Rewrite GUI in 3D demo to use Physics Picking for mouse events (#925)

Rework GUI in 3D Demo to handle mouse events via
Physics Picking instead of in _unhandled_input.

This brings several benefits:
- Correctly handle cases, where the 3D-GUI is located behind other
collision objects.
- Proper passive hovering support

This allows also to make simplifications in the code, because
3D-mouse position no longer needs to be calculated manually.
This commit is contained in:
Markus Sauermann
2024-02-24 18:06:19 +01:00
committed by GitHub
parent 722bd11689
commit a69b2f7e21
2 changed files with 64 additions and 107 deletions

View File

@@ -1,15 +1,11 @@
extends Node3D
# The size of the quad mesh itself.
var quad_mesh_size
# Used for checking if the mouse is inside the Area3D
# Used for checking if the mouse is inside the Area3D.
var is_mouse_inside = false
# Used for checking if the mouse was pressed inside the Area3D
var is_mouse_held = false
# The last non-empty mouse position. Used when dragging outside of the box.
var last_mouse_pos3D = null
# The last processed input touch/mouse event. To calculate relative movement.
var last_mouse_pos2D = null
var last_event_pos2D = null
# The time of the last event in seconds since engine start.
var last_event_time: float = -1.0
@onready var node_viewport = $SubViewport
@onready var node_quad = $Quad
@@ -17,6 +13,8 @@ var last_mouse_pos2D = null
func _ready():
node_area.mouse_entered.connect(self._mouse_entered_area)
node_area.mouse_exited.connect(self._mouse_exited_area)
node_area.input_event.connect(self._mouse_input_event)
# If the material is NOT set to use billboard settings, then avoid running billboard specific code
if node_quad.get_surface_override_material(0).billboard_mode == BaseMaterial3D.BillboardMode.BILLBOARD_DISABLED:
@@ -32,134 +30,93 @@ func _mouse_entered_area():
is_mouse_inside = true
func _mouse_exited_area():
is_mouse_inside = false
func _unhandled_input(event):
# Check if the event is a non-mouse/non-touch event
var is_mouse_event = false
for mouse_event in [InputEventMouseButton, InputEventMouseMotion, InputEventScreenDrag, InputEventScreenTouch]:
if is_instance_of(event, mouse_event):
is_mouse_event = true
break
# If the event is a mouse/touch event and/or the mouse is either held or inside the area, then
# we need to do some additional processing in the handle_mouse function before passing the event to the viewport.
# If the event is not a mouse/touch event, then we can just pass the event directly to the viewport.
if is_mouse_event and (is_mouse_inside or is_mouse_held):
handle_mouse(event)
elif not is_mouse_event:
node_viewport.push_input(event)
# If the event is a mouse/touch event, then we can ignore it here, because it will be
# handled via Physics Picking.
return
node_viewport.push_input(event)
# Handle mouse events inside Area3D. (Area3D.input_event had many issues with dragging)
func handle_mouse(event):
func _mouse_input_event(_camera: Camera3D, event: InputEvent, event_position: Vector3, _normal: Vector3, _shape_idx: int):
# Get mesh size to detect edges and make conversions. This code only support PlaneMesh and QuadMesh.
quad_mesh_size = node_quad.mesh.size
var quad_mesh_size = node_quad.mesh.size
# Detect mouse being held to mantain event while outside of bounds. Avoid orphan clicks
if event is InputEventMouseButton or event is InputEventScreenTouch:
is_mouse_held = event.pressed
# Event position in Area3D in world coordinate space.
var event_pos3D = event_position
# Find mouse position in Area3D
var mouse_pos3D = find_mouse(event.global_position)
# Current time in seconds since engine start.
var now: float = Time.get_ticks_msec() / 1000.0
# Convert position to a coordinate space relative to the Area3D node.
# NOTE: affine_inverse accounts for the Area3D node's scale, rotation, and position in the scene!
event_pos3D = node_quad.global_transform.affine_inverse() * event_pos3D
# TODO: Adapt to bilboard mode or avoid completely.
var event_pos2D: Vector2 = Vector2()
# Check if the mouse is outside of bounds, use last position to avoid errors
# NOTE: mouse_exited signal was unrealiable in this situation
is_mouse_inside = mouse_pos3D != null
if is_mouse_inside:
# Convert click_pos from world coordinate space to a coordinate space relative to the Area3D node.
# NOTE: affine_inverse accounts for the Area3D node's scale, rotation, and position in the scene!
mouse_pos3D = node_area.global_transform.affine_inverse() * mouse_pos3D
last_mouse_pos3D = mouse_pos3D
else:
mouse_pos3D = last_mouse_pos3D
if mouse_pos3D == null:
mouse_pos3D = Vector3.ZERO
# Convert the relative event position from 3D to 2D.
event_pos2D = Vector2(event_pos3D.x, -event_pos3D.y)
# TODO: adapt to bilboard mode or avoid completely
# Right now the event position's range is the following: (-quad_size/2) -> (quad_size/2)
# We need to convert it into the following range: -0.5 -> 0.5
event_pos2D.x = event_pos2D.x / quad_mesh_size.x
event_pos2D.y = event_pos2D.y / quad_mesh_size.y
# Then we need to convert it into the following range: 0 -> 1
event_pos2D.x += 0.5
event_pos2D.y += 0.5
