definitions_['import_math'] = 'import math';
if (operator === 'SIN' || operator === 'COS' || operator === 'TAN') {
arg = Python.valueToCode(block, 'NUM', Python.ORDER_MULTIPLICATIVE) || '0';
} else {
arg = Python.valueToCode(block, 'NUM', Python.ORDER_NONE) || '0';
}
// First, handle cases which generate values that don't need parentheses
// wrapping the code.
switch (operator) {
case 'ABS':
code = 'math.fabs(' + arg + ')';
break;
case 'ROOT':
code = 'math.sqrt(' + arg + ')';
break;
case 'LN':
code = 'math.log(' + arg + ')';
break;
case 'LOG10':
code = 'math.log10(' + arg + ')';
break;
case 'EXP':
code = 'math.exp(' + arg + ')';
break;
case 'POW10':
code = 'math.pow(10,' + arg + ')';
break;
case 'ROUND':
code = 'round(' + arg + ')';
break;
case 'ROUNDUP':
code = 'math.ceil(' + arg + ')';
break;
case 'ROUNDDOWN':
code = 'math.floor(' + arg + ')';
break;
case 'SIN':
code = 'math.sin(' + arg + ' / 180.0 * math.pi)';
break;
case 'COS':
code = 'math.cos(' + arg + ' / 180.0 * math.pi)';
break;
case 'TAN':
code = 'math.tan(' + arg + ' / 180.0 * math.pi)';
break;
}
if (code) {
return [code, Python.ORDER_FUNCTION_CALL];
}
// Second, handle cases which generate values that may need parentheses
// wrapping the code.
switch (operator) {
case 'ASIN':
code = 'math.asin(' + arg + ') / math.pi * 180';
break;
case 'ACOS':
code = 'math.acos(' + arg + ') / math.pi * 180';
break;
case 'ATAN':
code = 'math.atan(' + arg + ') / math.pi * 180';
break;
default:
throw Error('Unknown math operator: ' + operator);
}
return [code, Python.ORDER_MULTIPLICATIVE];
};
Python.forBlock['math_constant'] = function(block) {
// Constants: PI, E, the Golden Ratio, sqrt(2), 1/sqrt(2), INFINITY.
const CONSTANTS = {
'PI': ['math.pi', Python.ORDER_MEMBER],
'E': ['math.e', Python.ORDER_MEMBER],
'GOLDEN_RATIO': ['(1 + math.sqrt(5)) / 2', Python.ORDER_MULTIPLICATIVE],
'SQRT2': ['math.sqrt(2)', Python.ORDER_MEMBER],
'SQRT1_2': ['math.sqrt(1.0 / 2)', Python.ORDER_MEMBER],
'INFINITY': ['float(\'inf\')', Python.ORDER_ATOMIC],
};
const constant = block.getFieldValue('CONSTANT');
if (constant !== 'INFINITY') {
Python.definitions_['import_math'] = 'import math';
}
return CONSTANTS[constant];
};
Python.forBlock['math_number_property'] = function(block) {
// Check if a number is even, odd, prime, whole, positive, or negative
// or if it is divisible by certain number. Returns true or false.
const PROPERTIES = {
'EVEN': [' % 2 == 0', Python.ORDER_MULTIPLICATIVE, Python.ORDER_RELATIONAL],
'ODD': [' % 2 == 1', Python.ORDER_MULTIPLICATIVE, Python.ORDER_RELATIONAL],
'WHOLE': [' % 1 == 0', Python.ORDER_MULTIPLICATIVE,
Python.ORDER_RELATIONAL],
'POSITIVE': [' > 0', Python.ORDER_RELATIONAL, Python.ORDER_RELATIONAL],
'NEGATIVE': [' < 0', Python.ORDER_RELATIONAL, Python.ORDER_RELATIONAL],
'DIVISIBLE_BY': [null, Python.ORDER_MULTIPLICATIVE,
Python.ORDER_RELATIONAL],
'PRIME': [null, Python.ORDER_NONE, Python.ORDER_FUNCTION_CALL],
}
const dropdownProperty = block.getFieldValue('PROPERTY');
const [suffix, inputOrder, outputOrder] = PROPERTIES[dropdownProperty];
const numberToCheck = Python.valueToCode(block, 'NUMBER_TO_CHECK',
inputOrder) || '0';
let code;
if (dropdownProperty === 'PRIME') {
// Prime is a special case as it is not a one-liner test.
