#!/usr/bin/env python3 import hashlib import os import pickle import re import string from collections import defaultdict from copy import deepcopy from itertools import product from pathlib import Path import ruamel.yaml from osaca import __version__, utils from osaca.parser import ParserX86ATT from ruamel.yaml.compat import StringIO class MachineModel(object): WILDCARD = "*" INTERNAL_VERSION = 1 # increase whenever self._data format changes to invalidate cache! _runtime_cache = {} def __init__(self, arch=None, path_to_yaml=None, isa=None, lazy=False): if not arch and not path_to_yaml: if not isa: raise ValueError("One of arch, path_to_yaml and isa must be specified") self._data = { "osaca_version": str(__version__), "micro_architecture": None, "arch_code": None, "isa": isa, "ROB_size": None, "retired_uOps_per_cycle": None, "scheduler_size": None, "hidden_loads": None, "load_latency": {}, "load_throughput": [ { "base": b, "index": i, "offset": o, "scale": s, "port_pressure": [], } for b, i, o, s in product(["gpr"], ["gpr", None], ["imd", None], [1, 8]) ], "load_throughput_default": [], "store_throughput": [], "store_throughput_default": [], "store_to_load_forward_latency": None, "ports": [], "port_model_scheme": None, "instruction_forms": [], "instruction_forms_dict": defaultdict(list), } else: if arch and path_to_yaml: raise ValueError("Only one of arch and path_to_yaml is allowed.") self._path = path_to_yaml self._arch = arch if arch: self._arch = arch.lower() self._path = utils.find_datafile(self._arch + ".yml") # Check runtime cache if self._path in MachineModel._runtime_cache and not lazy: self._data = MachineModel._runtime_cache[self._path] # check if file is cached cached = self._get_cached(self._path) if not lazy else False if cached: self._data = cached else: yaml = self._create_yaml_object() # otherwise load with open(self._path, "r") as f: if not lazy: self._data = yaml.load(f) else: file_content = "" line = f.readline() while "instruction_forms:" not in line: file_content += line line = f.readline() self._data = yaml.load(file_content) self._data["instruction_forms"] = [] # separate multi-alias instruction forms for entry in [ x for x in self._data["instruction_forms"] if isinstance(x["name"], list) ]: for name in entry["name"]: new_entry = {"name": name} for k in [x for x in entry.keys() if x != "name"]: new_entry[k] = entry[k] self._data["instruction_forms"].append(new_entry) # remove old entry self._data["instruction_forms"].remove(entry) # Normalize instruction_form names (to UPPERCASE) and build dict for faster access: self._data["instruction_forms_dict"] = defaultdict(list) for iform in self._data["instruction_forms"]: iform["name"] = iform["name"].upper() self._data["instruction_forms_dict"][iform["name"]].append(iform) self._data["internal_version"] = self.INTERNAL_VERSION if not lazy: # cache internal representation for future use self._write_in_cache(self._path) # Store in runtime cache if not lazy: MachineModel._runtime_cache[self._path] = self._data def get(self, key, default=None): """Return config entry for key or default/None.""" return self._data.get(key, default) def __getitem__(self, key): """Return configuration entry.""" return self._data[key] def __contains__(self, key): """Return true if configuration key is present.""" return key in self._data ###################################################### def get_instruction(self, name, operands): """Find and return instruction data from name and operands.""" # For use with dict instead of list as DB if name is None: return None name_matched_iforms = self._data["instruction_forms_dict"].get(name.upper(), []) try: return next( instruction_form for instruction_form in name_matched_iforms if self._match_operands( instruction_form["operands"] if "operands" in instruction_form else [], operands, ) ) except StopIteration: