Files
Phoenix/sip/siplib/siplib.c
2021-08-07 18:55:49 +02:00

13282 lines
342 KiB
C

/*
* SIP library code.
*
* Copyright (c) 2020 Riverbank Computing Limited <info@riverbankcomputing.com>
*
* This file is part of SIP.
*
* This copy of SIP is licensed for use under the terms of the SIP License
* Agreement. See the file LICENSE for more details.
*
* This copy of SIP may also used under the terms of the GNU General Public
* License v2 or v3 as published by the Free Software Foundation which can be
* found in the files LICENSE-GPL2 and LICENSE-GPL3 included in this package.
*
* SIP is supplied WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*/
#include <Python.h>
#include <datetime.h>
#include <frameobject.h>
#include <assert.h>
#include <stdio.h>
#include <stdarg.h>
#include <stddef.h>
#include <string.h>
#include "sip.h"
#include "sipint.h"
#include "array.h"
/* There doesn't seem to be a standard way of checking for C99 support. */
#if !defined(va_copy)
#define va_copy(d, s) ((d) = (s))
#endif
/*
* The Python metatype for a C++ wrapper type. We inherit everything from the
* standard Python metatype except the init and getattro methods and the size
* of the type object created is increased to accommodate the extra information
* we associate with a wrapped type.
*/
static PyObject *sipWrapperType_alloc(PyTypeObject *self, Py_ssize_t nitems);
static PyObject *sipWrapperType_getattro(PyObject *self, PyObject *name);
static int sipWrapperType_init(sipWrapperType *self, PyObject *args,
PyObject *kwds);
static int sipWrapperType_setattro(PyObject *self, PyObject *name,
PyObject *value);
static PyTypeObject sipWrapperType_Type = {
PyVarObject_HEAD_INIT(NULL, 0)
"sip.wrappertype", /* tp_name */
sizeof (sipWrapperType), /* tp_basicsize */
0, /* tp_itemsize */
0, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_as_async (Python v3.5), tp_compare (Python v2) */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
sipWrapperType_getattro, /* tp_getattro */
sipWrapperType_setattro, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
0, /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
0, /* tp_methods */
0, /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
(initproc)sipWrapperType_init, /* tp_init */
sipWrapperType_alloc, /* tp_alloc */
0, /* tp_new */
0, /* tp_free */
0, /* tp_is_gc */
0, /* tp_bases */
0, /* tp_mro */
0, /* tp_cache */
0, /* tp_subclasses */
0, /* tp_weaklist */
0, /* tp_del */
0, /* tp_version_tag */
0, /* tp_finalize */
#if PY_VERSION_HEX >= 0x03080000
0, /* tp_vectorcall */
#endif
};
/*
* The Python type that is the super-type for all C++ wrapper types that
* support parent/child relationships.
*/
static int sipWrapper_clear(sipWrapper *self);
static void sipWrapper_dealloc(sipWrapper *self);
static int sipWrapper_traverse(sipWrapper *self, visitproc visit, void *arg);
static sipWrapperType sipWrapper_Type = {
#if !defined(STACKLESS)
{
#endif
{
PyVarObject_HEAD_INIT(&sipWrapperType_Type, 0)
"sip.wrapper", /* tp_name */
sizeof (sipWrapper), /* tp_basicsize */
0, /* tp_itemsize */
(destructor)sipWrapper_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_as_async (Python v3.5), tp_compare (Python v2) */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
0, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC, /* tp_flags */
0, /* tp_doc */
(traverseproc)sipWrapper_traverse, /* tp_traverse */
(inquiry)sipWrapper_clear, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
0, /* tp_methods */
0, /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
0, /* tp_new */
0, /* tp_free */
0, /* tp_is_gc */
0, /* tp_bases */
0, /* tp_mro */
0, /* tp_cache */
0, /* tp_subclasses */
0, /* tp_weaklist */
0, /* tp_del */
0, /* tp_version_tag */
0, /* tp_finalize */
#if PY_VERSION_HEX >= 0x03080000
0, /* tp_vectorcall */
#endif
},
{
0, /* am_await */
0, /* am_aiter */
0, /* am_anext */
},
{
0, /* nb_add */
0, /* nb_subtract */
0, /* nb_multiply */
0, /* nb_remainder */
0, /* nb_divmod */
0, /* nb_power */
0, /* nb_negative */
0, /* nb_positive */
0, /* nb_absolute */
0, /* nb_bool */
0, /* nb_invert */
0, /* nb_lshift */
0, /* nb_rshift */
0, /* nb_and */
0, /* nb_xor */
0, /* nb_or */
0, /* nb_int */
0, /* nb_reserved */
0, /* nb_float */
0, /* nb_inplace_add */
0, /* nb_inplace_subtract */
0, /* nb_inplace_multiply */
0, /* nb_inplace_remainder */
0, /* nb_inplace_power */
0, /* nb_inplace_lshift */
0, /* nb_inplace_rshift */
0, /* nb_inplace_and */
0, /* nb_inplace_xor */
0, /* nb_inplace_or */
0, /* nb_floor_divide */
0, /* nb_true_divide */
0, /* nb_inplace_floor_divide */
0, /* nb_inplace_true_divide */
0, /* nb_index */
0, /* nb_matrix_multiply */
0, /* nb_inplace_matrix_multiply */
},
{
0, /* mp_length */
0, /* mp_subscript */
0, /* mp_ass_subscript */
},
{
0, /* sq_length */
0, /* sq_concat */
0, /* sq_repeat */
0, /* sq_item */
0, /* was_sq_slice */
0, /* sq_ass_item */
0, /* was_sq_ass_slice */
0, /* sq_contains */
0, /* sq_inplace_concat */
0, /* sq_inplace_repeat */
},
{
0, /* bf_getbuffer */
0, /* bf_releasebuffer */
},
0, /* ht_name */
0, /* ht_slots */
0, /* ht_qualname */
0, /* ht_cached_keys */
#if PY_VERSION_HEX >= 0x03090000
0, /* ht_module */
#endif
#if !defined(STACKLESS)
},
#endif
0, /* wt_user_type */
0, /* wt_dict_complete */
0, /* wt_unused */
0, /* wt_td */
0, /* wt_iextend */
0, /* wt_new_user_type_handler */
0, /* wt_user_data */
};
static void sip_api_bad_catcher_result(PyObject *method);
static void sip_api_bad_length_for_slice(Py_ssize_t seqlen,
Py_ssize_t slicelen);
static PyObject *sip_api_build_result(int *isErr, const char *fmt, ...);
static PyObject *sip_api_call_method(int *isErr, PyObject *method,
const char *fmt, ...);
static void sip_api_call_procedure_method(sip_gilstate_t gil_state,
sipVirtErrorHandlerFunc error_handler, sipSimpleWrapper *py_self,
PyObject *method, const char *fmt, ...);
static Py_ssize_t sip_api_convert_from_sequence_index(Py_ssize_t idx,
Py_ssize_t len);
static int sip_api_can_convert_to_type(PyObject *pyObj, const sipTypeDef *td,
int flags);
static void *sip_api_convert_to_type(PyObject *pyObj, const sipTypeDef *td,
PyObject *transferObj, int flags, int *statep, int *iserrp);
static int sip_api_can_convert_to_enum(PyObject *pyObj, const sipTypeDef *td);
static int sip_api_convert_to_enum(PyObject *pyObj, const sipTypeDef *td);
static void sip_api_release_type(void *cpp, const sipTypeDef *td, int state);
static PyObject *sip_api_convert_from_new_type(void *cpp, const sipTypeDef *td,
PyObject *transferObj);
static PyObject *sip_api_convert_from_new_pytype(void *cpp,
PyTypeObject *py_type, sipWrapper *owner, sipSimpleWrapper **selfp,
const char *fmt, ...);
static int sip_api_get_state(PyObject *transferObj);
static PyObject *sip_api_get_pyobject(void *cppPtr, const sipTypeDef *td);
static sipWrapperType *sip_api_map_int_to_class(int typeInt,
const sipIntTypeClassMap *map, int maplen);
static sipWrapperType *sip_api_map_string_to_class(const char *typeString,
const sipStringTypeClassMap *map, int maplen);
static int sip_api_parse_result_ex(sip_gilstate_t gil_state,
sipVirtErrorHandlerFunc error_handler, sipSimpleWrapper *py_self,
PyObject *method, PyObject *res, const char *fmt, ...);
static int sip_api_parse_result(int *isErr, PyObject *method, PyObject *res,
const char *fmt, ...);
static void sip_api_call_error_handler(sipVirtErrorHandlerFunc error_handler,
sipSimpleWrapper *py_self, sip_gilstate_t gil_state);
static void sip_api_trace(unsigned mask,const char *fmt,...);
static void sip_api_transfer_back(PyObject *self);
static void sip_api_transfer_to(PyObject *self, PyObject *owner);
static int sip_api_export_module(sipExportedModuleDef *client,
unsigned api_major, unsigned api_minor, void *unused);
static int sip_api_init_module(sipExportedModuleDef *client,
PyObject *mod_dict);
static int sip_api_parse_args(PyObject **parseErrp, PyObject *sipArgs,
const char *fmt, ...);
static int sip_api_parse_kwd_args(PyObject **parseErrp, PyObject *sipArgs,
PyObject *sipKwdArgs, const char **kwdlist, PyObject **unused,
const char *fmt, ...);
static int sip_api_parse_pair(PyObject **parseErrp, PyObject *sipArg0,
PyObject *sipArg1, const char *fmt, ...);
static void sip_api_no_function(PyObject *parseErr, const char *func,
const char *doc);
static void sip_api_no_method(PyObject *parseErr, const char *scope,
const char *method, const char *doc);
static void sip_api_abstract_method(const char *classname, const char *method);
static void sip_api_bad_class(const char *classname);
static void *sip_api_get_complex_cpp_ptr(sipSimpleWrapper *sw);
static PyObject *sip_api_is_py_method(sip_gilstate_t *gil, char *pymc,
sipSimpleWrapper *sipSelf, const char *cname, const char *mname);
static PyObject *sip_api_is_py_method_12_8(sip_gilstate_t *gil, char *pymc,
sipSimpleWrapper **sipSelfp, const char *cname, const char *mname);
static void sip_api_call_hook(const char *hookname);
static void sip_api_raise_unknown_exception(void);
static void sip_api_raise_type_exception(const sipTypeDef *td, void *ptr);
static int sip_api_add_type_instance(PyObject *dict, const char *name,
void *cppPtr, const sipTypeDef *td);
static sipErrorState sip_api_bad_callable_arg(int arg_nr, PyObject *arg);
static void sip_api_bad_operator_arg(PyObject *self, PyObject *arg,
sipPySlotType st);
static PyObject *sip_api_pyslot_extend(sipExportedModuleDef *mod,
sipPySlotType st, const sipTypeDef *td, PyObject *arg0,
PyObject *arg1);
static void sip_api_add_delayed_dtor(sipSimpleWrapper *w);
static int sip_api_export_symbol(const char *name, void *sym);
static void *sip_api_import_symbol(const char *name);
static const sipTypeDef *sip_api_find_type(const char *type);
static sipWrapperType *sip_api_find_class(const char *type);
static const sipMappedType *sip_api_find_mapped_type(const char *type);
static PyTypeObject *sip_api_find_named_enum(const char *type);
static char sip_api_bytes_as_char(PyObject *obj);
static const char *sip_api_bytes_as_string(PyObject *obj);
static char sip_api_string_as_ascii_char(PyObject *obj);
static const char *sip_api_string_as_ascii_string(PyObject **obj);
static char sip_api_string_as_latin1_char(PyObject *obj);
static const char *sip_api_string_as_latin1_string(PyObject **obj);
static char sip_api_string_as_utf8_char(PyObject *obj);
static const char *sip_api_string_as_utf8_string(PyObject **obj);
#if defined(HAVE_WCHAR_H)
static wchar_t sip_api_unicode_as_wchar(PyObject *obj);
static wchar_t *sip_api_unicode_as_wstring(PyObject *obj);
#else
static int sip_api_unicode_as_wchar(PyObject *obj);
static int *sip_api_unicode_as_wstring(PyObject *obj);
#endif
static void sip_api_transfer_break(PyObject *self);
static int sip_api_register_py_type(PyTypeObject *supertype);
static PyObject *sip_api_convert_from_enum(int eval, const sipTypeDef *td);
static const sipTypeDef *sip_api_type_from_py_type_object(PyTypeObject *py_type);
static const sipTypeDef *sip_api_type_scope(const sipTypeDef *td);
static const char *sip_api_resolve_typedef(const char *name);
static int sip_api_register_attribute_getter(const sipTypeDef *td,
sipAttrGetterFunc getter);
static void sip_api_clear_any_slot_reference(sipSlot *slot);
static int sip_api_visit_slot(sipSlot *slot, visitproc visit, void *arg);
static void sip_api_keep_reference(PyObject *self, int key, PyObject *obj);
static PyObject *sip_api_get_reference(PyObject *self, int key);
static int sip_api_is_owned_by_python(sipSimpleWrapper *sw);
static int sip_api_is_derived_class(sipSimpleWrapper *sw);
static void sip_api_add_exception(sipErrorState es, PyObject **parseErrp);
static void sip_api_set_destroy_on_exit(int value);
static int sip_api_enable_autoconversion(const sipTypeDef *td, int enable);
static int sip_api_init_mixin(PyObject *self, PyObject *args, PyObject *kwds,
const sipClassTypeDef *ctd);
static void *sip_api_get_mixin_address(sipSimpleWrapper *w,
const sipTypeDef *td);
static int sip_api_register_proxy_resolver(const sipTypeDef *td,
sipProxyResolverFunc resolver);
static PyInterpreterState *sip_api_get_interpreter(void);
static sipNewUserTypeFunc sip_api_set_new_user_type_handler(
const sipTypeDef *td, sipNewUserTypeFunc handler);
static void sip_api_set_type_user_data(sipWrapperType *wt, void *data);
static void *sip_api_get_type_user_data(const sipWrapperType *wt);
static PyObject *sip_api_py_type_dict(const PyTypeObject *py_type);
static const char *sip_api_py_type_name(const PyTypeObject *py_type);
static int sip_api_get_method(PyObject *obj, sipMethodDef *method);
static PyObject *sip_api_from_method(const sipMethodDef *method);
static int sip_api_get_c_function(PyObject *obj, sipCFunctionDef *c_function);
static int sip_api_get_date(PyObject *obj, sipDateDef *date);
static PyObject *sip_api_from_date(const sipDateDef *date);
static int sip_api_get_datetime(PyObject *obj, sipDateDef *date,
sipTimeDef *time);
static PyObject *sip_api_from_datetime(const sipDateDef *date,
const sipTimeDef *time);
static int sip_api_get_time(PyObject *obj, sipTimeDef *time);
static PyObject *sip_api_from_time(const sipTimeDef *time);
static int sip_api_is_user_type(const sipWrapperType *wt);
static struct _frame *sip_api_get_frame(int);
static int sip_api_check_plugin_for_type(const sipTypeDef *td,
const char *name);
static PyObject *sip_api_unicode_new(Py_ssize_t len, unsigned maxchar,
int *kind, void **data);
static void sip_api_unicode_write(int kind, void *data, int index,
unsigned value);
static void *sip_api_unicode_data(PyObject *obj, int *char_size,
Py_ssize_t *len);
static int sip_api_get_buffer_info(PyObject *obj, sipBufferInfoDef *bi);
static void sip_api_release_buffer_info(sipBufferInfoDef *bi);
static PyObject *sip_api_get_user_object(const sipSimpleWrapper *sw);
static void sip_api_set_user_object(sipSimpleWrapper *sw, PyObject *user);
static int sip_api_enable_gc(int enable);
static void sip_api_print_object(PyObject *o);
static int sip_api_register_event_handler(sipEventType type,
const sipTypeDef *td, void *handler);
static void sip_api_instance_destroyed_ex(sipSimpleWrapper **sipSelfp);
static void sip_api_visit_wrappers(sipWrapperVisitorFunc visitor,
void *closure);
static int sip_api_register_exit_notifier(PyMethodDef *md);
/*
* The data structure that represents the SIP API.
*/
static const sipAPIDef sip_api = {
/* This must be first. */
sip_api_export_module,
/*
* The following are part of the public API.
