15 KiB
micro:bit MicroPython Cookbook (Updating)
BBC micro:bit MicroPython documentation
This is the collection of my notes, tricks and experiments about BBC micro:bit and MicroPython.
Easer Eggs
Enter the following codes in REPL:
import this
import love
import antigravity
The result from import this is a version of Zen of Python and import antigravity is from original Python easter egg.
Also you can try
this.authors()
love.badaboom()
Editor of Choice
The official Python online editor does not need installation and can be used anywhere with Internet and Chrome web browser. Support Web-USB. It's ok to use, really.
Personally, I would perfer Mu editor for any beginners. It has code check, (limited) auto-complete and can automatically detect/upload code to your micro:bit.
If you have experiences with MicroPython with ESP8266/ESP32 or CircuitPython, you can consider Thonny which allows you to access micro:bit's REPL directly without having to upload hex file.
Some Lesser Known Facts
Since both Python and MicroPython are interpreted languages, they eat a lot of memory. Also, the hex file generated by micro:bit Python editors are consisted of 2 parts: the MicroPython firmware (up to 248 KB) and user's script (up to only 8 KB). See Firmware Hex File. Which means it's less likely to build bigger projects with micro:bit's MicroPython.
One way to "minimize" your script size is to use 1-space indents instead of 4.
micro:bit's MicroPython is based on Python 3.4. Which means many built-in Python advanced feaetures, like string.format(), list comprehension, list slice, variable unpacking, lambda function, decorators, generators, @classmethod, @staticmethod, etc. can be used as well.
Also, about how micro:bit get its own version of MicroPython: The Story of MicroPython on the BBC micro:bit by Nicholas H. Tollervey, who also created the Mu editor.
Recursion is Not Welcomed
Since micro:bit has very limited memory, the recursion depth is severely limited. Only 8 nested function calls or so can be used without triggering RuntimeError.
Why You Shouldn't Use * For Import
The following import statement
from microbit import *
is a bad idea. This imports everything of the microbit module even you don't need many of the features and wastes extra memory.
Instead, you should only import sub-modules you are going to use:
from microbit import pin0, display, sleep
How Much Memory Left?
from micropython import mem_info
print(mem_info(1))
You can also try to turn on garbage collection if the memory is almost full:
import gc
gc.enable() # auto memory recycle
gc.collect() # force memory recycle
Classic Blinky
from microbit import display, Image, sleep
while True:
display.show(Image.HEART)
sleep(1000)
display.clear()
sleep(1000)
Blinky LEDs Without Using Sleep
The two LEDs would blink at different intervals.
from microbit import display
import utime
delay1, delay2 = 1000, 300
since1, since2 = utime.ticks_ms(), utime.ticks_ms()
while True:
now = utime.ticks_ms()
if utime.ticks_diff(now, since1) >= delay1:
display.set_pixel(0, 0, 9 if display.get_pixel(0, 0) == 0 else 0)
since1 = utime.ticks_ms()
if utime.ticks_diff(now, since2) >= delay2:
display.set_pixel(4, 4, 9 if display.get_pixel(4, 4) == 0 else 0)
since2 = utime.ticks_ms()
Fill LED Display
Light up every LEDs. You can use fillScreen() as default.
from microbit import display, Image, sleep
def fillScreen(b = 9):
f = (str(b) * 5 + ':') * 5
display.show(Image(f[:len(f)-1]))
while True:
for _ in range(2):
fillScreen()
sleep(100)
fillScreen(0)
sleep(100)
for i in range(9):
fillScreen(i)
sleep(50)
for i in reversed(range(9)):
fillScreen(i)
sleep(50)
LED Bar Graph
A 25-level LED progress bar.
from microbit import display, sleep
def plotBarGraph(value, maxValue, brightness=9):
bar = value / maxValue
valueArray = ((0.96, 0.88, 0.84, 0.92, 1.00),
(0.76, 0.68, 0.64, 0.72, 0.80),
(0.56, 0.48, 0.44, 0.52, 0.60),
(0.36, 0.28, 0.24, 0.32, 0.40),
(0.16, 0.08, 0.04, 0.12, 0.20))
for y in range(5):
for x in range(5):
display.set_pixel(x, y,
brightness if bar >= valueArray[y][x] else 0)
while True:
lightLevel = display.read_light_level()
plotBarGraph(lightLevel, 255) # or plotBarGraph(lightLevel, 255, 9)
sleep(50)
Since read_light_level() uses LEDs themselves as light sensors (see this video), The LED screen would flicker a bit.