return None except TypeError as e: print("\nname: {}\noperands: {}".format(name, operands)) raise TypeError from e def average_port_pressure(self, port_pressure): """Construct average port pressure list from instruction data.""" port_list = self._data["ports"] average_pressure = [0.0] * len(port_list) for cycles, ports in port_pressure: for p in ports: try: average_pressure[port_list.index(p)] += cycles / len(ports) except ValueError as e: raise KeyError("Port {!r} not in port list.".format(p)) from e return average_pressure def set_instruction( self, name, operands=None, latency=None, port_pressure=None, throughput=None, uops=None, ): """Import instruction form information.""" # If it already exists. Overwrite information. instr_data = self.get_instruction(name, operands) if instr_data is None: instr_data = {} self._data["instruction_forms"].append(instr_data) self._data["instruction_forms_dict"][name].append(instr_data) instr_data["name"] = name instr_data["operands"] = operands instr_data["latency"] = latency instr_data["port_pressure"] = port_pressure instr_data["throughput"] = throughput instr_data["uops"] = uops def set_instruction_entry(self, entry): """Import instruction as entry object form information.""" self.set_instruction( entry["name"], entry["operands"] if "operands" in entry else None, entry["latency"] if "latency" in entry else None, entry["port_pressure"] if "port_pressure" in entry else None, entry["throughput"] if "throughput" in entry else None, entry["uops"] if "uops" in entry else None, ) def add_port(self, port): """Add port in port model of current machine model.""" if port not in self._data["ports"]: self._data["ports"].append(port) def get_ISA(self): """Return ISA of :class:`MachineModel`.""" return self._data["isa"].lower() def get_arch(self): """Return micro-architecture code of :class:`MachineModel`.""" return self._data["arch_code"].lower() def get_ports(self): """Return port model of :class:`MachineModel`.""" return self._data["ports"] def has_hidden_loads(self): """Return if model has hidden loads.""" if "hidden_loads" in self._data: return self._data["hidden_loads"] return False def get_load_latency(self, reg_type): """Return load latency for given register type.""" return self._data["load_latency"][reg_type] if self._data["load_latency"][reg_type] else 0 def get_load_throughput(self, memory): """Return load thorughput for given register type.""" ld_tp = [m for m in self._data["load_throughput"] if self._match_mem_entries(memory, m)] if len(ld_tp) > 0: return ld_tp[0]["port_pressure"].copy() return self._data["load_throughput_default"].copy() def get_store_latency(self, reg_type): """Return store latency for given register type.""" # assume 0 for now, since load-store-dependencies currently not detectable return 0 def get_store_throughput(self, memory): """Return store throughput for given register type.""" st_tp = [m for m in self._data["store_throughput"] if self._match_mem_entries(memory, m)] if len(st_tp) > 0: return st_tp[0]["port_pressure"].copy() return self._data["store_throughput_default"].copy() def _match_mem_entries(self, mem, i_mem): """Check if memory addressing ``mem`` and ``i_mem`` are of the same type.""" if self._data["isa"].lower() == "aarch64": return self._is_AArch64_mem_type(i_mem, mem) if self._data["isa"].lower() == "x86": return self._is_x86_mem_type(i_mem, mem) def get_data_ports(self): """Return all data ports (i.e., ports with D-suffix) of current model.""" data_port = re.compile(r"^[0-9]+D$") data_ports = [x for x in filter(data_port.match, self._data["ports"])] return data_ports @staticmethod def get_full_instruction_name(instruction_form): """Get one instruction name string including the mnemonic and all operands.""" operands = [] for op in instruction_form["operands"]: op_attrs = [ y + ":" + str(op[y]) for y in list(filter(lambda