*/
(PyTypeObject *)&sipSimpleWrapper_Type,
(PyTypeObject *)&sipWrapper_Type,
&sipWrapperType_Type,
&sipVoidPtr_Type,
sip_api_bad_catcher_result,
sip_api_bad_length_for_slice,
sip_api_build_result,
sip_api_call_method,
sip_api_call_procedure_method,
sip_api_connect_rx,
sip_api_convert_from_sequence_index,
sip_api_can_convert_to_type,
sip_api_convert_to_type,
sip_api_force_convert_to_type,
sip_api_can_convert_to_enum,
sip_api_release_type,
sip_api_convert_from_type,
sip_api_convert_from_new_type,
sip_api_convert_from_enum,
sip_api_get_state,
sip_api_disconnect_rx,
sip_api_free,
sip_api_get_pyobject,
sip_api_malloc,
sip_api_parse_result,
sip_api_trace,
sip_api_transfer_back,
sip_api_transfer_to,
sip_api_transfer_break,
sip_api_long_as_unsigned_long,
sip_api_convert_from_void_ptr,
sip_api_convert_from_const_void_ptr,
sip_api_convert_from_void_ptr_and_size,
sip_api_convert_from_const_void_ptr_and_size,
sip_api_convert_to_void_ptr,
sip_api_export_symbol,
sip_api_import_symbol,
sip_api_find_type,
sip_api_register_py_type,
sip_api_type_from_py_type_object,
sip_api_type_scope,
sip_api_resolve_typedef,
sip_api_register_attribute_getter,
sip_api_is_api_enabled,
sip_api_bad_callable_arg,
sip_api_get_address,
sip_api_set_destroy_on_exit,
sip_api_enable_autoconversion,
sip_api_get_mixin_address,
sip_api_convert_from_new_pytype,
sip_api_convert_to_typed_array,
sip_api_convert_to_array,
sip_api_register_proxy_resolver,
sip_api_get_interpreter,
sip_api_set_new_user_type_handler,
sip_api_set_type_user_data,
sip_api_get_type_user_data,
sip_api_py_type_dict,
sip_api_py_type_name,
sip_api_get_method,
sip_api_from_method,
sip_api_get_c_function,
sip_api_get_date,
sip_api_from_date,
sip_api_get_datetime,
sip_api_from_datetime,
sip_api_get_time,
sip_api_from_time,
sip_api_is_user_type,
sip_api_get_frame,
sip_api_check_plugin_for_type,
sip_api_unicode_new,
sip_api_unicode_write,
sip_api_unicode_data,
sip_api_get_buffer_info,
sip_api_release_buffer_info,
sip_api_get_user_object,
sip_api_set_user_object,
/*
* The following are not part of the public API.
*/
sip_api_init_module,
sip_api_parse_args,
sip_api_parse_pair,
/*
* The following are part of the public API.
*/
sip_api_instance_destroyed,
/*
* The following are not part of the public API.
*/
sip_api_no_function,
sip_api_no_method,
sip_api_abstract_method,
sip_api_bad_class,
sip_api_get_cpp_ptr,
sip_api_get_complex_cpp_ptr,
sip_api_is_py_method,
sip_api_call_hook,
sip_api_end_thread,
sip_api_raise_unknown_exception,
sip_api_raise_type_exception,
sip_api_add_type_instance,
sip_api_bad_operator_arg,
sip_api_pyslot_extend,
sip_api_add_delayed_dtor,
sip_api_bytes_as_char,
sip_api_bytes_as_string,
sip_api_string_as_ascii_char,
sip_api_string_as_ascii_string,
sip_api_string_as_latin1_char,
sip_api_string_as_latin1_string,
sip_api_string_as_utf8_char,
sip_api_string_as_utf8_string,
sip_api_unicode_as_wchar,
sip_api_unicode_as_wstring,
sip_api_deprecated,
sip_api_keep_reference,
sip_api_parse_kwd_args,
sip_api_add_exception,
sip_api_parse_result_ex,
sip_api_call_error_handler,
sip_api_init_mixin,
sip_api_get_reference,
/*
* The following are part of the public API.
*/
sip_api_is_owned_by_python,
/*
* The following are not part of the public API.
*/
sip_api_is_derived_class,
/*
* The following may be used by Qt support code but by no other handwritten
* code.
*/
sip_api_free_sipslot,
sip_api_same_slot,
sip_api_convert_rx,
sip_api_invoke_slot,
sip_api_invoke_slot_ex,
sip_api_save_slot,
sip_api_clear_any_slot_reference,
sip_api_visit_slot,
/*
* The following are deprecated parts of the public API.
*/
sip_api_find_named_enum,
sip_api_find_mapped_type,
sip_api_find_class,
sip_api_map_int_to_class,
sip_api_map_string_to_class,
/*
* The following are part of the public API.
*/
sip_api_enable_gc,
sip_api_print_object,
sip_api_register_event_handler,
sip_api_convert_to_enum,
sip_api_convert_to_bool,
sip_api_enable_overflow_checking,
sip_api_long_as_char,
sip_api_long_as_signed_char,
sip_api_long_as_unsigned_char,
sip_api_long_as_short,
sip_api_long_as_unsigned_short,
sip_api_long_as_int,
sip_api_long_as_unsigned_int,
sip_api_long_as_long,
#if defined(HAVE_LONG_LONG)
sip_api_long_as_long_long,
sip_api_long_as_unsigned_long_long,
#else
0,
0,
#endif
/*
* The following are not part of the public API.
*/
sip_api_instance_destroyed_ex,
/*
* The following are part of the public API.
*/
sip_api_convert_from_slice_object,
sip_api_long_as_size_t,
sip_api_visit_wrappers,
sip_api_register_exit_notifier,
/*
* The following are not part of the public API.
*/
sip_api_is_py_method_12_8,
};
#define AUTO_DOCSTRING '\1' /* Marks an auto class docstring. */
/*
* These are the format flags supported by argument parsers.
*/
#define FMT_AP_DEREF 0x01 /* The pointer will be dereferenced. */
#define FMT_AP_TRANSFER 0x02 /* Implement /Transfer/. */
#define FMT_AP_TRANSFER_BACK 0x04 /* Implement /TransferBack/. */
#define FMT_AP_NO_CONVERTORS 0x08 /* Suppress any converters. */
#define FMT_AP_TRANSFER_THIS 0x10 /* Support for /TransferThis/. */
/*
* These are the format flags supported by result parsers. Deprecated values
* have a _DEPR suffix.
*/
#define FMT_RP_DEREF 0x01 /* The pointer will be dereferenced. */
#define FMT_RP_FACTORY 0x02 /* /Factory/ or /TransferBack/. */
#define FMT_RP_MAKE_COPY 0x04 /* Return a copy of the value. */
#define FMT_RP_NO_STATE_DEPR 0x04 /* Don't return the C/C++ state. */
/*
* The different reasons for failing to parse an overload. These include
* internal (i.e. non-user) errors.
*/
typedef enum {
Ok, Unbound, TooFew, TooMany, UnknownKeyword, Duplicate, WrongType, Raised,
KeywordNotString, Exception, Overflow
} sipParseFailureReason;
/*
* The description of a failure to parse an overload because of a user error.
*/
typedef struct _sipParseFailure {
sipParseFailureReason reason; /* The reason for the failure. */
const char *detail_str; /* The detail if a string. */
PyObject *detail_obj; /* The detail if a Python object. */
int arg_nr; /* The wrong positional argument. */
const char *arg_name; /* The wrong keyword argument. */
int overflow_arg_nr; /* The overflowed positional argument. */
const char *overflow_arg_name; /* The overflowed keyword argument. */
} sipParseFailure;
/*
* An entry in a linked list of name/symbol pairs.
*/
typedef struct _sipSymbol {
const char *name; /* The name. */
void *symbol; /* The symbol. */
struct _sipSymbol *next; /* The next in the list. */
} sipSymbol;
/*
* An entry in a linked list of Python objects.
*/
typedef struct _sipPyObject {
PyObject *object; /* The Python object. */
struct _sipPyObject *next; /* The next in the list. */
} sipPyObject;
/*
* An entry in the linked list of attribute getters.
*/
typedef struct _sipAttrGetter {
PyTypeObject *type; /* The Python type being handled. */
sipAttrGetterFunc getter; /* The getter. */
struct _sipAttrGetter *next; /* The next in the list. */
} sipAttrGetter;
/*
* An entry in the linked list of proxy resolvers.
*/
typedef struct _sipProxyResolver {
const sipTypeDef *td; /* The type the resolver handles. */
sipProxyResolverFunc resolver; /* The resolver. */
struct _sipProxyResolver *next; /* The next in the list. */
} sipProxyResolver;
/*
* An entry in the linked list of event handlers.
*/
typedef struct _sipEventHandler {
const sipClassTypeDef *ctd; /* The type the handler handles. */
void *handler; /* The handler. */
struct _sipEventHandler *next; /* The next in the list. */
} sipEventHandler;
/*****************************************************************************
* The structures to support a Python type to hold a named enum.
*****************************************************************************/
static PyObject *sipEnumType_alloc(PyTypeObject *self, Py_ssize_t nitems);
static PyObject *sipEnumType_getattro(PyObject *self, PyObject *name);
/*
* The type data structure. We inherit everything from the standard Python
* metatype and the size of the type object created is increased to accommodate
* the extra information we associate with a named enum type.
*/
static PyTypeObject sipEnumType_Type = {
PyVarObject_HEAD_INIT(NULL, 0)
"sip.enumtype", /* tp_name */
sizeof (sipEnumTypeObject), /* tp_basicsize */
0, /* tp_itemsize */
0, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_as_async (Python v3.5), tp_compare (Python v2) */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
sipEnumType_getattro, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
0, /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
0, /* tp_methods */
0, /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
sipEnumType_alloc, /* tp_alloc */
0, /* tp_new */
0, /* tp_free */
0, /* tp_is_gc */
0, /* tp_bases */
0, /* tp_mro */
0, /* tp_cache */
0, /* tp_subclasses */
0, /* tp_weaklist */
0, /* tp_del */
0, /* tp_version_tag */
0, /* tp_finalize */
#if PY_VERSION_HEX >= 0x03080000
0, /* tp_vectorcall */
#endif
};
/*
* Remove these in SIP v5.
*/
sipQtAPI *sipQtSupport = NULL;
sipTypeDef *sipQObjectType;
static int got_kw_handler = FALSE;
static int (*kw_handler)(PyObject *, void *, PyObject *);
/*
* Various strings as Python objects created as and when needed.
*/
static PyObject *licenseName = NULL;
static PyObject *licenseeName = NULL;
static PyObject *typeName = NULL;
static PyObject *timestampName = NULL;
static PyObject *signatureName = NULL;
static sipObjectMap cppPyMap; /* The C/C++ to Python map. */
static sipExportedModuleDef *moduleList = NULL; /* List of registered modules. */
static unsigned traceMask = 0; /* The current trace mask. */
static sipTypeDef *currentType = NULL; /* The type being created. */
static PyObject **unused_backdoor = NULL; /* For passing dict of unused arguments. */
static PyObject *init_name = NULL; /* '__init__'. */
static PyObject *empty_tuple; /* The empty tuple. */
static PyObject *type_unpickler; /* The type unpickler function. */
static PyObject *enum_unpickler; /* The enum unpickler function. */
static sipSymbol *sipSymbolList = NULL; /* The list of published symbols. */
static sipAttrGetter *sipAttrGetters = NULL; /* The list of attribute getters. */
static sipProxyResolver *proxyResolvers = NULL; /* The list of proxy resolvers. */
static sipPyObject *sipRegisteredPyTypes = NULL; /* Registered Python types. */
static sipPyObject *sipDisabledAutoconversions = NULL; /* Python types whose auto-conversion is disabled. */
static PyInterpreterState *sipInterpreter = NULL; /* The interpreter. */
static int destroy_on_exit = TRUE; /* Destroy owned objects on exit. */
static sipEventHandler *event_handlers[sipEventNrEvents]; /* The event handler lists. */
static void addClassSlots(sipWrapperType *wt, const sipClassTypeDef *ctd);
static void addTypeSlots(PyHeapTypeObject *heap_to, sipPySlotDef *slots);
static void *findSlot(PyObject *self, sipPySlotType st);
static void *findSlotInClass(const sipClassTypeDef *psd, sipPySlotType st);
static void *findSlotInSlotList(sipPySlotDef *psd, sipPySlotType st);
static int objobjargprocSlot(PyObject *self, PyObject *arg1, PyObject *arg2,
sipPySlotType st);
static int ssizeobjargprocSlot(PyObject *self, Py_ssize_t arg1,
PyObject *arg2, sipPySlotType st);
static PyObject *buildObject(PyObject *tup, const char *fmt, va_list va);
static int parseKwdArgs(PyObject **parseErrp, PyObject *sipArgs,
PyObject *sipKwdArgs, const char **kwdlist, PyObject **unused,
const char *fmt, va_list va_orig);
static int parsePass1(PyObject **parseErrp, sipSimpleWrapper **selfp,
int *selfargp, PyObject *sipArgs, PyObject *sipKwdArgs,
const char **kwdlist, PyObject **unused, const char *fmt, va_list va);
static int parsePass2(sipSimpleWrapper *self, int selfarg, PyObject *sipArgs,
PyObject *sipKwdArgs, const char **kwdlist, const char *fmt,
va_list va);
static int parseResult(PyObject *method, PyObject *res,
sipSimpleWrapper *py_self, const char *fmt, va_list va);
static PyObject *signature_FromDocstring(const char *doc, Py_ssize_t line);
static PyObject *detail_FromFailure(PyObject *failure_obj);
static int isQObject(PyObject *obj);
static int canConvertFromSequence(PyObject *seq, const sipTypeDef *td);
static int convertFromSequence(PyObject *seq, const sipTypeDef *td,
void **array, Py_ssize_t *nr_elem);
static PyObject *convertToSequence(void *array, Py_ssize_t nr_elem,
const sipTypeDef *td);
static int getSelfFromArgs(sipTypeDef *td, PyObject *args, int argnr,
sipSimpleWrapper **selfp);
static int compareTypedefName(const void *key, const void *el);
static int checkPointer(void *ptr, sipSimpleWrapper *sw);
static void *cast_cpp_ptr(void *ptr, PyTypeObject *src_type,
const sipTypeDef *dst_type);
static void finalise(void);
static PyObject *getDefaultBase(void);
static PyObject *getDefaultSimpleBase(void);
static PyObject *getScopeDict(sipTypeDef *td, PyObject *mod_dict,
sipExportedModuleDef *client);
static PyObject *createContainerType(sipContainerDef *cod, sipTypeDef *td,
PyObject *bases, PyObject *metatype, PyObject *mod_dict,
PyObject *type_dict, sipExportedModuleDef *client);
static int createClassType(sipExportedModuleDef *client, sipClassTypeDef *ctd,
PyObject *mod_dict);
static int createMappedType(sipExportedModuleDef *client,
sipMappedTypeDef *mtd, PyObject *mod_dict);
static sipExportedModuleDef *getModule(PyObject *mname_obj);
static PyObject *pickle_type(PyObject *obj, PyObject *args);
static PyObject *unpickle_type(PyObject *obj, PyObject *args);
static PyObject *pickle_enum(PyObject *obj, PyObject *args);
static PyObject *unpickle_enum(PyObject *obj, PyObject *args);
static int setReduce(PyTypeObject *type, PyMethodDef *pickler);
static int createEnum(sipExportedModuleDef *client, sipEnumTypeDef *etd,
int enum_nr, PyObject *mod_dict);
static PyObject *createUnscopedEnum(sipExportedModuleDef *client,
sipEnumTypeDef *etd, PyObject *name);
static PyObject *createScopedEnum(sipExportedModuleDef *client,
sipEnumTypeDef *etd, int enum_nr, PyObject *name);
static PyObject *createTypeDict(sipExportedModuleDef *em);
static sipTypeDef *getGeneratedType(const sipEncodedTypeDef *enc,
sipExportedModuleDef *em);
static const sipTypeDef *convertSubClass(const sipTypeDef *td, void **cppPtr);