A More Convenient Pin Class
Make a Pin class to "rename" existing pin methods.
from microbit import pin0, pin2, sleep
class Pin:
__slots__ = ['pin']
def __init__(self, pin):
self.pin = pin
def set(self, value):
self.pin.write_digital(value)
def setPWM(self, value):
self.pin.write_analog(value)
def get(self):
self.pin.set_pull(self.pin.PULL_DOWN)
return self.pin.read_digital()
def pressed(self):
self.pin.set_pull(self.pin.PULL_UP)
return not self.pin.read_digital()
def getADC(self):
return self.pin.read_analog()
led = Pin(pin0)
button = Pin(pin2)
while True:
led.set(button.pressed())
sleep(50)
Another Version of Pin Class
Use namedtuple as a simple Pin class. Might save more memory than regular class.
from microbit import pin0, pin2, sleep
from ucollections import namedtuple
Pin = namedtuple('Pin', ['set', 'get'])
def setPin(pin, pull_up=False):
pin.set_pull(pin.PULL_UP if pull_up else pin.PULL_DOWN)
return Pin(pin.write_digital, pin.read_digital)
led = setPin(pin0)
button = setPin(pin2, pull_up=True)
while True:
led.set(not button.get())
sleep(50)
Value Mapping
Translate a value in a range to its corresponding value in anoher range. Borrowed from here.
def translate(value, leftMin, leftMax, rightMin, rightMax):
leftSpan = leftMax - leftMin
rightSpan = rightMax - rightMin
valueScaled = float(value - leftMin) / float(leftSpan)
return rightMin + (valueScaled * rightSpan)
Servo Control
from microbit import pin0, sleep
def servoWrite(pin, degree):
pin.set_analog_period(20)
pin.write_analog(round((degree * 92 / 180 + 30), 0))
servoPin = pin0
while True:
servoWrite(servoPin, 0)
sleep(1000)
servoWrite(servoPin, 180)
sleep(1000)
Do not use servos and buzzers at the same time. They require different PWM frequencies and most microcontrollers can only set one frequency accross all pins at a time.
Also: micro:bit's power output may just (barely) enough to power a single SG90 mini servo. External power supply is recommended.
Get Pitch and Roll Degrees
These function cannot tell if the board is facing up or down. Probably need to use accelerometer.get_z() for that.
Go to REPL and reset micro:bit to see the output.
from microbit import accelerometer, sleep
from math import pi, atan2, sqrt
def rotationPitch():
return atan2(
accelerometer.get_y(),
sqrt(accelerometer.get_x() ** 2 + accelerometer.get_z() ** 2)
) * (180 / pi)
def rotationRoll():
return atan2(
accelerometer.get_x(),
sqrt(accelerometer.get_y() ** 2 + accelerometer.get_z() ** 2)
) * (180 / pi)
while True:
print('Pitch:', rotationPitch(), ' / roll:', rotationRoll())
sleep(100)
NeoPixel Rainbow/Rotation Effect
This code needs at least 3 LEDs in the NeoPixel chain. Of course, you can set a number (much) higher than actual LEDs to get smooth rainbow effects.
from microbit import pin0, sleep
from neopixel import NeoPixel
from micropython import const
led_num = const(12)
led_maxlevel = const(64) # max 255
led_pin = pin0
np = NeoPixel(led_pin, led_num)
def showRainbow():
change_amount = int(led_maxlevel / (led_num / 3))
index = (0, int(led_num / 3), int(led_num / 3 * 2))
for i in range(led_num):
color = [0, 0, 0]
for j in range(3):
if abs(i - index[j]) <= index[1]:
color[j] = led_maxlevel - abs(i - index[j]) * change_amount
if color[j] < 0:
color[j] = 0
if i >= index[2]:
color[0] = led_maxlevel - (led_num - i) * change_amount
if color[0] < 0:
color[0] = 0
np[i] = tuple(color)
np.show()
def ledRotate():
tmp = np[led_num - 1]
for i in reversed(range(1, led_num)): # clockwise
np[i] = np[i - 1]
np[0] = tmp
np.show()
showRainbow()
while True:
ledRotate()
sleep(50)
HC-SR04 Ultrasonic Sensor
Get detected distance from HC-SR04/HC-SR04P sonar sensors. Set the parameter unit to 'cm' or 'inch'. External power supply recommended.