x: True if x != "class" else False, op)) ] operands.append("{}({})".format(op["class"], ",".join(op_attrs))) return "{} {}".format(instruction_form["name"].lower(), ",".join(operands)) @staticmethod def get_isa_for_arch(arch): """Return ISA for given micro-arch ``arch``.""" arch_dict = { "a64fx": "aarch64", "tx2": "aarch64", "n1": "aarch64", "zen1": "x86", "zen+": "x86", "zen2": "x86", "con": "x86", # Intel Conroe "wol": "x86", # Intel Wolfdale "snb": "x86", "ivb": "x86", "hsw": "x86", "bdw": "x86", "skl": "x86", "skx": "x86", "csx": "x86", "wsm": "x86", "nhm": "x86", "kbl": "x86", "cnl": "x86", "cfl": "x86", "icl": "x86", } arch = arch.lower() if arch in arch_dict: return arch_dict[arch].lower() else: raise ValueError("Unknown architecture {!r}.".format(arch)) def dump(self, stream=None): """Dump machine model to stream or return it as a ``str`` if no stream is given.""" # Replace instruction form's port_pressure with styled version for RoundtripDumper formatted_instruction_forms = deepcopy(self._data["instruction_forms"]) for instruction_form in formatted_instruction_forms: if instruction_form["port_pressure"] is not None: cs = ruamel.yaml.comments.CommentedSeq(instruction_form["port_pressure"]) cs.fa.set_flow_style() instruction_form["port_pressure"] = cs # Replace load_throughput with styled version for RoundtripDumper formatted_load_throughput = [] for lt in self._data["load_throughput"]: cm = ruamel.yaml.comments.CommentedMap(lt) cm.fa.set_flow_style() formatted_load_throughput.append(cm) # Create YAML object yaml = self._create_yaml_object() if not stream: stream = StringIO() yaml.dump( { k: v for k, v in self._data.items() if k not in [ "instruction_forms", "instruction_forms_dict", "load_throughput", "internal_version", ] }, stream, ) yaml.dump({"load_throughput": formatted_load_throughput}, stream) yaml.dump({"instruction_forms": formatted_instruction_forms}, stream) if isinstance(stream, StringIO): return stream.getvalue() ###################################################### def _get_cached(self, filepath): """ Check if machine model is cached and if so, load it. :param filepath: path to check for cached machine model :type filepath: str :returns: cached DB if existing, `False` otherwise """ p = Path(filepath) hexhash = hashlib.sha256(p.read_bytes()).hexdigest() # 1. companion cachefile: same location, with '._.pickle' companion_cachefile = p.with_name("." + p.stem + "_" + hexhash).with_suffix(".pickle") if companion_cachefile.exists(): # companion file (must be up-to-date, due to equal hash) with companion_cachefile.open("rb") as f: data = pickle.load(f) if data.get("internal_version") == self.INTERNAL_VERSION: return data # 2. home cachefile: ~/.osaca/cache/_.pickle home_cachefile = (Path(utils.CACHE_DIR) / (p.stem + "_" + hexhash)).with_suffix(".pickle") if home_cachefile.exists(): # home file (must be up-to-date, due to equal hash) with home_cachefile.open("rb") as f: data = pickle.load(f) if data.get("internal_version") == self.INTERNAL_VERSION: return data return False def _write_in_cache(self, filepath): """ Write machine model to cache :param filepath: path to store DB :type filepath: str """ p = Path(filepath) hexhash = hashlib.sha256(p.read_bytes()).hexdigest() # 1. companion cachefile: same location, with '._.pickle' companion_cachefile = p.with_name("." + p.stem + "_" + hexhash).with_suffix(".pickle") if os.access(str(companion_cachefile.parent), os.W_OK): with companion_cachefile.open("wb") as f: pickle.dump(self._data, f) return # 2. home cachefile: ~/.osaca/cache/_.pickle cache_dir = Path(utils.CACHE_DIR) try: os.makedirs(cache_dir, exist_ok=True) except OSError: return home_cachefile = (cache_dir / (p.stem + "_" + hexhash)).with_suffix(".pickle") if os.access(str(home_cachefile.parent), os.W_OK): with home_cachefile.open("wb") as f: pickle.dump(self._data, f) def _get_key(self, name, operands): """Get unique instruction form key for dict DB.""" key_string = name.lower() + "-" if operands is None: return key_string[:-1] key_string += "_".join([self._get_operand_hash(op) for op in operands]) return key_string def _get_operand_hash(self, operand): """Get unique key for operand for dict DB""" operand_string = "" if "class" in operand: # DB entry opclass = operand["class"] else: # parsed instruction opclass = list(operand.keys())[0] operand = operand[opclass] if opclass == "immediate": # Immediate operand_string += "i" elif opclass == "register": # Register if "prefix" in operand: operand_string += operand["prefix"] operand_string += operand["shape"] if "shape" in operand else "" elif "name" in operand: operand_string += "r" if operand["name"] == "gpr" else operand["name"][0] elif opclass == "memory": # Memory operand_string += "m" operand_string += "b" if operand["base"] is not None else "" operand_string += "o" if operand["offset"] is not None else "" operand_string += "i" if operand["index"] is not None else "" operand_string += ( "s" if operand["scale"] == self.WILDCARD or operand["scale"] > 1 else "" ) if "pre-indexed" in operand: operand_string += "r" if operand["pre-indexed"] else "" operand_string += "p" if operand["post-indexed"] else "" return operand_string def _create_db_operand_aarch64(self, operand): """Create instruction form operand for DB out of operand string.""" if operand == "i": return {"class": "immediate", "imd": "int"} elif operand in "wxbhsdq": return {"class": "register", "prefix": operand} elif operand.startswith("v"): return {"class": "register", "prefix": "v", "shape": operand[1:2]} elif operand.startswith("m"): return { "class": "memory", "base": "x" if "b" in operand else None, "offset": "imd" if "o" in operand else None, "index": "gpr" if "i" in operand else None, "scale": 8 if "s" in operand else 1, "pre-indexed": True if "r" in operand else False, "post-indexed": True if "p" in operand else False, } else: raise ValueError("Parameter {} is not a valid operand code".format(operand)) def _create_db_operand_x86(self, operand): """Create instruction form operand for DB out of operand string.""" if operand == "r": return {"class": "register", "name": "gpr"} elif operand in "xyz": return {"class": "register", "name": operand + "mm"} elif operand == "i": return {"class": "immediate", "imd": "int"} elif operand.startswith("m"): return { "class": "memory", "base": "gpr" if "b" in operand else None, "offset": "imd" if "o" in operand else None, "index": "gpr" if "i" in operand else None, "scale": 8 if "s" in operand else 1, } else: raise ValueError("Parameter {} is not a valid operand code".format(operand)) def _check_for_duplicate(self, name, operands): """ Check if instruction form exists at least twice in DB. :param str name: mnemonic of instruction form :param list operands: instruction form operands :returns: `True`, if duplicate exists, `False` otherwise """ matches = [ instruction_form for instruction_form in self._data["instruction_forms"] if instruction_form["name"].lower() == name.lower() and self._match_operands(instruction_form["operands"], operands) ] if len(matches) > 1: return True return False def _match_operands(self, i_operands, operands): """Check if all operand types of ``i_operands`` and ``operands`` match.""" operands_ok = True if len(operands) != len(i_operands): return False for idx, operand in enumerate(operands): i_operand = i_operands[idx] operands_ok = operands_ok and self._check_operands(i_operand, operand) if operands_ok: return True else: return False def _check_operands(self, i_operand, operand): """Check if the types of operand ``i_operand`` and ``operand`` match.""" # check for wildcard if self.WILDCARD in operand: if ( "class" in i_operand and i_operand["class"] == "register" or "register" in i_operand ): return True else: return False if self._data["isa"].lower() == "aarch64": return self._check_AArch64_operands(i_operand, operand) if self._data["isa"].lower() == "x86": return self._check_x86_operands(i_operand, operand) def _check_AArch64_operands(self, i_operand, operand): """Check if the types of operand ``i_operand`` and ``operand`` match.""" if "class" in operand: # compare two DB entries return self._compare_db_entries(i_operand, operand) # TODO support class wildcards # register if "register" in operand: if i_operand["class"] != "register": return False return self._is_AArch64_reg_type(i_operand, operand["register"]) # memory if "memory" in operand: if i_operand["class"] != "memory": return False return self._is_AArch64_mem_type(i_operand, operand["memory"]) # immediate if i_operand["class"] == "immediate" and i_operand["imd"] == self.WILDCARD: return "value" in operand or ( "immediate" in operand and "value" in operand["immediate"] ) if i_operand["class"] == "immediate" and i_operand["imd"] == "int": return ("value" in operand and operand.get("type", None) == "int") or ( "immediate" in operand and "value" in operand["immediate"] and operand["immediate"].get("type", None) == "int" ) if i_operand["class"] == "immediate" and i_operand["imd"] == "float": return ("float" in operand and operand.get("type", None) == "float") or ( "immediate" in operand and "float" in operand["immediate"] and operand["immediate"].get("type", None) == "float" ) if i_operand["class"] == "immediate" and i_operand["imd"] == "double": return ("double" in operand and operand.get("type", None) == "double") or ( "immediate" in operand and "double" in operand["immediate"] and operand["immediate"].get("type", None) == "double" ) # identifier if "identifier" in operand or ( "immediate" in operand and "identifier" in operand["immediate"] ): return i_operand["class"] == "identifier" # prefetch option if "prfop" in operand: return i_operand["class"] == "prfop" # no match return False def _check_x86_operands(self, i_operand, operand): """Check if the types of operand ``i_operand`` and ``operand`` match.""" if "class" in operand: # compare two DB entries return self._compare_db_entries(i_operand, operand) # register if "register" in operand: if i_operand["class"] != "register": return False return self._is_x86_reg_type(i_operand, operand["register"], consider_masking=False) # memory if "memory" in operand: if i_operand["class"] != "memory": return False return self._is_x86_mem_type(i_operand, operand["memory"]) # immediate if "immediate" in operand or "value" in operand: return i_operand["class"] == "immediate" and i_operand["imd"] == "int" # identifier (e.g., labels) if "identifier" in operand: return i_operand["class"] == "identifier" def _compare_db_entries(self, operand_1, operand_2): """Check if operand types in DB format (i.e., not parsed) match.""" operand_attributes = list( filter( lambda x: True if x != "source" and x != "destination" else False, operand_1, ) ) for key in operand_attributes: try: if operand_1[key] != operand_2[key] and not any( [x == self.WILDCARD for x in [operand_1[key], operand_2[key]]] ): return False except KeyError: return False return True def _is_AArch64_reg_type(self, i_reg, reg): """Check if register type match.""" # check for wildcards if reg["prefix"] == self.WILDCARD or i_reg["prefix"] == self.WILDCARD: if "shape" in reg: if "shape" in i_reg and ( reg["shape"] == i_reg["shape"] or self.WILDCARD in (reg["shape"] + i_reg["shape"]) ): return True return False return True # check for prefix and shape if reg["prefix"] != i_reg["prefix"]: return False if "shape" in reg: if "shape" in i_reg and ( reg["shape"] == i_reg["shape"] or self.WILDCARD in (reg["shape"] + i_reg["shape"]) ): return True return False return True def _is_x86_reg_type(self, i_reg, reg, consider_masking=False): """Check