static int convertPass(const sipTypeDef **tdp, void **cppPtr);
static void *getPtrTypeDef(sipSimpleWrapper *self,
const sipClassTypeDef **ctd);
static int addInstances(PyObject *dict, sipInstancesDef *id);
static int addVoidPtrInstances(PyObject *dict, sipVoidPtrInstanceDef *vi);
static int addCharInstances(PyObject *dict, sipCharInstanceDef *ci);
static int addStringInstances(PyObject *dict, sipStringInstanceDef *si);
static int addIntInstances(PyObject *dict, sipIntInstanceDef *ii);
static int addLongInstances(PyObject *dict, sipLongInstanceDef *li);
static int addUnsignedLongInstances(PyObject *dict,
sipUnsignedLongInstanceDef *uli);
static int addLongLongInstances(PyObject *dict, sipLongLongInstanceDef *lli);
static int addUnsignedLongLongInstances(PyObject *dict,
sipUnsignedLongLongInstanceDef *ulli);
static int addDoubleInstances(PyObject *dict, sipDoubleInstanceDef *di);
static int addTypeInstances(PyObject *dict, sipTypeInstanceDef *ti);
static int addSingleTypeInstance(PyObject *dict, const char *name,
void *cppPtr, const sipTypeDef *td, int initflags);
static int addLicense(PyObject *dict, sipLicenseDef *lc);
static PyObject *assign(PyObject *self, PyObject *args);
static PyObject *cast(PyObject *self, PyObject *args);
static PyObject *callDtor(PyObject *self, PyObject *args);
static PyObject *dumpWrapper(PyObject *self, PyObject *arg);
static PyObject *enableAutoconversion(PyObject *self, PyObject *args);
static PyObject *isDeleted(PyObject *self, PyObject *args);
static PyObject *isPyCreated(PyObject *self, PyObject *args);
static PyObject *isPyOwned(PyObject *self, PyObject *args);
static PyObject *setDeleted(PyObject *self, PyObject *args);
static PyObject *setTraceMask(PyObject *self, PyObject *args);
static PyObject *wrapInstance(PyObject *self, PyObject *args);
static PyObject *unwrapInstance(PyObject *self, PyObject *args);
static PyObject *transferBack(PyObject *self, PyObject *args);
static PyObject *transferTo(PyObject *self, PyObject *args);
static PyObject *setDestroyOnExit(PyObject *self, PyObject *args);
static void clear_wrapper(sipSimpleWrapper *sw);
static void print_object(const char *label, PyObject *obj);
static void addToParent(sipWrapper *self, sipWrapper *owner);
static void removeFromParent(sipWrapper *self);
static void detachChildren(sipWrapper *self);
static void release(void *addr, const sipTypeDef *td, int state);
static void callPyDtor(sipSimpleWrapper *self);
static int parseBytes_AsCharArray(PyObject *obj, const char **ap,
Py_ssize_t *aszp);
static int parseBytes_AsChar(PyObject *obj, char *ap);
static int parseBytes_AsString(PyObject *obj, const char **ap);
static int parseString_AsASCIIChar(PyObject *obj, char *ap);
static PyObject *parseString_AsASCIIString(PyObject *obj, const char **ap);
static int parseString_AsLatin1Char(PyObject *obj, char *ap);
static PyObject *parseString_AsLatin1String(PyObject *obj, const char **ap);
static int parseString_AsUTF8Char(PyObject *obj, char *ap);
static PyObject *parseString_AsUTF8String(PyObject *obj, const char **ap);
static int parseString_AsEncodedChar(PyObject *bytes, PyObject *obj, char *ap);
static PyObject *parseString_AsEncodedString(PyObject *bytes, PyObject *obj,
const char **ap);
#if defined(HAVE_WCHAR_H)
static int parseWCharArray(PyObject *obj, wchar_t **ap, Py_ssize_t *aszp);
static int convertToWCharArray(PyObject *obj, wchar_t **ap, Py_ssize_t *aszp);
static int parseWChar(PyObject *obj, wchar_t *ap);
static int convertToWChar(PyObject *obj, wchar_t *ap);
static int parseWCharString(PyObject *obj, wchar_t **ap);
static int convertToWCharString(PyObject *obj, wchar_t **ap);
#else
static void raiseNoWChar();
#endif
static void *getComplexCppPtr(sipSimpleWrapper *w, const sipTypeDef *td);
static PyObject *findPyType(const char *name);
static int addPyObjectToList(sipPyObject **head, PyObject *object);
static PyObject *getDictFromObject(PyObject *obj);
static void forgetObject(sipSimpleWrapper *sw);
static int add_lazy_container_attrs(sipTypeDef *td, sipContainerDef *cod,
PyObject *dict);
static int add_lazy_attrs(sipTypeDef *td);
static int add_all_lazy_attrs(sipTypeDef *td);
static int objectify(const char *s, PyObject **objp);
static void add_failure(PyObject **parseErrp, sipParseFailure *failure);
static PyObject *bad_type_str(int arg_nr, PyObject *arg);
static void *explicit_access_func(sipSimpleWrapper *sw, AccessFuncOp op);
static void *indirect_access_func(sipSimpleWrapper *sw, AccessFuncOp op);
static void clear_access_func(sipSimpleWrapper *sw);
static int check_encoded_string(PyObject *obj);
static int isNonlazyMethod(PyMethodDef *pmd);
static int addMethod(PyObject *dict, PyMethodDef *pmd);
static PyObject *create_property(sipVariableDef *vd);
static PyObject *create_function(PyMethodDef *ml);
static PyObject *sip_exit(PyObject *self, PyObject *args);
static sipConvertFromFunc get_from_convertor(const sipTypeDef *td);
static sipPyObject **autoconversion_disabled(const sipTypeDef *td);
static void fix_slots(PyTypeObject *py_type, sipPySlotDef *psd);
static sipFinalFunc find_finalisation(sipClassTypeDef *ctd);
static sipNewUserTypeFunc find_new_user_type_handler(sipWrapperType *wt);
static PyObject *next_in_mro(PyObject *self, PyObject *after);
static int super_init(PyObject *self, PyObject *args, PyObject *kwds,
PyObject *type);
static sipSimpleWrapper *deref_mixin(sipSimpleWrapper *w);
static PyObject *wrap_simple_instance(void *cpp, const sipTypeDef *td,
sipWrapper *owner, int flags);
static void *resolve_proxy(const sipTypeDef *td, void *proxy);
static PyObject *call_method(PyObject *method, const char *fmt, va_list va);
static int importTypes(sipExportedModuleDef *client, sipImportedModuleDef *im,
sipExportedModuleDef *em);
static int importErrorHandlers(sipExportedModuleDef *client,
sipImportedModuleDef *im, sipExportedModuleDef *em);
static int importExceptions(sipExportedModuleDef *client,
sipImportedModuleDef *im, sipExportedModuleDef *em);
static int is_subtype(const sipClassTypeDef *ctd,
const sipClassTypeDef *base_ctd);
static PyObject *import_module_attr(const char *module, const char *attr);
static const sipContainerDef *get_container(const sipTypeDef *td);
static PyObject *get_qualname(const sipTypeDef *td, PyObject *name);
static int convert_to_enum(PyObject *obj, const sipTypeDef *td, int allow_int);
static void handle_failed_int_conversion(sipParseFailure *pf, PyObject *arg);
static void enum_expected(PyObject *obj, const sipTypeDef *td);
static int long_as_nonoverflow_int(PyObject *val_obj);
static int dict_set_and_discard(PyObject *dict, const char *name,
PyObject *obj);
/*
* Initialise the module as a library.
*/
const sipAPIDef *sip_init_library(PyObject *mod_dict)
{
static PyMethodDef methods[] = {
/* This must be first. */
{"_unpickle_enum", unpickle_enum, METH_VARARGS, NULL},
/* This must be second. */
{"_unpickle_type", unpickle_type, METH_VARARGS, NULL},
{"assign", assign, METH_VARARGS, NULL},
{"cast", cast, METH_VARARGS, NULL},
{"delete", callDtor, METH_VARARGS, NULL},
{"dump", dumpWrapper, METH_O, NULL},
{"enableautoconversion", enableAutoconversion, METH_VARARGS, NULL},
{"enableoverflowchecking", sipEnableOverflowChecking, METH_VARARGS, NULL},
{"getapi", sipGetAPI, METH_VARARGS, NULL},
{"isdeleted", isDeleted, METH_VARARGS, NULL},
{"ispycreated", isPyCreated, METH_VARARGS, NULL},
{"ispyowned", isPyOwned, METH_VARARGS, NULL},
{"setapi", sipSetAPI, METH_VARARGS, NULL},
{"setdeleted", setDeleted, METH_VARARGS, NULL},
{"setdestroyonexit", setDestroyOnExit, METH_VARARGS, NULL},
{"settracemask", setTraceMask, METH_VARARGS, NULL},
{"transferback", transferBack, METH_VARARGS, NULL},
{"transferto", transferTo, METH_VARARGS, NULL},
{"wrapinstance", wrapInstance, METH_VARARGS, NULL},
{"unwrapinstance", unwrapInstance, METH_VARARGS, NULL},
{NULL, NULL, 0, NULL}
};
static PyMethodDef sip_exit_md = {
"_sip_exit", sip_exit, METH_NOARGS, NULL
};
PyObject *obj;
PyMethodDef *md;
/*
* Remind ourselves to add support for capsule variables when we have
* another reason to move to the next major version number.
*/
#if SIP_API_MAJOR_NR > 12
#error "Add support for capsule variables"
#endif
#if PY_VERSION_HEX < 0x03070000 && defined(WITH_THREAD)
PyEval_InitThreads();
#endif
/* Add the SIP version number. */
obj = PyLong_FromLong(SIP_VERSION);
if (dict_set_and_discard(mod_dict, "SIP_VERSION", obj) < 0)
return NULL;
obj = PyUnicode_FromString(SIP_VERSION_STR);
if (dict_set_and_discard(mod_dict, "SIP_VERSION_STR", obj) < 0)
return NULL;
/* Add the methods. */
for (md = methods; md->ml_name != NULL; ++md)
{
PyObject *meth = PyCFunction_New(md, NULL);
if (dict_set_and_discard(mod_dict, md->ml_name, meth) < 0)
return NULL;
if (md == &methods[0])
{
Py_INCREF(meth);
enum_unpickler = meth;
}
else if (md == &methods[1])
{
Py_INCREF(meth);
type_unpickler = meth;
}
}
/* Initialise the types. */
sipWrapperType_Type.tp_base = &PyType_Type;
if (PyType_Ready(&sipWrapperType_Type) < 0)
return NULL;
if (PyType_Ready((PyTypeObject *)&sipSimpleWrapper_Type) < 0)
return NULL;
if (sip_api_register_py_type((PyTypeObject *)&sipSimpleWrapper_Type) < 0)
return NULL;
#if defined(STACKLESS)
sipWrapper_Type.super.tp_base = (PyTypeObject *)&sipSimpleWrapper_Type;
#else
sipWrapper_Type.super.ht_type.tp_base = (PyTypeObject *)&sipSimpleWrapper_Type;
#endif
if (PyType_Ready((PyTypeObject *)&sipWrapper_Type) < 0)
return NULL;
if (PyType_Ready(&sipMethodDescr_Type) < 0)
return NULL;
if (PyType_Ready(&sipVariableDescr_Type) < 0)
return NULL;
sipEnumType_Type.tp_base = &PyType_Type;
if (PyType_Ready(&sipEnumType_Type) < 0)
return NULL;
if (PyType_Ready(&sipVoidPtr_Type) < 0)
return NULL;
if (PyType_Ready(&sipArray_Type) < 0)
return NULL;
/* Add the public types. */
if (PyDict_SetItemString(mod_dict, "wrappertype", (PyObject *)&sipWrapperType_Type) < 0)
return NULL;
if (PyDict_SetItemString(mod_dict, "simplewrapper", (PyObject *)&sipSimpleWrapper_Type) < 0)
return NULL;
if (PyDict_SetItemString(mod_dict, "wrapper", (PyObject *)&sipWrapper_Type) < 0)
return NULL;
if (PyDict_SetItemString(mod_dict, "voidptr", (PyObject *)&sipVoidPtr_Type) < 0)
return NULL;
/* These will always be needed. */
if (objectify("__init__", &init_name) < 0)
return NULL;
if ((empty_tuple = PyTuple_New(0)) == NULL)
return NULL;
/* Initialise the object map. */
sipOMInit(&cppPyMap);
/* Make sure we are notified at the end of the exit process. */
if (Py_AtExit(finalise) < 0)
return NULL;
/* Make sure we are notified at the start of the exit process. */
if (sip_api_register_exit_notifier(&sip_exit_md) < 0)
return NULL;
/*
* Get the current interpreter. This will be shared between all threads.
*/
sipInterpreter = PyThreadState_Get()->interp;
return &sip_api;
}
/*
* Set a dictionary item and discard the reference to the item even if there
* was an error.
*/
static int dict_set_and_discard(PyObject *dict, const char *name, PyObject *obj)
{
int rc;
if (obj == NULL)
return -1;
rc = PyDict_SetItemString(dict, name, obj);
Py_DECREF(obj);
return rc;
}
#if _SIP_MODULE_SHARED
/*
* The Python module initialisation function.
*/
#if defined(SIP_STATIC_MODULE)
PyObject *_SIP_MODULE_ENTRY(void)
#else
PyMODINIT_FUNC _SIP_MODULE_ENTRY(void)
#endif
{
static PyModuleDef module_def = {
PyModuleDef_HEAD_INIT,
_SIP_MODULE_FQ_NAME, /* m_name */
NULL, /* m_doc */
-1, /* m_size */
NULL, /* m_methods */
NULL, /* m_reload */
NULL, /* m_traverse */
NULL, /* m_clear */
NULL, /* m_free */
};
const sipAPIDef *api;
PyObject *mod, *mod_dict, *api_obj;
/* Create the module. */
if ((mod = PyModule_Create(&module_def)) == NULL)
return NULL;
mod_dict = PyModule_GetDict(mod);
/* Initialise the module dictionary and static variables. */
if ((api = sip_init_library(mod_dict)) == NULL)
return NULL;
/* Publish the SIP API. */
api_obj = PyCapsule_New((void *)api, _SIP_MODULE_FQ_NAME "._C_API", NULL);
if (dict_set_and_discard(mod_dict, "_C_API", api_obj) < 0)
{
Py_DECREF(mod);
return NULL;
}
#if _SIP_MODULE_LEGACY
{
/*
* Also install the package-specific module at the top level for
* backwards compatibility.
*/
PyObject *modules = PySys_GetObject("modules");
if (modules != NULL)
PyDict_SetItemString(modules, "sip", mod);
}
#endif
return mod;
}
#endif
/*
* Return the current interpreter, if there is one.
*/
static PyInterpreterState *sip_api_get_interpreter(void)
{
return sipInterpreter;
}
/*
* Display a printf() style message to stderr according to the current trace
* mask.
*/
static void sip_api_trace(unsigned mask, const char *fmt, ...)
{
va_list ap;
va_start(ap,fmt);
if (mask & traceMask)
vfprintf(stderr, fmt, ap);
va_end(ap);
}
/*
* Set the trace mask.
*/
static PyObject *setTraceMask(PyObject *self, PyObject *args)
{
unsigned new_mask;
(void)self;
if (PyArg_ParseTuple(args, "I:settracemask", &new_mask))
{
traceMask = new_mask;
Py_INCREF(Py_None);
return Py_None;
}
return NULL;
}
/*
* Dump various bits of potentially useful information to stdout. Note that we
* use the same calling convention as sys.getrefcount() so that it has the
* same caveat regarding the reference count.
*/
static PyObject *dumpWrapper(PyObject *self, PyObject *arg)
{
sipSimpleWrapper *sw;
(void)self;
if (!PyObject_TypeCheck(arg, (PyTypeObject *)&sipSimpleWrapper_Type))
{
PyErr_Format(PyExc_TypeError,
"dump() argument 1 must be sip.simplewrapper, not %s",
Py_TYPE(arg)->tp_name);
return NULL;
}
sw = (sipSimpleWrapper *)arg;
print_object(NULL, (PyObject *)sw);
printf(" Reference count: %" PY_FORMAT_SIZE_T "d\n", Py_REFCNT(sw));
printf(" Address of wrapped object: %p\n", sip_api_get_address(sw));
printf(" Created by: %s\n", (sipIsDerived(sw) ? "Python" : "C/C++"));
printf(" To be destroyed by: %s\n", (sipIsPyOwned(sw) ? "Python" : "C/C++"));
if (PyObject_TypeCheck((PyObject *)sw, (PyTypeObject *)&sipWrapper_Type))
{
sipWrapper *w = (sipWrapper *)sw;
print_object("Parent wrapper", (PyObject *)w->parent);
print_object("Next sibling wrapper", (PyObject *)w->sibling_next);
print_object("Previous sibling wrapper", (PyObject *)w->sibling_prev);
print_object("First child wrapper", (PyObject *)w->first_child);
}
Py_INCREF(Py_None);
return Py_None;
}
/*
* Write a reference to a wrapper to stdout.