# convert the relative event position from 3D to 2D
var mouse_pos2D = Vector2(mouse_pos3D.x, -mouse_pos3D.y)
# Finally, we convert the position to the following range: 0 -> viewport.size
event_pos2D.x *= node_viewport.size.x
event_pos2D.y *= node_viewport.size.y
# We need to do these conversions so the event's position is in the viewport's coordinate system.
# Right now the event position's range is the following: (-quad_size/2) -> (quad_size/2)
# We need to convert it into the following range: 0 -> quad_size
mouse_pos2D.x += quad_mesh_size.x / 2
mouse_pos2D.y += quad_mesh_size.y / 2
# Then we need to convert it into the following range: 0 -> 1
mouse_pos2D.x = mouse_pos2D.x / quad_mesh_size.x
mouse_pos2D.y = mouse_pos2D.y / quad_mesh_size.y
# Finally, we convert the position to the following range: 0 -> viewport.size
mouse_pos2D.x = mouse_pos2D.x * node_viewport.size.x
mouse_pos2D.y = mouse_pos2D.y * node_viewport.size.y
# We need to do these conversions so the event's position is in the viewport's coordinate system.
elif last_event_pos2D != null:
# Fall back to the last known event position.
event_pos2D = last_event_pos2D
# Set the event's position and global position.
event.position = mouse_pos2D
event.global_position = mouse_pos2D
event.position = event_pos2D
if event is InputEventMouse:
event.global_position = event_pos2D
# If the event is a mouse motion event...
if event is InputEventMouseMotion:
# Calculate the relative event distance.
if event is InputEventMouseMotion or event is InputEventScreenDrag:
# If there is not a stored previous position, then we'll assume there is no relative motion.
if last_mouse_pos2D == null:
if last_event_pos2D == null:
event.relative = Vector2(0, 0)
# If there is a stored previous position, then we'll calculate the relative position by subtracting
# the previous position from the new position. This will give us the distance the event traveled from prev_pos
# the previous position from the new position. This will give us the distance the event traveled from prev_pos.
else:
event.relative = mouse_pos2D - last_mouse_pos2D
# Update last_mouse_pos2D with the position we just calculated.
last_mouse_pos2D = mouse_pos2D
event.relative = event_pos2D - last_event_pos2D
event.velocity = event.relative / (now - last_event_time)
# Update last_event_pos2D with the position we just calculated.
last_event_pos2D = event_pos2D
# Update last_event_time to current time.
last_event_time = now
# Finally, send the processed input event to the viewport.
node_viewport.push_input(event)
func find_mouse(global_position):
var camera = get_viewport().get_camera_3d()
var dist = find_further_distance_to(camera.transform.origin)
# From camera center to the mouse position in the Area3D.
var parameters = PhysicsRayQueryParameters3D.new()
parameters.from = camera.project_ray_origin(global_position)
parameters.to = parameters.from + camera.project_ray_normal(global_position) * dist
# Manually raycasts the area to find the mouse position.
parameters.collision_mask = node_area.collision_layer
parameters.collide_with_bodies = false
parameters.collide_with_areas = true
var result = get_world_3d().direct_space_state.intersect_ray(parameters)
if result.size() > 0:
return result.position
else:
return null
func find_further_distance_to(origin):
# Find edges of collision and change to global positions
var edges = []
edges.append(node_area.to_global(Vector3(quad_mesh_size.x / 2, quad_mesh_size.y / 2, 0)))
edges.append(node_area.to_global(Vector3(quad_mesh_size.x / 2, -quad_mesh_size.y / 2, 0)))
edges.append(node_area.to_global(Vector3(-quad_mesh_size.x / 2, quad_mesh_size.y / 2, 0)))
edges.append(node_area.to_global(Vector3(-quad_mesh_size.x / 2, -quad_mesh_size.y / 2, 0)))
# Get the furthest distance between the camera and collision to avoid raycasting too far or too short
var far_dist = 0
var temp_dist
for edge in edges:
temp_dist = origin.distance_to(edge)
if temp_dist > far_dist:
far_dist = temp_dist
return far_dist
func rotate_area_to_billboard():
var billboard_mode = node_quad.get_surface_override_material(0).params_billboard_mode
# Try to match the area with the material's billboard setting, if enabled
# Try to match the area with the material's billboard setting, if enabled.
if billboard_mode > 0:
# Get the camera
# Get the camera.
var camera = get_viewport().get_camera_3d()
# Look in the same direction as the camera
# Look in the same direction as the camera.
var look = camera.to_global(Vector3(0, 0, -100)) - camera.global_transform.origin
look = node_area.position + look
@@ -169,5 +126,5 @@ func rotate_area_to_billboard():
node_area.look_at(look, Vector3.UP)
# Rotate in the Z axis to compensate camera tilt
# Rotate in the Z axis to compensate camera tilt.
node_area.rotate_object_local(Vector3.BACK, camera.rotation.z)

View File

@@ -63,10 +63,10 @@ shadow_blur = 3.0
omni_range = 10.0
[node name="Camera_Move" type="AnimationPlayer" parent="."]
autoplay = "Move_camera"
libraries = {
"": SubResource("AnimationLibrary_uw4n0")
}
autoplay = "Move_camera"
[node name="Background" type="Node3D" parent="."]