from machine import time_pulse_us
from utime import sleep_us
from microbit import pin1, pin2, display, Image, sleep
def sonar(trig_pin, echo_pin, unit='cm'):
trig_pin.write_digital(0)
sleep_us(2)
trig_pin.write_digital(1)
sleep_us(10)
trig_pin.write_digital(0)
while echo_pin.read_digital() == 0:
pass
duration = time_pulse_us(echo_pin, 1, 30000)
if unit == 'cm':
return duration / 2.0 * 0.03313
elif unit == 'inch':
return duration / 2.0 * 0.01304
else:
return duration
while True:
distance = sonar(trig_pin=pin1, echo_pin=pin2, unit='cm')
print(distance)
if 2 <= distance <= 20:
display.show(Image.YES)
else:
display.clear()
sleep(100)
Calcualte Fibonacci Sequence
from microbit import display
Fibonacci_num = 42 # calculate nth number
a = 0
b = 1
for i in range(Fibonacci_num - 2):
a, b = b, a + b
print(b)
display.scroll(b)
Calcuate a List of Prime Numbers
Prime numbers (except 2, 3) are either 6n - 1 or 6n + 1.
from microbit import display
limit = 50 # calculate primes up to 50
primes = [2, 3]
for p in range(6, limit + 1, 6):
for p_test in range(p - 1, p + 2, 2):
p_test_is_prime = True
for prime in primes:
if p_test % prime == 0:
p_test_is_prime = False
break
if p_test_is_prime:
primes.append(p_test)
print(primes)
for prime in primes:
display.scroll(prime)
Conway's Game of Life on 5x5 LED Display
The code would reset the micro:bit if there's no cell left or the cells are stable.
from microbit import display
from machine import reset
from random import randint
# Rule for B3/S23
# see https://www.conwaylife.com/wiki/List_of_Life-like_cellular_automata
Born = '3'
Sustain = '23'
matrix = [bytearray((1 if randint(0, 2) == 0 else 0)
for _ in range(5)) for _ in range(5)]
def display_matrix():
for i in range(5):
for j in range(5):
display.set_pixel(i, j, 9 if matrix[i][j] else 0)
def calculate_next_gen():
global matrix
matrix_buf = [bytearray(0 for _ in range(5)) for _ in range(5)]
for i in range(5):
for j in range(5):
cell_num = 0
for k in range(3):
for l in range(3):
x = i + k - 1
y = j + l - 1
if x < 0:
x = 5 - 1
elif x >= 5:
x = 0
if y < 0:
y = 5 - 1
elif y >= 5:
y = 0
if matrix[x][y]:
cell_num += 1
if not matrix[i][j]:
matrix_buf[i][j] = 1 if str(cell_num) in Born else 0
else:
cell_num -= 1
matrix_buf[i][j] = 1 if str(cell_num) in Sustain else 0
matrix = matrix_buf
generation = 0
cell_count = 0
prev_cell_count = 0
cell_repeat = 0
while True:
calculate_next_gen()
cell_count = sum(map(sum, matrix))
print(cell_count, 'cell(s)')
display_matrix()
if prev_cell_count == cell_count:
cell_repeat += 1
else:
cell_repeat = 0
prev_cell_count = cell_count
if cell_count == 0 or cell_repeat >= 7:
print('Resetting...')
print('')
reset()
Morse Code Machine
This allows you to enter your message and display it as Morse code on the LED screen. Go to the REPL mode and reset micro:bit to make it work.
If you attach a passive buzzer between pin 0 and ground you can hear it too.
from microbit import display, Image, sleep
from micropython import const
import music
morse_delay = const(50) # morse code speed
morse_code = {
'A': '.-',
'B': '-...',
'C': '-.-.',
'D': '-..',
'E': '.',
'F': '..-.',
'G': '--.',
'H': '....',
'I': '..',
'J': '.---',
'K': '-.-',
'L': '.-..',
'M': '--',
'N': '-.',
'O': '---',
'P': '.--.',
'Q': '--.-',
'R': '.-.',
'S': '...',
'T': '-',
'U': '..-',
'V': '...-',
'W': '.--',
'X': '-..-',
'Y': '-.--',
'Z': '--..',
'1': '.----',
'2': '..---',
'3': '...--',
'4': '....-',
'5': '.....',
'6': '-....',
'7': '--...',
'8': '---..',
'9': '----.',
'0': '-----',
}
def fillScreen():
f = (str(9) * 5 + ':') * 5
display.show(Image(f[:len(f)-1]))
while True:
print('Enter your message: (alphabets and numbers only)')
msg_str = input().upper()
morse_str = ''
print('Converting message...')
for s in msg_str:
if s in morse_code:
for code in morse_code[s]:
morse_str += code
music.pitch(440)
fillScreen()
sleep(morse_delay * (3 if code == '-' else 1))
music.pitch(0)
display.clear()
sleep(morse_delay)
print('Message converted:')
print(morse_str)
print('')