*/
static void print_object(const char *label, PyObject *obj)
{
if (label != NULL)
printf(" %s: ", label);
if (obj != NULL)
PyObject_Print(obj, stdout, 0);
else
printf("NULL");
printf("\n");
}
/*
* Transfer the ownership of an instance to C/C++.
*/
static PyObject *transferTo(PyObject *self, PyObject *args)
{
PyObject *w, *owner;
(void)self;
if (PyArg_ParseTuple(args, "O!O:transferto", &sipWrapper_Type, &w, &owner))
{
if (owner == Py_None)
{
/*
* Note that the Python API is different to the C API when the
* owner is None.
*/
owner = NULL;
}
else if (!PyObject_TypeCheck(owner, (PyTypeObject *)&sipWrapper_Type))
{
PyErr_Format(PyExc_TypeError, "transferto() argument 2 must be sip.wrapper, not %s", Py_TYPE(owner)->tp_name);
return NULL;
}
sip_api_transfer_to(w, owner);
Py_INCREF(Py_None);
return Py_None;
}
return NULL;
}
/*
* Transfer the ownership of an instance to Python.
*/
static PyObject *transferBack(PyObject *self, PyObject *args)
{
PyObject *w;
(void)self;
if (PyArg_ParseTuple(args, "O!:transferback", &sipWrapper_Type, &w))
{
sip_api_transfer_back(w);
Py_INCREF(Py_None);
return Py_None;
}
return NULL;
}
/*
* Invoke the assignment operator for a C++ instance.
*/
static PyObject *assign(PyObject *self, PyObject *args)
{
sipSimpleWrapper *dst, *src;
PyTypeObject *dst_type, *src_type;
const sipTypeDef *td, *super_td;
sipAssignFunc assign_helper;
void *dst_addr, *src_addr;
(void)self;
if (!PyArg_ParseTuple(args, "O!O!:assign", &sipSimpleWrapper_Type, &dst, &sipSimpleWrapper_Type, &src))
return NULL;
/* Get the assignment helper. */
dst_type = Py_TYPE(dst);
td = ((sipWrapperType *)dst_type)->wt_td;
if (sipTypeIsMapped(td))
assign_helper = ((const sipMappedTypeDef *)td)->mtd_assign;
else
assign_helper = ((const sipClassTypeDef *)td)->ctd_assign;
if (assign_helper == NULL)
{
PyErr_SetString(PyExc_TypeError,
"argument 1 of assign() does not support assignment");
return NULL;
}
/* Check the types are compatible. */
src_type = Py_TYPE(src);
if (src_type == dst_type)
{
super_td = NULL;
}
else if (PyType_IsSubtype(src_type, dst_type))
{
super_td = td;
}
else
{
PyErr_SetString(PyExc_TypeError,
"type of argument 1 of assign() must be a super-type of type of argument 2");
return NULL;
}
/* Get the addresses. */
if ((dst_addr = sip_api_get_cpp_ptr(dst, NULL)) == NULL)
return NULL;
if ((src_addr = sip_api_get_cpp_ptr(src, super_td)) == NULL)
return NULL;
/* Do the assignment. */
assign_helper(dst_addr, 0, src_addr);
Py_INCREF(Py_None);
return Py_None;
}
/*
* Cast an instance to one of it's sub or super-classes by returning a new
* Python object with the superclass type wrapping the same C++ instance.
*/
static PyObject *cast(PyObject *self, PyObject *args)
{
sipSimpleWrapper *sw;
sipWrapperType *wt;
const sipTypeDef *td;
void *addr;
PyTypeObject *ft, *tt;
(void)self;
if (!PyArg_ParseTuple(args, "O!O!:cast", &sipSimpleWrapper_Type, &sw, &sipWrapperType_Type, &wt))
return NULL;
ft = Py_TYPE(sw);
tt = (PyTypeObject *)wt;
if (ft == tt || PyType_IsSubtype(tt, ft))
td = NULL;
else if (PyType_IsSubtype(ft, tt))
td = wt->wt_td;
else
{
PyErr_SetString(PyExc_TypeError, "argument 1 of cast() must be an instance of a sub or super-type of argument 2");
return NULL;
}
if ((addr = sip_api_get_cpp_ptr(sw, td)) == NULL)
return NULL;
/*
* We don't put this new object into the map so that the original object is
* always found. It would also totally confuse the map logic.
*/
return wrap_simple_instance(addr, wt->wt_td, NULL,
(sw->sw_flags | SIP_NOT_IN_MAP) & ~SIP_PY_OWNED);
}
/*
* Call an instance's dtor.
*/
static PyObject *callDtor(PyObject *self, PyObject *args)
{
sipSimpleWrapper *sw;
void *addr;
const sipClassTypeDef *ctd;
(void)self;
if (!PyArg_ParseTuple(args, "O!:delete", &sipSimpleWrapper_Type, &sw))
return NULL;
addr = getPtrTypeDef(sw, &ctd);
if (checkPointer(addr, sw) < 0)
return NULL;
clear_wrapper(sw);
release(addr, (const sipTypeDef *)ctd, sw->sw_flags);
Py_INCREF(Py_None);
return Py_None;
}
/*
* Check if an instance still exists without raising an exception.
*/
static PyObject *isDeleted(PyObject *self, PyObject *args)
{
sipSimpleWrapper *sw;
PyObject *res;
(void)self;
if (!PyArg_ParseTuple(args, "O!:isdeleted", &sipSimpleWrapper_Type, &sw))
return NULL;
res = (sip_api_get_address(sw) == NULL ? Py_True : Py_False);
Py_INCREF(res);
return res;
}
/*
* Check if an instance was created by Python.
*/
static PyObject *isPyCreated(PyObject *self, PyObject *args)
{
sipSimpleWrapper *sw;
PyObject *res;
(void)self;
if (!PyArg_ParseTuple(args, "O!:ispycreated", &sipSimpleWrapper_Type, &sw))
return NULL;
/* sipIsDerived() is a misnomer. */
res = (sipIsDerived(sw) ? Py_True : Py_False);
Py_INCREF(res);
return res;
}
/*
* Check if an instance is owned by Python or C/C++.
*/
static PyObject *isPyOwned(PyObject *self, PyObject *args)
{
sipSimpleWrapper *sw;
PyObject *res;
(void)self;
if (!PyArg_ParseTuple(args, "O!:ispyowned", &sipSimpleWrapper_Type, &sw))
return NULL;
res = (sipIsPyOwned(sw) ? Py_True : Py_False);
Py_INCREF(res);
return res;
}
/*
* Mark an instance as having been deleted.
*/
static PyObject *setDeleted(PyObject *self, PyObject *args)
{
sipSimpleWrapper *sw;
(void)self;
if (!PyArg_ParseTuple(args, "O!:setdeleted", &sipSimpleWrapper_Type, &sw))
return NULL;
clear_wrapper(sw);
Py_INCREF(Py_None);
return Py_None;
}
/*
* Unwrap an instance.
*/
static PyObject *unwrapInstance(PyObject *self, PyObject *args)
{
sipSimpleWrapper *sw;
(void)self;
if (PyArg_ParseTuple(args, "O!:unwrapinstance", &sipSimpleWrapper_Type, &sw))
{
void *addr;
/*
* We just get the pointer but don't try and cast it (which isn't
* needed and wouldn't work with the way casts are currently
* implemented if we are unwrapping something derived from a wrapped
* class).
*/
if ((addr = sip_api_get_cpp_ptr(sw, NULL)) == NULL)
return NULL;
return PyLong_FromVoidPtr(addr);
}
return NULL;
}
/*
* Wrap an instance.
*/
static PyObject *wrapInstance(PyObject *self, PyObject *args)
{
unsigned PY_LONG_LONG addr;
sipWrapperType *wt;
(void)self;
if (PyArg_ParseTuple(args, "KO!:wrapinstance", &addr, &sipWrapperType_Type, &wt))
return sip_api_convert_from_type((void *)addr, wt->wt_td, NULL);
return NULL;
}
/*
* Set the destroy on exit flag from Python code.
*/
static PyObject *setDestroyOnExit(PyObject *self, PyObject *args)
{
(void)self;
if (PyArg_ParseTuple(args, "i:setdestroyonexit", &destroy_on_exit))
{
Py_INCREF(Py_None);
return Py_None;
}
return NULL;
}
/*
* Set the destroy on exit flag from C++ code.
*/
static void sip_api_set_destroy_on_exit(int value)
{
destroy_on_exit = value;
}
/*
* Register a client module. A negative value is returned and an exception
* raised if there was an error.
*/
static int sip_api_export_module(sipExportedModuleDef *client,
unsigned api_major, unsigned api_minor, void *unused)
{
sipExportedModuleDef *em;
const char *full_name = sipNameOfModule(client);
(void)unused;
/* Check that we can support it. */
if (api_major != SIP_API_MAJOR_NR || api_minor > SIP_API_MINOR_NR)
{
#if SIP_API_MINOR_NR > 0
PyErr_Format(PyExc_RuntimeError,
"the sip module implements API v%d.0 to v%d.%d but the %s module requires API v%d.%d",
SIP_API_MAJOR_NR, SIP_API_MAJOR_NR, SIP_API_MINOR_NR,
full_name, api_major, api_minor);
#else
PyErr_Format(PyExc_RuntimeError,
"the sip module implements API v%d.0 but the %s module requires API v%d.%d",
SIP_API_MAJOR_NR, full_name, api_major, api_minor);
#endif
return -1;
}
/* Import any required modules. */
if (client->em_imports != NULL)
{
sipImportedModuleDef *im = client->em_imports;
while (im->im_name != NULL)
{
PyObject *mod;
if ((mod = PyImport_ImportModule(im->im_name)) == NULL)
return -1;
for (em = moduleList; em != NULL; em = em->em_next)
if (strcmp(sipNameOfModule(em), im->im_name) == 0)
break;
if (em == NULL)
{
PyErr_Format(PyExc_RuntimeError,
"the %s module failed to register with the sip module",
im->im_name);
return -1;
}
if (im->im_imported_types != NULL && importTypes(client, im, em) < 0)
return -1;
if (im->im_imported_veh != NULL && importErrorHandlers(client, im, em) < 0)
return -1;
if (im->im_imported_exceptions != NULL && importExceptions(client, im, em) < 0)
return -1;
++im;
}
}
for (em = moduleList; em != NULL; em = em->em_next)
{
/* SIP clients must have unique names. */
if (strcmp(sipNameOfModule(em), full_name) == 0)
{
PyErr_Format(PyExc_RuntimeError,
"the sip module has already registered a module called %s",
full_name);
return -1;
}
/* Only one module can claim to wrap QObject. */
if (em->em_qt_api != NULL && client->em_qt_api != NULL)
{
PyErr_Format(PyExc_RuntimeError,
"the %s and %s modules both wrap the QObject class",
full_name, sipNameOfModule(em));
return -1;
}
}
/* Convert the module name to an object. */
if ((client->em_nameobj = PyUnicode_FromString(full_name)) == NULL)
return -1;
/* Add it to the list of client modules. */
client->em_next = moduleList;
moduleList = client;
/* Get any keyword handler. Remove this in SIP v5. */
if (!got_kw_handler)
{
kw_handler = sip_api_import_symbol("pyqt_kw_handler");
got_kw_handler = TRUE;
}
return 0;
}
/*
* Initialise the contents of a client module. By this time anything that
* this depends on should have been initialised. A negative value is returned
* and an exception raised if there was an error.
*/
static int sip_api_init_module(sipExportedModuleDef *client,
PyObject *mod_dict)
{
sipExportedModuleDef *em;
sipEnumMemberDef *emd;
int i;
/* Handle any API. */
if (sipInitAPI(client, mod_dict) < 0)
return -1;
/* Create the module's types. */
for (i = 0; i < client->em_nrtypes; ++i)
{
sipTypeDef *td = client->em_types[i];
/* Skip external classes. */
if (td == NULL)
continue;
/* Skip if already initialised. */
if (td->td_module != NULL)
continue;
/* If it is a stub then just set the module so we can get its name. */
if (sipTypeIsStub(td))
{
td->td_module = client;
continue;
}
if (sipTypeIsEnum(td) || sipTypeIsScopedEnum(td))
{
sipEnumTypeDef *etd = (sipEnumTypeDef *)td;
if (td->td_version < 0 || sipIsRangeEnabled(client, td->td_version))
if (createEnum(client, etd, i, mod_dict) < 0)
return -1;
/*
* Register the enum pickler for nested enums (non-nested enums
* don't need special treatment).
*/
if (sipTypeIsEnum(td) && etd->etd_scope >= 0)
{
static PyMethodDef md = {
"_pickle_enum", pickle_enum, METH_NOARGS, NULL
};
if (setReduce(sipTypeAsPyTypeObject(td), &md) < 0)
return -1;
}
}
else if (sipTypeIsMapped(td))
{
sipMappedTypeDef *mtd = (sipMappedTypeDef *)td;
/* If there is a name then we need a namespace. */
if (mtd->mtd_container.cod_name >= 0)
{
if (createMappedType(client, mtd, mod_dict) < 0)
return -1;
}
else
{
td->td_module = client;
}
}
else
{
sipClassTypeDef *ctd = (sipClassTypeDef *)td;
/* See if this is a namespace extender. */
if (ctd->ctd_container.cod_name < 0)
{
sipTypeDef *real_nspace;
sipClassTypeDef **last;
ctd->ctd_base.td_module = client;
real_nspace = getGeneratedType(&ctd->ctd_container.cod_scope,
client);
/* Append this type to the real one. */
last = &((sipClassTypeDef *)real_nspace)->ctd_nsextender;
while (*last != NULL)
last = &(*last)->ctd_nsextender;
*last = ctd;
/*
* Save the real namespace type so that it is the correct scope
* for any enums or classes defined in this module.
*/
client->em_types[i] = real_nspace;
}
else if (createClassType(client, ctd, mod_dict) < 0)
return -1;
}
}
/* Set any Qt support API. */
if (client->em_qt_api != NULL)
{
sipQtSupport = client->em_qt_api;
sipQObjectType = *sipQtSupport->qt_qobject;
}
/* Append any initialiser extenders to the relevant classes. */
if (client->em_initextend != NULL)
{
sipInitExtenderDef *ie = client->em_initextend;
while (ie->ie_extender != NULL)
{
sipTypeDef *td = getGeneratedType(&ie->ie_class, client);
int enabled;
if (ie->ie_api_range < 0)
enabled = TRUE;
else
enabled = sipIsRangeEnabled(td->td_module, ie->ie_api_range);
if (enabled)
{
sipWrapperType *wt = (sipWrapperType *)sipTypeAsPyTypeObject(td);
ie->ie_next = wt->wt_iextend;
wt->wt_iextend = ie;
}
++ie;
}
}
/* Set the base class object for any sub-class converters. */
if (client->em_convertors != NULL)
{
sipSubClassConvertorDef *scc = client->em_convertors;
while (scc->scc_convertor != NULL)
{
scc->scc_basetype = getGeneratedType(&scc->scc_base, client);
++scc;
}
}
/* Create the module's enum members. */
for (emd = client->em_enummembers, i = 0; i < client->em_nrenummembers; ++i, ++emd)
{
sipTypeDef *etd = client->em_types[emd->em_enum];
PyObject *mo;
if (sipTypeIsScopedEnum(etd))
continue;
mo = sip_api_convert_from_enum(emd->em_val, etd);
if (dict_set_and_discard(mod_dict, emd->em_name, mo) < 0)
return -1;
}
/*
* Add any class static instances. We need to do this once all types are
* fully formed because of potential interdependencies.
*/
for (i = 0; i < client->em_nrtypes; ++i)
{
sipTypeDef *td = client->em_types[i];
if (td != NULL && !sipTypeIsStub(td) && sipTypeIsClass(td))
if (addInstances((sipTypeAsPyTypeObject(td))->tp_dict, &((sipClassTypeDef *)td)->ctd_container.cod_instances) < 0)
return -1;
}
/* Add any global static instances. */
if (addInstances(mod_dict, &client->em_instances) < 0)
return -1;
/* Add any license. */
if (client->em_license != NULL && addLicense(mod_dict, client->em_license) < 0)
return -1;
/* See if the new module satisfies any outstanding external types. */
for (em = moduleList; em != NULL; em = em->em_next)
{
sipExternalTypeDef *etd;
if (em == client || em->em_external == NULL)
continue;
for (etd = em->em_external; etd->et_nr >= 0; ++etd)
{
if (etd->et_name == NULL)
continue;
for (i = 0; i < client->em_nrtypes; ++i)
{
sipTypeDef *td = client->em_types[i];
if (td != NULL && !sipTypeIsStub(td) && sipTypeIsClass(td))
{
const char *pyname = sipPyNameOfContainer(
&((sipClassTypeDef *)td)->ctd_container, td);
if (strcmp(etd->et_name, pyname) == 0)
{
em->em_types[etd->et_nr] = td;
etd->et_name = NULL;
break;
}
}
}
}
}
return 0;
}
/*
* Called by the interpreter to do any final clearing up, just in case the
* interpreter will re-start.