Python.definitions_['import_math'] = 'import math';
Python.definitions_['from_numbers_import_Number'] =
'from numbers import Number';
const functionName = Python.provideFunction_('math_isPrime', `
def ${Python.FUNCTION_NAME_PLACEHOLDER_}(n):
# https://en.wikipedia.org/wiki/Primality_test#Naive_methods
# If n is not a number but a string, try parsing it.
if not isinstance(n, Number):
try:
n = float(n)
except:
return False
if n == 2 or n == 3:
return True
# False if n is negative, is 1, or not whole, or if n is divisible by 2 or 3.
if n <= 1 or n % 1 != 0 or n % 2 == 0 or n % 3 == 0:
return False
# Check all the numbers of form 6k +/- 1, up to sqrt(n).
for x in range(6, int(math.sqrt(n)) + 2, 6):
if n % (x - 1) == 0 or n % (x + 1) == 0:
return False
return True
`);
code = functionName + '(' + numberToCheck + ')';
} else if (dropdownProperty === 'DIVISIBLE_BY') {
const divisor = Python.valueToCode(block, 'DIVISOR',
Python.ORDER_MULTIPLICATIVE) || '0';
// If 'divisor' is some code that evals to 0, Python will raise an error.
if (divisor === '0') {
return ['False', Python.ORDER_ATOMIC];
}
code = numberToCheck + ' % ' + divisor + ' == 0';
} else {
code = numberToCheck + suffix;
};
return [code, outputOrder];
};
Python.forBlock['math_change'] = function(block) {
// Add to a variable in place.
Python.definitions_['from_numbers_import_Number'] =
'from numbers import Number';
const argument0 =
Python.valueToCode(block, 'DELTA', Python.ORDER_ADDITIVE) || '0';
const varName =
Python.nameDB_.getName(block.getFieldValue('VAR'), NameType.VARIABLE);
return varName + ' = (' + varName + ' if isinstance(' + varName +
', Number) else 0) + ' + argument0 + '\n';
};
// Rounding functions have a single operand.
Python.forBlock['math_round'] = Python.forBlock['math_single'];
// Trigonometry functions have a single operand.
Python.forBlock['math_trig'] = Python.forBlock['math_single'];
Python.forBlock['math_on_list'] = function(block) {
// Math functions for lists.
const func = block.getFieldValue('OP');
const list = Python.valueToCode(block, 'LIST', Python.ORDER_NONE) || '[]';
let code;
switch (func) {
case 'SUM':
code = 'sum(' + list + ')';
break;
case 'MIN':
code = 'min(' + list + ')';
break;
case 'MAX':
code = 'max(' + list + ')';
break;
case 'AVERAGE': {
Python.definitions_['from_numbers_import_Number'] =
'from numbers import Number';
// This operation excludes null and values that aren't int or float:
// math_mean([null, null, "aString", 1, 9]) -> 5.0
const functionName = Python.provideFunction_('math_mean', `
def ${Python.FUNCTION_NAME_PLACEHOLDER_}(myList):
localList = [e for e in myList if isinstance(e, Number)]
if not localList: return
return float(sum(localList)) / len(localList)
`);
code = functionName + '(' + list + ')';
break;
}
case 'MEDIAN': {
Python.definitions_['from_numbers_import_Number'] =
'from numbers import Number';
// This operation excludes null values:
// math_median([null, null, 1, 3]) -> 2.0
const functionName = Python.provideFunction_( 'math_median', `
def ${Python.FUNCTION_NAME_PLACEHOLDER_}(myList):
localList = sorted([e for e in myList if isinstance(e, Number)])
if not localList: return
if len(localList) % 2 == 0:
return (localList[len(localList) // 2 - 1] + localList[len(localList) // 2]) / 2.0
else:
return localList[(len(localList) - 1) // 2]
`);
code = functionName + '(' + list + ')';
break;
}
case 'MODE': {
// As a list of numbers can contain more than one mode,
// the returned result is provided as an array.