if register type match.""" i_reg_name = i_reg["name"] if i_reg and "name" in i_reg else i_reg if reg is None: if i_reg is None: return True return False # check for wildcards if i_reg_name == self.WILDCARD or reg["name"] == self.WILDCARD: return True # differentiate between vector registers (mm, xmm, ymm, zmm) and others (gpr) parser_x86 = ParserX86ATT() if parser_x86.is_vector_register(reg): if reg["name"].rstrip(string.digits).lower() == i_reg_name: # Consider masking and zeroing for AVX512 if consider_masking: mask_ok = zero_ok = True if "mask" in reg or "mask" in i_reg: # one instruction is missing the masking while the other has it mask_ok = False # check for wildcard if ( ( "mask" in reg and reg["mask"].rstrip(string.digits).lower() == i_reg.get("mask") ) or reg.get("mask") == self.WILDCARD or i_reg.get("mask") == self.WILDCARD ): mask_ok = True if bool("zeroing" in reg) ^ bool("zeroing" in i_reg): # one instruction is missing zeroing while the other has it zero_ok = False # check for wildcard if ( i_reg.get("zeroing") == self.WILDCARD or reg.get("zeroing") == self.WILDCARD ): zero_ok = True if not mask_ok or not zero_ok: return False return True else: if i_reg_name == "gpr": return True return False def _is_AArch64_mem_type(self, i_mem, mem): """Check if memory addressing type match.""" if ( # check base ( (mem["base"] is None and i_mem["base"] is None) or i_mem["base"] == self.WILDCARD or mem["base"]["prefix"] == i_mem["base"] ) # check offset and ( mem["offset"] == i_mem["offset"] or i_mem["offset"] == self.WILDCARD or ( mem["offset"] is not None and "identifier" in mem["offset"] and i_mem["offset"] == "identifier" ) or ( mem["offset"] is not None and "value" in mem["offset"] and i_mem["offset"] == "imd" ) ) # check index and ( mem["index"] == i_mem["index"] or i_mem["index"] == self.WILDCARD or ( mem["index"] is not None and "prefix" in mem["index"] and mem["index"]["prefix"] == i_mem["index"] ) ) # check scale and ( mem["scale"] == i_mem["scale"] or i_mem["scale"] == self.WILDCARD or (mem["scale"] != 1 and i_mem["scale"] != 1) ) # check pre-indexing and ( i_mem["pre-indexed"] == self.WILDCARD or ("pre_indexed" in mem) == (i_mem["pre-indexed"]) ) # check post-indexing and ( i_mem["post-indexed"] == self.WILDCARD or ("post_indexed" in mem) == (i_mem["post-indexed"]) ) ): return True return False def _is_x86_mem_type(self, i_mem, mem): """Check if memory addressing type match.""" if ( # check base ( (mem["base"] is None and i_mem["base"] is None) or i_mem["base"] == self.WILDCARD or self._is_x86_reg_type(i_mem["base"], mem["base"]) ) # check offset and ( mem["offset"] == i_mem["offset"] or i_mem["offset"] == self.WILDCARD or ( mem["offset"] is not None and "identifier" in mem["offset"] and i_mem["offset"] == "identifier" ) or ( mem["offset"] is not None and "value" in mem["offset"] and ( i_mem["offset"] == "imd" or (i_mem["offset"] is None and mem["offset"]["value"] == "0") ) ) or ( mem["offset"] is not None and "identifier" in mem["offset"] and i_mem["offset"] == "id" ) ) # check index and ( mem["index"] == i_mem["index"] or i_mem["index"] == self.WILDCARD or ( mem["index"] is not None and "name" in mem["index"] and self._is_x86_reg_type(i_mem["index"], mem["index"]) ) ) # check scale and ( mem["scale"] == i_mem["scale"] or i_mem["scale"] == self.WILDCARD or (mem["scale"] != 1 and i_mem["scale"] != 1) ) ): return True return False def _create_yaml_object(self): """Create YAML object for parsing and dumping DB""" yaml_obj = ruamel.yaml.YAML() yaml_obj.representer.add_representer(type(None), self.__represent_none) yaml_obj.default_flow_style = None yaml_obj.width = 120 yaml_obj.representer.ignore_aliases = lambda *args: True return yaml_obj def __represent_none(self, yaml_obj, data): """YAML representation for `None`""" return yaml_obj.represent_scalar(u"tag:yaml.org,2002:null", u"~")