*/
static void finalise(void)
{
sipExportedModuleDef *em;
/*
* Mark the Python API as unavailable. This should already have been done,
* but just in case...
*/
sipInterpreter = NULL;
/* Handle any delayed dtors. */
for (em = moduleList; em != NULL; em = em->em_next)
if (em->em_ddlist != NULL)
{
em->em_delayeddtors(em->em_ddlist);
/* Free the list. */
do
{
sipDelayedDtor *dd = em->em_ddlist;
em->em_ddlist = dd->dd_next;
sip_api_free(dd);
}
while (em->em_ddlist != NULL);
}
licenseName = NULL;
licenseeName = NULL;
typeName = NULL;
timestampName = NULL;
signatureName = NULL;
/* Release all memory we've allocated directly. */
sipOMFinalise(&cppPyMap);
/* Re-initialise those globals that (might) need it. */
moduleList = NULL;
}
/*
* Register the given Python type.
*/
static int sip_api_register_py_type(PyTypeObject *type)
{
return addPyObjectToList(&sipRegisteredPyTypes, (PyObject *)type);
}
/*
* Find the registered type with the given name. Raise an exception if it
* couldn't be found.
*/
static PyObject *findPyType(const char *name)
{
sipPyObject *po;
for (po = sipRegisteredPyTypes; po != NULL; po = po->next)
{
PyObject *type = po->object;
if (strcmp(((PyTypeObject *)type)->tp_name, name) == 0)
return type;
}
PyErr_Format(PyExc_RuntimeError, "%s is not a registered type", name);
return NULL;
}
/*
* Add a wrapped C/C++ pointer to the list of delayed dtors.
*/
static void sip_api_add_delayed_dtor(sipSimpleWrapper *sw)
{
void *ptr;
const sipClassTypeDef *ctd;
sipExportedModuleDef *em;
if ((ptr = getPtrTypeDef(sw, &ctd)) == NULL)
return;
/* Find the defining module. */
for (em = moduleList; em != NULL; em = em->em_next)
{
int i;
for (i = 0; i < em->em_nrtypes; ++i)
if (em->em_types[i] == (const sipTypeDef *)ctd)
{
sipDelayedDtor *dd;
if ((dd = sip_api_malloc(sizeof (sipDelayedDtor))) == NULL)
return;
/* Add to the list. */
dd->dd_ptr = ptr;
dd->dd_name = sipPyNameOfContainer(&ctd->ctd_container,
(sipTypeDef *)ctd);
dd->dd_isderived = sipIsDerived(sw);
dd->dd_next = em->em_ddlist;
em->em_ddlist = dd;
return;
}
}
}
/*
* A wrapper around the Python memory allocater that will raise an exception if
* if the allocation fails.
*/
void *sip_api_malloc(size_t nbytes)
{
void *mem;
if ((mem = PyMem_Malloc(nbytes)) == NULL)
PyErr_NoMemory();
return mem;
}
/*
* A wrapper around the Python memory de-allocater.
*/
void sip_api_free(void *mem)
{
PyMem_Free(mem);
}
/*
* Extend a Python slot by looking in other modules to see if there is an
* extender function that can handle the arguments.
*/
static PyObject *sip_api_pyslot_extend(sipExportedModuleDef *mod,
sipPySlotType st, const sipTypeDef *td, PyObject *arg0,
PyObject *arg1)
{
sipExportedModuleDef *em;
/* Go through each module. */
for (em = moduleList; em != NULL; em = em->em_next)
{
sipPySlotExtenderDef *ex;
/* Skip the module that couldn't handle the arguments. */
if (em == mod)
continue;
/* Skip if the module doesn't have any extenders. */
if (em->em_slotextend == NULL)
continue;
/* Go through each extender. */
for (ex = em->em_slotextend; ex->pse_func != NULL; ++ex)
{
PyObject *res;
/* Skip if not the right slot type. */
if (ex->pse_type != st)
continue;
/* Check against the type if one was given. */
if (td != NULL && td != getGeneratedType(&ex->pse_class, NULL))
continue;
PyErr_Clear();
res = ((binaryfunc)ex->pse_func)(arg0, arg1);
if (res != Py_NotImplemented)
return res;
}
}
/* The arguments couldn't handled anywhere. */
PyErr_Clear();
Py_INCREF(Py_NotImplemented);
return Py_NotImplemented;
}
/*
* Convert a new C/C++ instance to a Python instance of a specific Python type..
*/
static PyObject *sip_api_convert_from_new_pytype(void *cpp,
PyTypeObject *py_type, sipWrapper *owner, sipSimpleWrapper **selfp,
const char *fmt, ...)
{
PyObject *args, *res;
va_list va;
va_start(va, fmt);
if ((args = PyTuple_New(strlen(fmt))) != NULL && buildObject(args, fmt, va) != NULL)
{
res = sipWrapInstance(cpp, py_type, args, owner,
(selfp != NULL ? SIP_DERIVED_CLASS : 0));
/* Initialise the rest of an instance of a derived class. */
if (selfp != NULL)
*selfp = (sipSimpleWrapper *)res;
}
else
{
res = NULL;
}
Py_XDECREF(args);
va_end(va);
return res;
}
/*
* Call a method and return the result.
*/
static PyObject *call_method(PyObject *method, const char *fmt, va_list va)
{
PyObject *args, *res;
if ((args = PyTuple_New(strlen(fmt))) == NULL)
return NULL;
if (buildObject(args, fmt, va) != NULL)
res = PyObject_CallObject(method, args);
else
res = NULL;
Py_DECREF(args);
return res;
}
/*
* Call the Python re-implementation of a C++ virtual that does not return a
* value and handle the result..
*/
static void sip_api_call_procedure_method(sip_gilstate_t gil_state,
sipVirtErrorHandlerFunc error_handler, sipSimpleWrapper *py_self,
PyObject *method, const char *fmt, ...)
{
PyObject *res;
va_list va;
va_start(va, fmt);
res = call_method(method, fmt, va);
va_end(va);
if (res != NULL)
{
Py_DECREF(res);
if (res != Py_None)
{
sip_api_bad_catcher_result(method);
res = NULL;
}
}
Py_DECREF(method);
if (res == NULL)
sip_api_call_error_handler(error_handler, py_self, gil_state);
SIP_RELEASE_GIL(gil_state);
}
/*
* Call the Python re-implementation of a C++ virtual.
*/
static PyObject *sip_api_call_method(int *isErr, PyObject *method,
const char *fmt, ...)
{
PyObject *res;
va_list va;
va_start(va, fmt);
res = call_method(method, fmt, va);
va_end(va);
if (res == NULL && isErr != NULL)
*isErr = TRUE;
return res;
}
/*
* Build a result object based on a format string.
*/
static PyObject *sip_api_build_result(int *isErr, const char *fmt, ...)
{
PyObject *res = NULL;
int badfmt, tupsz;
va_list va;
va_start(va,fmt);
/* Basic validation of the format string. */
badfmt = FALSE;
if (*fmt == '(')
{
char *ep;
if ((ep = strchr(fmt,')')) == NULL || ep[1] != '\0')
badfmt = TRUE;
else
tupsz = (int)(ep - fmt - 1);
}
else if (strlen(fmt) == 1)
tupsz = -1;
else
badfmt = TRUE;
if (badfmt)
PyErr_Format(PyExc_SystemError,"sipBuildResult(): invalid format string \"%s\"",fmt);
else if (tupsz < 0 || (res = PyTuple_New(tupsz)) != NULL)
res = buildObject(res,fmt,va);
va_end(va);
if (res == NULL && isErr != NULL)
*isErr = TRUE;
return res;
}
/*
* Get the values off the stack and put them into an object.
*/
static PyObject *buildObject(PyObject *obj, const char *fmt, va_list va)
{
char ch, termch;
int i;
/*
* The format string has already been checked that it is properly formed if
* it is enclosed in parenthesis.
*/
if (*fmt == '(')
{
termch = ')';
++fmt;
}
else
termch = '\0';
i = 0;
while ((ch = *fmt++) != termch)
{
PyObject *el;
switch (ch)
{
case 'g':
{
char *s;
Py_ssize_t l;
s = va_arg(va, char *);
l = va_arg(va, Py_ssize_t);
if (s != NULL)
{
el = PyBytes_FromStringAndSize(s, l);
}
else
{
Py_INCREF(Py_None);
el = Py_None;
}
}
break;
case 'G':
#if defined(HAVE_WCHAR_H)
{
wchar_t *s;
Py_ssize_t l;
s = va_arg(va, wchar_t *);
l = va_arg(va, Py_ssize_t);
if (s != NULL)
el = PyUnicode_FromWideChar(s, l);
else
{
Py_INCREF(Py_None);
el = Py_None;
}
}
#else
raiseNoWChar();
el = NULL;
#endif
break;
case 'b':
el = PyBool_FromLong(va_arg(va,int));
break;
case 'c':
{
char c = va_arg(va, int);
el = PyBytes_FromStringAndSize(&c, 1);
}
break;
case 'a':
{
char c = va_arg(va, int);
el = PyUnicode_FromStringAndSize(&c, 1);
}
break;
case 'w':
#if defined(HAVE_WCHAR_H)
{
wchar_t c = va_arg(va, int);
el = PyUnicode_FromWideChar(&c, 1);
}
#else
raiseNoWChar();
el = NULL;
#endif
break;
case 'E':
{
/* Remove in v5.1. */
int ev = va_arg(va, int);
PyTypeObject *et = va_arg(va, PyTypeObject *);
el = sip_api_convert_from_enum(ev,
((const sipEnumTypeObject *)et)->type);
}
break;
case 'F':
{
int ev = va_arg(va, int);
const sipTypeDef *td = va_arg(va, const sipTypeDef *);
el = sip_api_convert_from_enum(ev, td);
}
break;
case 'd':
case 'f':
el = PyFloat_FromDouble(va_arg(va, double));
break;
case 'e':
case 'h':
case 'i':
case 'L':
el = PyLong_FromLong(va_arg(va, int));
break;
case 'l':
el = PyLong_FromLong(va_arg(va, long));
break;
case 'm':
el = PyLong_FromUnsignedLong(va_arg(va, unsigned long));
break;
case 'n':
#if defined(HAVE_LONG_LONG)
el = PyLong_FromLongLong(va_arg(va, PY_LONG_LONG));
#else
el = PyLong_FromLong(va_arg(va, long));
#endif
break;
case 'o':
#if defined(HAVE_LONG_LONG)
el = PyLong_FromUnsignedLongLong(va_arg(va, unsigned PY_LONG_LONG));
#else
el = PyLong_FromUnsignedLong(va_arg(va, unsigned long));
#endif
break;
case 's':
{
char *s = va_arg(va, char *);
if (s != NULL)
{
el = PyBytes_FromString(s);
}
else
{
Py_INCREF(Py_None);
el = Py_None;
}
}
break;
case 'A':
{
char *s = va_arg(va, char *);
if (s != NULL)
{
el = PyUnicode_FromString(s);
}
else
{
Py_INCREF(Py_None);
el = Py_None;
}
}
break;
case 'x':
#if defined(HAVE_WCHAR_H)
{
wchar_t *s = va_arg(va, wchar_t *);
if (s != NULL)
el = PyUnicode_FromWideChar(s, (Py_ssize_t)wcslen(s));
else
{
Py_INCREF(Py_None);
el = Py_None;
}
}
#else
raiseNoWChar();
el = NULL;
#endif
break;
case 't':
case 'u':
case 'M':
el = PyLong_FromUnsignedLong(va_arg(va, unsigned));
break;
case '=':
el = PyLong_FromUnsignedLong(va_arg(va, size_t));
break;
case 'B':
{
/* Remove in v5.1. */
void *p = va_arg(va,void *);
sipWrapperType *wt = va_arg(va, sipWrapperType *);
PyObject *xfer = va_arg(va, PyObject *);
el = sip_api_convert_from_new_type(p, wt->wt_td, xfer);
}
break;
case 'N':
{
void *p = va_arg(va, void *);
const sipTypeDef *td = va_arg(va, const sipTypeDef *);
PyObject *xfer = va_arg(va, PyObject *);
el = sip_api_convert_from_new_type(p, td, xfer);
}
break;
case 'C':
{
/* Remove in v5.1. */
void *p = va_arg(va,void *);
sipWrapperType *wt = va_arg(va, sipWrapperType *);
PyObject *xfer = va_arg(va, PyObject *);
el = sip_api_convert_from_type(p, wt->wt_td, xfer);
}
break;
case 'D':
{
void *p = va_arg(va, void *);
const sipTypeDef *td = va_arg(va, const sipTypeDef *);
PyObject *xfer = va_arg(va, PyObject *);
el = sip_api_convert_from_type(p, td, xfer);
}
break;
case 'r':
{
void *p = va_arg(va, void *);
Py_ssize_t l = va_arg(va, Py_ssize_t);
const sipTypeDef *td = va_arg(va, const sipTypeDef *);
el = convertToSequence(p, l, td);
}
break;
case 'R':
el = va_arg(va,PyObject *);
break;
case 'S':
el = va_arg(va,PyObject *);
Py_INCREF(el);
break;
case 'V':
el = sip_api_convert_from_void_ptr(va_arg(va, void *));
break;
case 'z':
{
const char *name = va_arg(va, const char *);
void *p = va_arg(va, void *);
if (p == NULL)
{
el = Py_None;
Py_INCREF(el);
}
else
{
el = PyCapsule_New(p, name, NULL);
}
}
break;
default:
PyErr_Format(PyExc_SystemError,"buildObject(): invalid format character '%c'",ch);
el = NULL;
}
if (el == NULL)
{
Py_XDECREF(obj);
return NULL;
}
if (obj == NULL)
return el;
PyTuple_SET_ITEM(obj,i,el);
++i;
}
return obj;
}
/*
* Parse a result object based on a format string. As of v9.0 of the API this
* is only ever called by handwritten code.
*/
static int sip_api_parse_result(int *isErr, PyObject *method, PyObject *res,
const char *fmt, ...)
{
int rc;
va_list va;
va_start(va, fmt);
rc = parseResult(method, res, NULL, fmt, va);
va_end(va);
if (isErr != NULL && rc < 0)
*isErr = TRUE;
return rc;
}
/*
* Parse a result object based on a format string.
*/
static int sip_api_parse_result_ex(sip_gilstate_t gil_state,
sipVirtErrorHandlerFunc error_handler, sipSimpleWrapper *py_self,
PyObject *method, PyObject *res, const char *fmt, ...)
{
int rc;
if (res != NULL)
{
va_list va;
va_start(va, fmt);
rc = parseResult(method, res, deref_mixin(py_self), fmt, va);
va_end(va);
Py_DECREF(res);
}
else
{
rc = -1;
}
Py_DECREF(method);
if (rc < 0)
sip_api_call_error_handler(error_handler, py_self, gil_state);
SIP_RELEASE_GIL(gil_state);
return rc;
}
/*
* Call a virtual error handler. This is called with the GIL and from the
* thread that raised the error.
*/
static void sip_api_call_error_handler(sipVirtErrorHandlerFunc error_handler,
sipSimpleWrapper *py_self, sip_gilstate_t sipGILState)
{
if (error_handler != NULL)
error_handler(deref_mixin(py_self), sipGILState);
else
PyErr_Print();
}
/*
* Do the main work of parsing a result object based on a format string.