// Mode of [3, 'x', 'x', 1, 1, 2, '3'] -> ['x', 1]
const functionName = Python.provideFunction_('math_modes', `
def ${Python.FUNCTION_NAME_PLACEHOLDER_}(some_list):
modes = []
# Using a lists of [item, count] to keep count rather than dict
# to avoid "unhashable" errors when the counted item is itself a list or dict.
counts = []
maxCount = 1
for item in some_list:
found = False
for count in counts:
if count[0] == item:
count[1] += 1
maxCount = max(maxCount, count[1])
found = True
if not found:
counts.append([item, 1])
for counted_item, item_count in counts:
if item_count == maxCount:
modes.append(counted_item)
return modes
`);
code = functionName + '(' + list + ')';
break;
}
case 'STD_DEV': {
Python.definitions_['import_math'] = 'import math';
const functionName = Python.provideFunction_('math_standard_deviation', `
def ${Python.FUNCTION_NAME_PLACEHOLDER_}(numbers):
n = len(numbers)
if n == 0: return
mean = float(sum(numbers)) / n
variance = sum((x - mean) ** 2 for x in numbers) / n
return math.sqrt(variance)
`);
code = functionName + '(' + list + ')';
break;
}
case 'RANDOM':
Python.definitions_['import_random'] = 'import random';
code = 'random.choice(' + list + ')';
break;
default:
throw Error('Unknown operator: ' + func);
}
return [code, Python.ORDER_FUNCTION_CALL];
};
Python.forBlock['math_modulo'] = function(block) {
// Remainder computation.
const argument0 =
Python.valueToCode(block, 'DIVIDEND', Python.ORDER_MULTIPLICATIVE) || '0';
const argument1 =
Python.valueToCode(block, 'DIVISOR', Python.ORDER_MULTIPLICATIVE) || '0';
const code = argument0 + ' % ' + argument1;
return [code, Python.ORDER_MULTIPLICATIVE];
};
Python.forBlock['math_constrain'] = function(block) {
// Constrain a number between two limits.
const argument0 =
Python.valueToCode(block, 'VALUE', Python.ORDER_NONE) || '0';
const argument1 = Python.valueToCode(block, 'LOW', Python.ORDER_NONE) || '0';
const argument2 =
Python.valueToCode(block, 'HIGH', Python.ORDER_NONE) || 'float(\'inf\')';
const code =
'min(max(' + argument0 + ', ' + argument1 + '), ' + argument2 + ')';
return [code, Python.ORDER_FUNCTION_CALL];
};
Python.forBlock['math_random_int'] = function(block) {
// Random integer between [X] and [Y].
Python.definitions_['import_random'] = 'import random';
const argument0 = Python.valueToCode(block, 'FROM', Python.ORDER_NONE) || '0';
const argument1 = Python.valueToCode(block, 'TO', Python.ORDER_NONE) || '0';
const code = 'random.randint(' + argument0 + ', ' + argument1 + ')';
return [code, Python.ORDER_FUNCTION_CALL];
};
Python.forBlock['math_random_float'] = function(block) {
// Random fraction between 0 and 1.
Python.definitions_['import_random'] = 'import random';
return ['random.random()', Python.ORDER_FUNCTION_CALL];
};
Python.forBlock['math_atan2'] = function(block) {
// Arctangent of point (X, Y) in degrees from -180 to 180.
Python.definitions_['import_math'] = 'import math';
const argument0 = Python.valueToCode(block, 'X', Python.ORDER_NONE) || '0';
const argument1 = Python.valueToCode(block, 'Y', Python.ORDER_NONE) || '0';
return [
'math.atan2(' + argument1 + ', ' + argument0 + ') / math.pi * 180',
Python.ORDER_MULTIPLICATIVE
];
};