*/
static int parseResult(PyObject *method, PyObject *res,
sipSimpleWrapper *py_self, const char *fmt, va_list va)
{
int tupsz, rc = 0;
/* We rely on PyErr_Occurred(). */
PyErr_Clear();
/* Get self if it is provided as an argument. */
if (*fmt == 'S')
{
py_self = va_arg(va, sipSimpleWrapper *);
++fmt;
}
/* Basic validation of the format string. */
if (*fmt == '(')
{
char ch;
const char *cp = ++fmt;
int sub_format = FALSE;
tupsz = 0;
while ((ch = *cp++) != ')')
{
if (ch == '\0')
{
PyErr_Format(PyExc_SystemError, "sipParseResult(): invalid format string \"%s\"", fmt - 1);
rc = -1;
break;
}
if (sub_format)
{
sub_format = FALSE;
}
else
{
++tupsz;
/* Some format characters have a sub-format. */
if (strchr("aAHDC", ch) != NULL)
sub_format = TRUE;
}
}
if (rc == 0)
if (!PyTuple_Check(res) || PyTuple_GET_SIZE(res) != tupsz)
{
sip_api_bad_catcher_result(method);
rc = -1;
}
}
else
tupsz = -1;
if (rc == 0)
{
char ch;
int i = 0;
while ((ch = *fmt++) != '\0' && ch != ')' && rc == 0)
{
PyObject *arg;
int invalid = FALSE;
if (tupsz > 0)
{
arg = PyTuple_GET_ITEM(res,i);
++i;
}
else
arg = res;
switch (ch)
{
case 'g':
{
const char **p = va_arg(va, const char **);
Py_ssize_t *szp = va_arg(va, Py_ssize_t *);
if (parseBytes_AsCharArray(arg, p, szp) < 0)
invalid = TRUE;
}
break;
case 'G':
#if defined(HAVE_WCHAR_H)
{
wchar_t **p = va_arg(va, wchar_t **);
Py_ssize_t *szp = va_arg(va, Py_ssize_t *);
if (parseWCharArray(arg, p, szp) < 0)
invalid = TRUE;
}
#else
raiseNoWChar();
invalid = TRUE;
#endif
break;
case 'b':
{
char *p = va_arg(va, void *);
int v = sip_api_convert_to_bool(arg);
if (v < 0)
invalid = TRUE;
else if (p != NULL)
sipSetBool(p, v);
}
break;
case 'c':
{
char *p = va_arg(va, char *);
if (parseBytes_AsChar(arg, p) < 0)
invalid = TRUE;
}
break;
case 'a':
{
char *p = va_arg(va, char *);
int enc;
switch (*fmt++)
{
case 'A':
enc = parseString_AsASCIIChar(arg, p);
break;
case 'L':
enc = parseString_AsLatin1Char(arg, p);
break;
case '8':
enc = parseString_AsUTF8Char(arg, p);
break;
default:
enc = -1;
}
if (enc < 0)
invalid = TRUE;
}
break;
case 'w':
#if defined(HAVE_WCHAR_H)
{
wchar_t *p = va_arg(va, wchar_t *);
if (parseWChar(arg, p) < 0)
invalid = TRUE;
}
#else
raiseNoWChar();
invalid = TRUE;
#endif
break;
case 'd':
{
double *p = va_arg(va, double *);
double v = PyFloat_AsDouble(arg);
if (PyErr_Occurred())
invalid = TRUE;
else if (p != NULL)
*p = v;
}
break;
case 'E':
{
/* Remove in v5.1. */
PyTypeObject *et = va_arg(va, PyTypeObject *);
int *p = va_arg(va, int *);
int v = sip_api_convert_to_enum(arg, ((sipEnumTypeObject *)et)->type);
if (PyErr_Occurred())
invalid = TRUE;
else if (p != NULL)
*p = v;
}
break;
case 'F':
{
sipTypeDef *td = va_arg(va, sipTypeDef *);
int *p = va_arg(va, int *);
int v = sip_api_convert_to_enum(arg, td);
if (PyErr_Occurred())
invalid = TRUE;
else if (p != NULL)
*p = v;
}
break;
case 'f':
{
float *p = va_arg(va, float *);
float v = (float)PyFloat_AsDouble(arg);
if (PyErr_Occurred())
invalid = TRUE;
else if (p != NULL)
*p = v;
}
break;
case 'L':
{
signed char *p = va_arg(va, signed char *);
signed char v = sip_api_long_as_signed_char(arg);
if (PyErr_Occurred())
invalid = TRUE;
else if (p != NULL)
*p = v;
}
break;
case 'M':
{
unsigned char *p = va_arg(va, unsigned char *);
unsigned char v = sip_api_long_as_unsigned_char(arg);
if (PyErr_Occurred())
invalid = TRUE;
else if (p != NULL)
*p = v;
}
break;
case 'h':
{
signed short *p = va_arg(va, signed short *);
signed short v = sip_api_long_as_short(arg);
if (PyErr_Occurred())
invalid = TRUE;
else if (p != NULL)
*p = v;
}
break;
case 't':
{
unsigned short *p = va_arg(va, unsigned short *);
unsigned short v = sip_api_long_as_unsigned_short(arg);
if (PyErr_Occurred())
invalid = TRUE;
else if (p != NULL)
*p = v;
}
break;
case 'e':
{
int *p = va_arg(va, int *);
int v = long_as_nonoverflow_int(arg);
if (PyErr_Occurred())
invalid = TRUE;
else if (p != NULL)
*p = v;
}
break;
case 'i':
{
int *p = va_arg(va, int *);
int v = sip_api_long_as_int(arg);
if (PyErr_Occurred())
invalid = TRUE;
else if (p != NULL)
*p = v;
}
break;
case 'u':
{
unsigned *p = va_arg(va, unsigned *);
unsigned v = sip_api_long_as_unsigned_int(arg);
if (PyErr_Occurred())
invalid = TRUE;
else if (p != NULL)
*p = v;
}
break;
case '=':
{
size_t *p = va_arg(va, size_t *);
size_t v = sip_api_long_as_size_t(arg);
if (PyErr_Occurred())
invalid = TRUE;
else if (p != NULL)
*p = v;
}
break;
case 'l':
{
long *p = va_arg(va, long *);
long v = sip_api_long_as_long(arg);
if (PyErr_Occurred())
invalid = TRUE;
else if (p != NULL)
*p = v;
}
break;
case 'm':
{
unsigned long *p = va_arg(va, unsigned long *);
unsigned long v = sip_api_long_as_unsigned_long(arg);
if (PyErr_Occurred())
invalid = TRUE;
else if (p != NULL)
*p = v;
}
break;
case 'n':
{
#if defined(HAVE_LONG_LONG)
PY_LONG_LONG *p = va_arg(va, PY_LONG_LONG *);
PY_LONG_LONG v = sip_api_long_as_long_long(arg);
#else
long *p = va_arg(va, long *);
long v = sip_api_long_as_long(arg);
#endif
if (PyErr_Occurred())
invalid = TRUE;
else if (p != NULL)
*p = v;
}
break;
case 'o':
{
#if defined(HAVE_LONG_LONG)
unsigned PY_LONG_LONG *p = va_arg(va, unsigned PY_LONG_LONG *);
unsigned PY_LONG_LONG v = sip_api_long_as_unsigned_long_long(arg);
#else
unsigned long *p = va_arg(va, unsigned long *);
unsigned long v = sip_api_long_as_unsigned_long(arg);
#endif
if (PyErr_Occurred())
invalid = TRUE;
else if (p != NULL)
*p = v;
}
break;
case 's':
{
/* Remove in v5.1. */
const char **p = va_arg(va, const char **);
if (parseBytes_AsString(arg, p) < 0)
invalid = TRUE;
}
break;
case 'A':
{
int key = va_arg(va, int);
const char **p = va_arg(va, const char **);
PyObject *keep;
switch (*fmt++)
{
case 'A':
keep = parseString_AsASCIIString(arg, p);
break;
case 'L':
keep = parseString_AsLatin1String(arg, p);
break;
case '8':
keep = parseString_AsUTF8String(arg, p);
break;
default:
keep = NULL;
}
if (keep == NULL)
invalid = TRUE;
else
sip_api_keep_reference((PyObject *)py_self, key, keep);
}
break;
case 'B':
{
int key = va_arg(va, int);
const char **p = va_arg(va, const char **);
if (parseBytes_AsString(arg, p) < 0)
invalid = TRUE;
else
sip_api_keep_reference((PyObject *)py_self, key, arg);
}
break;
case 'x':
#if defined(HAVE_WCHAR_H)
{
wchar_t **p = va_arg(va, wchar_t **);
if (parseWCharString(arg, p) < 0)
invalid = TRUE;
}
#else
raiseNoWChar();
invalid = TRUE;
#endif
break;
case 'C':
{
/* Remove in v5.1. */
if (*fmt == '\0')
{
invalid = TRUE;
}
else
{
int flags = *fmt++ - '0';
int iserr = FALSE;
sipWrapperType *type;
void **cpp;
int *state;
type = va_arg(va, sipWrapperType *);
if (flags & FMT_RP_NO_STATE_DEPR)
state = NULL;
else
state = va_arg(va, int *);
cpp = va_arg(va, void **);
*cpp = sip_api_force_convert_to_type(arg, type->wt_td, (flags & FMT_RP_FACTORY ? arg : NULL), (flags & FMT_RP_DEREF ? SIP_NOT_NONE : 0), state, &iserr);
if (iserr)
invalid = TRUE;
}
}
break;
case 'D':
{
/* Remove in v5.1. */
if (*fmt == '\0')
{
invalid = TRUE;
}
else
{
int flags = *fmt++ - '0';
int iserr = FALSE;
const sipTypeDef *td;
void **cpp;
int *state;
td = va_arg(va, const sipTypeDef *);
if (flags & FMT_RP_NO_STATE_DEPR)
state = NULL;
else
state = va_arg(va, int *);
cpp = va_arg(va, void **);
*cpp = sip_api_force_convert_to_type(arg, td, (flags & FMT_RP_FACTORY ? arg : NULL), (flags & FMT_RP_DEREF ? SIP_NOT_NONE : 0), state, &iserr);
if (iserr)
invalid = TRUE;
}
}
break;
case 'H':
{
if (*fmt == '\0')
{
invalid = TRUE;
}
else
{
int flags = *fmt++ - '0';
int iserr = FALSE, state;
const sipTypeDef *td;
void *cpp, *val;
td = va_arg(va, const sipTypeDef *);
cpp = va_arg(va, void **);
val = sip_api_force_convert_to_type(arg, td, (flags & FMT_RP_FACTORY ? arg : NULL), (flags & FMT_RP_DEREF ? SIP_NOT_NONE : 0), &state, &iserr);
if (iserr)
{
invalid = TRUE;
}
else if (flags & FMT_RP_MAKE_COPY)
{
sipAssignFunc assign_helper;
if (sipTypeIsMapped(td))
assign_helper = ((const sipMappedTypeDef *)td)->mtd_assign;
else
assign_helper = ((const sipClassTypeDef *)td)->ctd_assign;
assert(assign_helper != NULL);
if (cpp != NULL)
assign_helper(cpp, 0, val);
sip_api_release_type(val, td, state);
}
else if (cpp != NULL)
{
*(void **)cpp = val;
}
}
}
break;
case 'N':
{
PyTypeObject *type = va_arg(va, PyTypeObject *);
PyObject **p = va_arg(va, PyObject **);
if (arg == Py_None || PyObject_TypeCheck(arg, type))
{
if (p != NULL)
{
Py_INCREF(arg);
*p = arg;
}
}
else
{
invalid = TRUE;
}
}
break;
case 'O':
{
PyObject **p = va_arg(va, PyObject **);
if (p != NULL)
{
Py_INCREF(arg);
*p = arg;
}
}
break;
case 'T':
{
PyTypeObject *type = va_arg(va, PyTypeObject *);
PyObject **p = va_arg(va, PyObject **);
if (PyObject_TypeCheck(arg, type))
{
if (p != NULL)
{
Py_INCREF(arg);
*p = arg;
}
}
else
{
invalid = TRUE;
}
}
break;
case 'V':
{
void *v = sip_api_convert_to_void_ptr(arg);
void **p = va_arg(va, void **);
if (PyErr_Occurred())
invalid = TRUE;
else if (p != NULL)
*p = v;
}
break;
case 'z':
{
const char *name = va_arg(va, const char *);
void **p = va_arg(va, void **);
if (arg == Py_None)
{
if (p != NULL)
*p = NULL;
}
else
{
#if defined(SIP_USE_CAPSULE)
void *v = PyCapsule_GetPointer(arg, name);
#else
void *v = sip_api_convert_to_void_ptr(arg);
(void)name;
#endif
if (PyErr_Occurred())
invalid = TRUE;
else if (p != NULL)
*p = v;
}
}
break;
case 'Z':
if (arg != Py_None)
invalid = TRUE;
break;
case '!':
{
PyObject **p = va_arg(va, PyObject **);
if (PyObject_CheckBuffer(arg))
{
if (p != NULL)
{
Py_INCREF(arg);
*p = arg;
}
}
else
{
invalid = TRUE;
}
}
break;
case '$':
{
PyObject **p = va_arg(va, PyObject **);
if (arg == Py_None || PyObject_CheckBuffer(arg))
{
if (p != NULL)
{
Py_INCREF(arg);
*p = arg;
}
}
else
{
invalid = TRUE;
}
}
break;
default:
PyErr_Format(PyExc_SystemError,"sipParseResult(): invalid format character '%c'",ch);
rc = -1;
}
if (invalid)
{
sip_api_bad_catcher_result(method);
rc = -1;
break;
}
}
}
return rc;
}
/*
* Parse the arguments to a C/C++ function without any side effects.
*/
static int sip_api_parse_args(PyObject **parseErrp, PyObject *sipArgs,
const char *fmt, ...)
{
int ok;
va_list va;
va_start(va, fmt);
ok = parseKwdArgs(parseErrp, sipArgs, NULL, NULL, NULL, fmt, va);
va_end(va);
return ok;
}
/*
* Parse the positional and/or keyword arguments to a C/C++ function without
* any side effects.
*/
static int sip_api_parse_kwd_args(PyObject **parseErrp, PyObject *sipArgs,
PyObject *sipKwdArgs, const char **kwdlist, PyObject **unused,
const char *fmt, ...)
{
int ok;
va_list va;
if (unused != NULL)
{
/*
* Initialise the return of any unused keyword arguments. This is
* used by any ctor overload.
*/
*unused = NULL;
}
va_start(va, fmt);
ok = parseKwdArgs(parseErrp, sipArgs, sipKwdArgs, kwdlist, unused, fmt,
va);
va_end(va);
/* Release any unused arguments if the parse failed. */
if (!ok && unused != NULL)
{
Py_XDECREF(*unused);
}
return ok;
}
/*
* Parse the arguments to a C/C++ function without any side effects.
*/
static int parseKwdArgs(PyObject **parseErrp, PyObject *sipArgs,
PyObject *sipKwdArgs, const char **kwdlist, PyObject **unused,
const char *fmt, va_list va_orig)
{
int no_tmp_tuple, ok, selfarg;
sipSimpleWrapper *self;
PyObject *single_arg;
va_list va;
/* Previous second pass errors stop subsequent parses. */
if (*parseErrp != NULL && !PyList_Check(*parseErrp))
return FALSE;
/*
* See if we are parsing a single argument. In current versions we are
* told explicitly by the first character of the format string. In earlier
* versions we guessed (sometimes wrongly).
*/
if (*fmt == '1')
{
++fmt;
no_tmp_tuple = FALSE;
}
else
no_tmp_tuple = PyTuple_Check(sipArgs);
if (no_tmp_tuple)
{
Py_INCREF(sipArgs);
}
else if ((single_arg = PyTuple_New(1)) != NULL)
{
Py_INCREF(sipArgs);
PyTuple_SET_ITEM(single_arg, 0, sipArgs);
sipArgs = single_arg;
}
else
{
/* Stop all parsing and indicate an exception has been raised. */
Py_XDECREF(*parseErrp);
*parseErrp = Py_None;
Py_INCREF(Py_None);
return FALSE;
}
/*
* The first pass checks all the types and does conversions that are cheap
* and have no side effects.
*/
va_copy(va, va_orig);
ok = parsePass1(parseErrp, &self, &selfarg, sipArgs, sipKwdArgs, kwdlist,
unused, fmt, va);
va_end(va);
if (ok)
{
/*
* The second pass does any remaining conversions now that we know we
* have the right signature.
*/
va_copy(va, va_orig);
ok = parsePass2(self, selfarg, sipArgs, sipKwdArgs, kwdlist, fmt, va);
va_end(va);
/* Remove any previous failed parses. */
Py_XDECREF(*parseErrp);
if (ok)
{
*parseErrp = NULL;
}
else
{
/* Indicate that an exception has been raised. */
*parseErrp = Py_None;
Py_INCREF(Py_None);
}
}
Py_DECREF(sipArgs);
return ok;
}
/*
* Return a string as a Python object that describes an argument with an
* unexpected type.
*/
static PyObject *bad_type_str(int arg_nr, PyObject *arg)
{
return PyUnicode_FromFormat("argument %d has unexpected type '%s'", arg_nr,
Py_TYPE(arg)->tp_name);
}
/*
* Adds a failure about an argument with an incorrect type to the current list
* of exceptions.
*/
static sipErrorState sip_api_bad_callable_arg(int arg_nr, PyObject *arg)
{
PyObject *detail = bad_type_str(arg_nr + 1, arg);
if (detail == NULL)
return sipErrorFail;
PyErr_SetObject(PyExc_TypeError, detail);
Py_DECREF(detail);
return sipErrorContinue;
}
/*
* Adds the current exception to the current list of exceptions (if it is a
* user exception) or replace the current list of exceptions.
*/
static void sip_api_add_exception(sipErrorState es, PyObject **parseErrp)
{
assert(*parseErrp == NULL);
if (es == sipErrorContinue)
{
sipParseFailure failure;
PyObject *e_type, *e_traceback;
/* Get the value of the exception. */
PyErr_Fetch(&e_type, &failure.detail_obj, &e_traceback);
Py_XDECREF(e_type);
Py_XDECREF(e_traceback);
failure.reason = Exception;
add_failure(parseErrp, &failure);
if (failure.reason == Raised)
{
Py_XDECREF(failure.detail_obj);
es = sipErrorFail;
}
}
if (es == sipErrorFail)
{
Py_XDECREF(*parseErrp);
*parseErrp = Py_None;
Py_INCREF(Py_None);
}
}
/*
* The dtor for parse failure wrapped in a Python object.
*/
static void failure_dtor(PyObject *capsule)
{
sipParseFailure *failure = (sipParseFailure *)PyCapsule_GetPointer(capsule, NULL);
Py_XDECREF(failure->detail_obj);
sip_api_free(failure);
}
/*
* Add a parse failure to the current list of exceptions.
*/
static void add_failure(PyObject **parseErrp, sipParseFailure *failure)
{
sipParseFailure *failure_copy;
PyObject *failure_obj;
/* Create the list if necessary. */
if (*parseErrp == NULL && (*parseErrp = PyList_New(0)) == NULL)
{
failure->reason = Raised;
return;
}
/*
* Make a copy of the failure, convert it to a Python object and add it to
* the list. We do it this way to make it as lightweight as possible.
*/
if ((failure_copy = sip_api_malloc(sizeof (sipParseFailure))) == NULL)
{
failure->reason = Raised;
return;
}
*failure_copy = *failure;
if ((failure_obj = PyCapsule_New(failure_copy, NULL, failure_dtor)) == NULL)
{
sip_api_free(failure_copy);
failure->reason = Raised;
return;
}
/* Ownership of any detail object is now with the wrapped failure. */
failure->detail_obj = NULL;
if (PyList_Append(*parseErrp, failure_obj) < 0)
{
Py_DECREF(failure_obj);
failure->reason = Raised;
return;
}
Py_DECREF(failure_obj);
}
/*
* Parse one or a pair of arguments to a C/C++ function without any side
* effects.
*/
static int sip_api_parse_pair(PyObject **parseErrp, PyObject *sipArg0,
PyObject *sipArg1, const char *fmt, ...)
{
int ok, selfarg;
sipSimpleWrapper *self;
PyObject *args;
va_list va;
/* Previous second pass errors stop subsequent parses. */
if (*parseErrp != NULL && !PyList_Check(*parseErrp))
return FALSE;
if ((args = PyTuple_New(sipArg1 != NULL ? 2 : 1)) == NULL)
{
/* Stop all parsing and indicate an exception has been raised. */
Py_XDECREF(*parseErrp);
*parseErrp = Py_None;
Py_INCREF(Py_None);
return FALSE;
}
Py_INCREF(sipArg0);
PyTuple_SET_ITEM(args, 0, sipArg0);
if (sipArg1 != NULL)
{
Py_INCREF(sipArg1);
PyTuple_SET_ITEM(args, 1, sipArg1);
}
/*
* The first pass checks all the types and does conversions that are cheap
* and have no side effects.
*/
va_start(va, fmt);
ok = parsePass1(parseErrp, &self, &selfarg, args, NULL, NULL, NULL, fmt,
va);
va_end(va);
if (ok)
{
/*
* The second pass does any remaining conversions now that we know we
* have the right signature.
*/
va_start(va, fmt);
ok = parsePass2(self, selfarg, args, NULL, NULL, fmt, va);
va_end(va);
/* Remove any previous failed parses. */
Py_XDECREF(*parseErrp);
if (ok)
{
*parseErrp = NULL;
}
else
{
/* Indicate that an exception has been raised. */
*parseErrp = Py_None;
Py_INCREF(Py_None);
}
}
Py_DECREF(args);
return ok;
}
/*
* First pass of the argument parse, converting those that can be done so
* without any side effects. Return TRUE if the arguments matched.
*/
static int parsePass1(PyObject **parseErrp, sipSimpleWrapper **selfp,
int *selfargp, PyObject *sipArgs, PyObject *sipKwdArgs,
const char **kwdlist, PyObject **unused, const char *fmt, va_list va)
{
int compulsory, argnr, nr_args;
Py_ssize_t nr_pos_args, nr_kwd_args, nr_kwd_args_used;
sipParseFailure failure;
failure.reason = Ok;
failure.detail_obj = NULL;
compulsory = TRUE;
argnr = 0;
nr_args = 0;
nr_pos_args = PyTuple_GET_SIZE(sipArgs);
nr_kwd_args = nr_kwd_args_used = 0;
if (sipKwdArgs != NULL)
{
assert(PyDict_Check(sipKwdArgs));
nr_kwd_args = PyDict_Size(sipKwdArgs);
}
/*
* Handle those format characters that deal with the "self" argument. They
* will always be the first one.
*/
*selfp = NULL;
*selfargp = FALSE;
switch (*fmt++)
{
case 'B':
case 'p':
{
PyObject *self;
sipTypeDef *td;
self = *va_arg(va, PyObject **);
td = va_arg(va, sipTypeDef *);
va_arg(va, void **);
if (self == NULL)
{
if (!getSelfFromArgs(td, sipArgs, argnr, selfp))
{
failure.reason = Unbound;
failure.detail_str = sipPyNameOfContainer(
&((sipClassTypeDef *)td)->ctd_container, td);
break;
}
*selfargp = TRUE;
++argnr;
}
else
*selfp = (sipSimpleWrapper *)self;
break;
}
case 'C':
*selfp = (sipSimpleWrapper *)va_arg(va,PyObject *);
break;
default:
--fmt;
}
/*
* Now handle the remaining arguments. We continue to parse if we get an
* overflow because that is, strictly speaking, a second pass error.
*/
while (failure.reason == Ok || failure.reason == Overflow)
{
char ch;
PyObject *arg;
PyErr_Clear();
/* See if the following arguments are optional. */
if ((ch = *fmt++) == '|')
{
compulsory = FALSE;
ch = *fmt++;
}
/* See if we don't expect anything else. */
if (ch == '\0')
{
if (argnr < nr_pos_args)
{
/* There are still positional arguments. */
failure.reason = TooMany;
}
else if (nr_kwd_args_used != nr_kwd_args)
{
/*
* Take a shortcut if no keyword arguments were used and we are
* interested in them.
*/
if (nr_kwd_args_used == 0 && unused != NULL)
{
Py_INCREF(sipKwdArgs);
*unused = sipKwdArgs;
}
else
{
PyObject *key, *value, *unused_dict = NULL;
Py_ssize_t pos = 0;
/*
* Go through the keyword arguments to find any that were
* duplicates of positional arguments. For the remaining
* ones remember the unused ones if we are interested.
*/
while (PyDict_Next(sipKwdArgs, &pos, &key, &value))
{
int a;
if (!PyUnicode_Check(key))
{
failure.reason = KeywordNotString;
failure.detail_obj = key;
Py_INCREF(key);
break;
}
if (kwdlist != NULL)
{
/* Get the argument's index if it is one. */
for (a = 0; a < nr_args; ++a)
{
const char *name = kwdlist[a];
if (name == NULL)
continue;
if (PyUnicode_CompareWithASCIIString(key, name) == 0)
break;
}
}
else
{
a = nr_args;
}
if (a == nr_args)
{
/*
* The name doesn't correspond to a keyword
* argument.
*/
if (unused == NULL)
{
/*
* It may correspond to a keyword argument of a
* different overload.
*/
failure.reason = UnknownKeyword;
failure.detail_obj = key;
Py_INCREF(key);
break;
}
/*
* Add it to the dictionary of unused arguments
* creating it if necessary. Note that if the
* unused arguments are actually used by a later
* overload then the parse will incorrectly
* succeed. This should be picked up (perhaps with
* a misleading exception) so long as the code that
* handles the unused arguments checks that it can
* handle them all.
*/
if (unused_dict == NULL && (*unused = unused_dict = PyDict_New()) == NULL)
{
failure.reason = Raised;
break;
}
if (PyDict_SetItem(unused_dict, key, value) < 0)
{
failure.reason = Raised;
break;
}
}
else if (a < nr_pos_args - *selfargp)
{
/*
* The argument has been given positionally and as
* a keyword.
*/
failure.reason = Duplicate;
failure.detail_obj = key;
Py_INCREF(key);
break;
}
}
}
}
break;
}
/* Get the next argument. */
arg = NULL;
failure.arg_nr = -1;
failure.arg_name = NULL;
if (argnr < nr_pos_args)
{
arg = PyTuple_GET_ITEM(sipArgs, argnr);
failure.arg_nr = argnr + 1;
}
else if (nr_kwd_args != 0 && kwdlist != NULL)
{
const char *name = kwdlist[argnr - *selfargp];
if (name != NULL)
{
arg = PyDict_GetItemString(sipKwdArgs, name);
if (arg != NULL)
++nr_kwd_args_used;
failure.arg_name = name;
}
}
++argnr;
++nr_args;
if (arg == NULL && compulsory)
{
if (ch == 'W')
{
/*
* A variable number of arguments was allowed but none were
* given.
*/
break;
}
/* An argument was required. */
failure.reason = TooFew;
/*
* Check if there were any unused keyword arguments so that we give
* a (possibly) more accurate diagnostic in the case that a keyword
* argument has been mis-spelled.
*/
if (unused == NULL && sipKwdArgs != NULL && nr_kwd_args_used != nr_kwd_args)
{
PyObject *key, *value;
Py_ssize_t pos = 0;
while (PyDict_Next(sipKwdArgs, &pos, &key, &value))
{
int a;
if (!PyUnicode_Check(key))
{
failure.reason = KeywordNotString;
failure.detail_obj = key;
Py_INCREF(key);
break;
}
if (kwdlist != NULL)
{
/* Get the argument's index if it is one. */
for (a = 0; a < nr_args; ++a)
{
const char *name = kwdlist[a];
if (name == NULL)
continue;
if (PyUnicode_CompareWithASCIIString(key, name) == 0)
break;
}
}
else
{
a = nr_args;
}
if (a == nr_args)
{
failure.reason = UnknownKeyword;
failure.detail_obj = key;
Py_INCREF(key);
break;
}
}
}
break;
}
/*
* Handle the format character even if we don't have an argument so
* that we skip the right number of arguments.
*/
switch (ch)
{
case 'W':
/* Ellipsis. */
break;
case '@':
{
/* Implement /GetWrapper/. */
PyObject **p = va_arg(va, PyObject **);
if (arg != NULL)
*p = arg;
/* Process the same argument next time round. */
--argnr;
--nr_args;
break;
}
case 's':
{
/* String from a Python bytes or None. */
const char **p = va_arg(va, const char **);
if (arg != NULL && parseBytes_AsString(arg, p) < 0)
{
failure.reason = WrongType;
failure.detail_obj = arg;
Py_INCREF(arg);
}
break;
}
case 'A':
{
/* String from a Python string or None. */
va_arg(va, PyObject **);
va_arg(va, const char **);
fmt++;
if (arg != NULL && check_encoded_string(arg) < 0)
{
failure.reason = WrongType;
failure.detail_obj = arg;
Py_INCREF(arg);
}
break;
}
case 'a':
{
/* Character from a Python string. */
va_arg(va, char *);
fmt++;
if (arg != NULL && check_encoded_string(arg) < 0)
{
failure.reason = WrongType;
failure.detail_obj = arg;
Py_INCREF(arg);
}
break;
}
case 'x':
#if defined(HAVE_WCHAR_H)
{
/* Wide string or None. */
wchar_t **p = va_arg(va, wchar_t **);
if (arg != NULL && parseWCharString(arg, p) < 0)
{
failure.reason = WrongType;
failure.detail_obj = arg;
Py_INCREF(arg);
}
break;
}
#else
raiseNoWChar();
failure.reason = Raised;
break;
#endif
case 'U':
{
/* Slot name or callable, return the name or callable. */
char **sname = va_arg(va, char **);
PyObject **scall = va_arg(va, PyObject **);
if (arg != NULL)
{
*sname = NULL;
*scall = NULL;
if (PyBytes_Check(arg))
{
char *s = PyBytes_AS_STRING(arg);
if (*s == '1' || *s == '2' || *s == '9')
{
*sname = s;
}
else
{
failure.reason = WrongType;
failure.detail_obj = arg;
Py_INCREF(arg);
}
}
else if (PyCallable_Check(arg))
{
*scall = arg;
}
else if (arg != Py_None)
{
failure.reason = WrongType;
failure.detail_obj = arg;
Py_INCREF(arg);
}
}
break;
}
case 'S':
{
/* Slot name, return the name. */
char **p = va_arg(va, char **);
if (arg != NULL)
{
if (PyBytes_Check(arg))
{
char *s = PyBytes_AS_STRING(arg);
if (*s == '1' || *s == '2' || *s == '9')
{
*p = s;
}
else
{
failure.reason = WrongType;
failure.detail_obj = arg;
Py_INCREF(arg);
}
}
else
{
failure.reason = WrongType;
failure.detail_obj = arg;
Py_INCREF(arg);
}
}
break;
}
case 'G':
{
/* Signal name, return the name. */
char **p = va_arg(va, char **);
if (arg != NULL)
{
if (PyBytes_Check(arg))
{
char *s = PyBytes_AS_STRING(arg);
if (*s == '2' || *s == '9')
{
*p = s;
}
else
{
failure.reason = WrongType;
failure.detail_obj = arg;
Py_INCREF(arg);
}
}
else
{
failure.reason = WrongType;
failure.detail_obj = arg;
Py_INCREF(arg);
}
}
break;
}
case 'r':
{
/* Sequence of class or mapped type instances. */
const sipTypeDef *td;
td = va_arg(va, const sipTypeDef *);
va_arg(va, void **);
va_arg(va, Py_ssize_t *);
if (arg != NULL && !canConvertFromSequence(arg, td))
{
failure.reason = WrongType;
failure.detail_obj = arg;
Py_INCREF(arg);
}
break;
}
case 'J':
{
/* Class or mapped type instance. */
char sub_fmt = *fmt++;
const sipTypeDef *td;
int flags = sub_fmt - '0';
int iflgs = 0;
td = va_arg(va, const sipTypeDef *);
va_arg(va, void **);
if (flags & FMT_AP_DEREF)
iflgs |= SIP_NOT_NONE;
if (flags & FMT_AP_TRANSFER_THIS)
va_arg(va, PyObject **);
if (flags & FMT_AP_NO_CONVERTORS)
iflgs |= SIP_NO_CONVERTORS;
else
va_arg(va, int *);
if (arg != NULL && !sip_api_can_convert_to_type(arg, td, iflgs))
{
failure.reason = WrongType;
failure.detail_obj = arg;
Py_INCREF(arg);
}
break;
}
case 'N':
{
/* Python object of given type or None. */
PyTypeObject *type = va_arg(va,PyTypeObject *);
PyObject **p = va_arg(va,PyObject **);
if (arg != NULL)
{
if (arg == Py_None || PyObject_TypeCheck(arg,type))
{
*p = arg;
}
else
{
failure.reason = WrongType;
failure.detail_obj = arg;
Py_INCREF(arg);
}
}
break;
}
case 'P':
{
/* Python object of any type with a sub-format. */
va_arg(va, PyObject **);
/* Skip the sub-format. */
++fmt;
break;
}
case 'T':
{
/* Python object of given type. */
PyTypeObject *type = va_arg(va, PyTypeObject *);
PyObject **p = va_arg(va, PyObject **);
if (arg != NULL)
{
if (PyObject_TypeCheck(arg,type))
{
*p = arg;
}
else
{
failure.reason = WrongType;
failure.detail_obj = arg;
Py_INCREF(arg);
}
}
break;
}
case 'R':
{
/* Sub-class of QObject. */
PyObject **p = va_arg(va, PyObject **);
if (arg != NULL)
{
if (isQObject(arg))
{
*p = arg;
}
else
{
failure.reason = WrongType;
failure.detail_obj = arg;
Py_INCREF(arg);
}
}
break;
}
case 'F':
{
/* Python callable object. */
PyObject **p = va_arg(va, PyObject **);
if (arg != NULL)
{
if (PyCallable_Check(arg))
{
*p = arg;
}
else
{
failure.reason = WrongType;
failure.detail_obj = arg;
Py_INCREF(arg);
}
}
break;
}
case 'H':
{
/* Python callable object or None. */
PyObject **p = va_arg(va, PyObject **);
if (arg != NULL)
{
if (arg == Py_None || PyCallable_Check(arg))
{
*p = arg;
}
else
{
failure.reason = WrongType;
failure.detail_obj = arg;
Py_INCREF(arg);
}
}
break;
}
case '!':
{
/* Python object that implements the buffer protocol. */
PyObject **p = va_arg(va, PyObject **);
if (arg != NULL)
{
if (PyObject_CheckBuffer(arg))
{
*p = arg;
}
else
{
failure.reason = WrongType;
failure.detail_obj = arg;
Py_INCREF(arg);
}
}
break;
}
case '$':
{
/*
* Python object that implements the buffer protocol or None.
*/
PyObject **p = va_arg(va, PyObject **);
if (arg != NULL)
{
if (arg == Py_None || PyObject_CheckBuffer(arg))
{
*p = arg;
}
else
{
failure.reason = WrongType;
failure.detail_obj = arg;
Py_INCREF(arg);
}
}
break;
}
case 'q':
{
/* Qt receiver to connect. */
va_arg(va, char *);
va_arg(va, void **);
va_arg(va, const char **);
if (arg != NULL && !isQObject(arg))
{
failure.reason = WrongType;
failure.detail_obj = arg;
Py_INCREF(arg);
}
break;
}
case 'Q':
{
/* Qt receiver to disconnect. */
va_arg(va, char *);
va_arg(va, void **);
va_arg(va, const char **);
if (arg != NULL && !isQObject(arg))
{
failure.reason = WrongType;
failure.detail_obj = arg;
Py_INCREF(arg);
}
break;
}
case 'g':
case 'y':
{
/* Python slot to connect. */
va_arg(va, char *);
va_arg(va, void **);
va_arg(va, const char **);
if (arg != NULL && (sipQtSupport == NULL || !PyCallable_Check(arg)))
{
failure.reason = WrongType;
failure.detail_obj = arg;
Py_INCREF(arg);
}
break;
}
case 'Y':
{
/* Python slot to disconnect. */
va_arg(va, char *);
va_arg(va, void **);
va_arg(va, const char **);
if (arg != NULL && (sipQtSupport == NULL || !PyCallable_Check(arg)))
{
failure.reason = WrongType;
failure.detail_obj = arg;
Py_INCREF(arg);
}
break;
}
case 'k':
{
/* Char array or None. */
const char **p = va_arg(va, const char **);
Py_ssize_t *szp = va_arg(va, Py_ssize_t *);
if (arg != NULL && parseBytes_AsCharArray(arg, p, szp) < 0)
{
failure.reason = WrongType;
failure.detail_obj = arg;
Py_INCREF(arg);
}
break;
}
case 'K':
#if defined(HAVE_WCHAR_H)
{
/* Wide char array or None. */
wchar_t **p = va_arg(va, wchar_t **);
Py_ssize_t *szp = va_arg(va, Py_ssize_t *);
if (arg != NULL && parseWCharArray(arg, p, szp) < 0)
{
failure.reason = WrongType;
failure.detail_obj = arg;
Py_INCREF(arg);
}
break;
}
#else
raiseNoWChar();
failure.reason = Raised;
break
#endif
case 'c':
{
/* Character from a Python bytes. */
char *p = va_arg(va, char *);
if (arg != NULL && parseBytes_AsChar(arg, p) < 0)
{
failure.reason = WrongType;
failure.detail_obj = arg;
Py_INCREF(arg);
}
break;
}
case 'w':
#if defined(HAVE_WCHAR_H)
{
/* Wide character. */
wchar_t *p = va_arg(va, wchar_t *);
if (arg != NULL && parseWChar(arg, p) < 0)
{
failure.reason = WrongType;
failure.detail_obj = arg;
Py_INCREF(arg);
}
break;
}
#else
raiseNoWChar();
failure.reason = Raised;
break
#endif
case 'b':
{
/* Bool. */
void *p = va_arg(va, void *);
if (arg != NULL)
{
int v = sip_api_convert_to_bool(arg);
if (v < 0)
{
failure.reason = WrongType;
failure.detail_obj = arg;
Py_INCREF(arg);
}
else
{
sipSetBool(p, v);
}
}
break;
}
case 'E':
{
/* Named enum or integer. */
sipTypeDef *td = va_arg(va, sipTypeDef *);
int *p = va_arg(va, int *);
if (arg != NULL)
{
int v = sip_api_convert_to_enum(arg, td);
if (PyErr_Occurred())
handle_failed_int_conversion(&failure, arg);
else
*p = v;
}
}
break;
case 'e':
{
/* Anonymous enum. */
int *p = va_arg(va, int *);
if (arg != NULL)
{
int v = long_as_nonoverflow_int(arg);
if (PyErr_Occurred())
handle_failed_int_conversion(&failure, arg);
else
*p = v;
}
}
break;
case 'i':
{
/* Integer. */
int *p = va_arg(va, int *);
if (arg != NULL)
{
int v = sip_api_long_as_int(arg);
if (PyErr_Occurred())
handle_failed_int_conversion(&failure, arg);
else
*p = v;
}
break;
}
case 'u':
{
/* Unsigned integer. */
unsigned *p = va_arg(va, unsigned *);
if (arg != NULL)
{
unsigned v = sip_api_long_as_unsigned_int(arg);
if (PyErr_Occurred())
handle_failed_int_conversion(&failure, arg);
else
*p = v;
}
break;
}
case '=':
{
/* size_t integer. */
size_t *p = va_arg(va, size_t *);
if (arg != NULL)
{
size_t v = sip_api_long_as_size_t(arg);
if (PyErr_Occurred())
handle_failed_int_conversion(&failure, arg);
else
*p = v;
}
break;
}
case 'L':
{
/* Signed char. */
signed char *p = va_arg(va, signed char *);
if (arg != NULL)
{
signed char v = sip_api_long_as_signed_char(arg);
if (PyErr_Occurred())
handle_failed_int_conversion(&failure, arg);
else
*p = v;
}
break;
}
case 'M':
{
/* Unsigned char. */
unsigned char *p = va_arg(va, unsigned char *);
if (arg != NULL)
{
unsigned char v = sip_api_long_as_unsigned_char(arg);
if (PyErr_Occurred())
handle_failed_int_conversion(&failure, arg);
else
*p = v;
}
break;
}
case 'h':
{
/* Short integer. */
signed short *p = va_arg(va, signed short *);
if (arg != NULL)
{
signed short v = sip_api_long_as_short(arg);
if (PyErr_Occurred())
handle_failed_int_conversion(&failure, arg);
else
*p = v;
}
break;
}
case 't':
{
/* Unsigned short integer. */
unsigned short *p = va_arg(va, unsigned short *);
if (arg != NULL)
{
unsigned short v = sip_api_long_as_unsigned_short(arg);
if (PyErr_Occurred())
handle_failed_int_conversion(&failure, arg);
else
*p = v;
}
break;
}
case 'l':
{
/* Long integer. */
long *p = va_arg(va, long *);
if (arg != NULL)
{
long v = sip_api_long_as_long(arg);
if (PyErr_Occurred())
handle_failed_int_conversion(&failure, arg);
else
*p = v;
}
break;
}
case 'm':
{
/* Unsigned long integer. */
unsigned long *p = va_arg(va, unsigned long *);
if (arg != NULL)
{
unsigned long v = sip_api_long_as_unsigned_long(arg);
if (PyErr_Occurred())
handle_failed_int_conversion(&failure, arg);
else
*p = v;
}
break;
}
case 'n':
{
/* Long long integer. */
#if defined(HAVE_LONG_LONG)
PY_LONG_LONG *p = va_arg(va, PY_LONG_LONG *);
#else
long *p = va_arg(va, long *);
#endif
if (arg != NULL)
{
#if defined(HAVE_LONG_LONG)
PY_LONG_LONG v = sip_api_long_as_long_long(arg);
#else
long v = sip_api_long_as_long(arg);
#endif
if (PyErr_Occurred())
handle_failed_int_conversion(&failure, arg);
else
*p = v;
}
break;
}
case 'o':
{
/* Unsigned long long integer. */
#if defined(HAVE_LONG_LONG)
unsigned PY_LONG_LONG *p = va_arg(va, unsigned PY_LONG_LONG *);
#else
unsigned long *p = va_arg(va, unsigned long *);
#endif
if (arg != NULL)
{
#if defined(HAVE_LONG_LONG)
unsigned PY_LONG_LONG v = sip_api_long_as_unsigned_long_long(arg);
#else
unsigned long v = sip_api_long_as_unsigned_long(arg);
#endif
if (PyErr_Occurred())
handle_failed_int_conversion(&failure, arg);
else
*p = v;
}
break;
}
case 'f':
{
/* Float. */
float *p = va_arg(va, float *);
if (arg != NULL)
{
double v = PyFloat_AsDouble(arg);
if (PyErr_Occurred())
{
failure.reason = WrongType;
failure.detail_obj = arg;
Py_INCREF(arg);
}
else
{
*p = (float)v;
}
}
break;
}
case 'X':
{
/* Constrained types. */
char sub_fmt = *fmt++;
if (sub_fmt == 'E')
{
/* Named enum. */
sipTypeDef *td = va_arg(va, sipTypeDef *);
int *p = va_arg(va, int *);
if (arg != NULL)
{
*p = convert_to_enum(arg, td, FALSE);
if (PyErr_Occurred())
handle_failed_int_conversion(&failure, arg);
}
}
else
{
void *p = va_arg(va, void *);
if (arg != NULL)
{
switch (sub_fmt)
{
case 'b':
{
/* Boolean. */
if (PyBool_Check(arg))
{
sipSetBool(p, (arg == Py_True));
}
else
{
failure.reason = WrongType;
failure.detail_obj = arg;
Py_INCREF(arg);
}
break;
}
case 'd':
{
/* Double float. */
if (PyFloat_Check(arg))
{
*(double *)p = PyFloat_AS_DOUBLE(arg);
}
else
{
failure.reason = WrongType;
failure.detail_obj = arg;
Py_INCREF(arg);
}
break;
}
case 'f':
{
/* Float. */
if (PyFloat_Check(arg))
{
*(float *)p = (float)PyFloat_AS_DOUBLE(arg);
}
else
{
failure.reason = WrongType;
failure.detail_obj = arg;
Py_INCREF(arg);
}
break;
}
case 'i':
{
/* Integer. */
if (PyLong_Check(arg))
{
*(int *)p = sip_api_long_as_int(arg);
if (PyErr_Occurred())
handle_failed_int_conversion(&failure,
arg);
}
else
{
failure.reason = WrongType;
failure.detail_obj = arg;
Py_INCREF(arg);
}
break;
}
}
}
}
break;
}
case 'd':
{
/* Double float. */
double *p = va_arg(va,double *);
if (arg != NULL)
{
double v = PyFloat_AsDouble(arg);
if (PyErr_Occurred())
{
failure.reason = WrongType;
failure.detail_obj = arg;
Py_INCREF(arg);
}
else
{
*p = v;
}
}
break;
}
case 'v':
{
/* Void pointer. */
void **p = va_arg(va, void **);
if (arg != NULL)
{
void *v = sip_api_convert_to_void_ptr(arg);
if (PyErr_Occurred())
{
failure.reason = WrongType;
failure.detail_obj = arg;
Py_INCREF(arg);
}
else
{
*p = v;
}
}
break;
}
case 'z':
{
/* Void pointer as a capsule. */
const char *name = va_arg(va, const char *);
void **p = va_arg(va, void **);
if (arg == Py_None)
{
*p = NULL;
}
else if (arg != NULL)
{
void *v = PyCapsule_GetPointer(arg, name);
if (PyErr_Occurred())
{
failure.reason = WrongType;
failure.detail_obj = arg;
Py_INCREF(arg);
}
else
{
*p = v;
}
}
break;
}
}
if ((failure.reason == Ok || failure.reason == Overflow) && ch == 'W')
{
/* An ellipsis matches everything and ends the parse. */
break;
}
}
/* Handle parse failures appropriately. */
if (failure.reason == Ok)
return TRUE;
if (failure.reason == Overflow)
{
/*
* We have successfully parsed the signature but one of the arguments
* has been found to overflow. Raise an appropriate exception and
* ensure we don't parse any subsequent overloads.
*/
if (failure.overflow_arg_nr >= 0)
{
PyErr_Format(PyExc_OverflowError, "argument %d overflowed: %S",
failure.overflow_arg_nr, failure.detail_obj);
}
else
{
PyErr_Format(PyExc_OverflowError, "argument '%s' overflowed: %S",
failure.overflow_arg_name, failure.detail_obj);
}
/* The overflow exception has now been raised. */
failure.reason = Raised;
}
if (failure.reason != Raised)
add_failure(parseErrp, &failure);
if (failure.reason == Raised)
{
Py_XDECREF(failure.detail_obj);
/*
* Discard any previous errors and flag that the exception we want the
* user to see has been raised.
*/
Py_XDECREF(*parseErrp);
*parseErrp = Py_None;
Py_INCREF(Py_None);
}
return FALSE;
}
/*
* Called after a failed conversion of an integer.
*/
static void handle_failed_int_conversion(sipParseFailure *pf, PyObject *arg)
{
PyObject *xtype, *xvalue, *xtb;
assert(pf->reason == Ok || pf->reason == Overflow);
PyErr_Fetch(&xtype, &xvalue, &xtb);
if (PyErr_GivenExceptionMatches(xtype, PyExc_OverflowError) && xvalue != NULL)
{
/* Remove any previous overflow exception. */
Py_XDECREF(pf->detail_obj);
pf->reason = Overflow;
pf->overflow_arg_nr = pf->arg_nr;
pf->overflow_arg_name = pf->arg_name;
pf->detail_obj = xvalue;
Py_INCREF(xvalue);
}
else
{
pf->reason = WrongType;
pf->detail_obj = arg;
Py_INCREF(arg);
}
PyErr_Restore(xtype, xvalue, xtb);
}
/*
* Second pass of the argument parse, converting the remaining ones that might
* have side effects. Return TRUE if there was no error.
*/
static int parsePass2(sipSimpleWrapper *self, int selfarg, PyObject *sipArgs,
PyObject *sipKwdArgs, const char **kwdlist, const char *fmt,
va_list va)
{
int a, ok;
Py_ssize_t nr_pos_args;
/* Handle the conversions of "self" first. */
switch (*fmt++)
{
case 'B':
{
/*
* The address of a C++ instance when calling one of its public
* methods.
*/
const sipTypeDef *td;
void **p;
*va_arg(va, PyObject **) = (PyObject *)self;
td = va_arg(va, const sipTypeDef *);
p = va_arg(va, void **);
if ((*p = sip_api_get_cpp_ptr(self, td)) == NULL)
return FALSE;
break;
}
case 'p':
{
/*
* The address of a C++ instance when calling one of its protected
* methods.
*/
const sipTypeDef *td;
void **p;
*va_arg(va, PyObject **) = (PyObject *)self;
td = va_arg(va, const sipTypeDef *);
p = va_arg(va, void **);
if ((*p = getComplexCppPtr(self, td)) == NULL)
return FALSE;
break;
}
case 'C':
va_arg(va, PyObject *);
break;
default:
--fmt;
}
ok = TRUE;
nr_pos_args = PyTuple_GET_SIZE(sipArgs);
for (a = (selfarg ? 1 : 0); *fmt != '\0' && *fmt != 'W' && ok; ++a)
{
char ch;
PyObject *arg;
/* Skip the optional character. */
if ((ch = *fmt++) == '|')
ch = *fmt++;
/* Get the next argument. */
arg = NULL;
if (a < nr_pos_args)
{
arg = PyTuple_GET_ITEM(sipArgs, a);
}
else if (sipKwdArgs != NULL)
{
const char *name = kwdlist[a - selfarg];
if (name != NULL)
arg = PyDict_GetItemString(sipKwdArgs, name);
}
/*
* Do the outstanding conversions. For most types it has already been
* done, so we are just skipping the parameters.
*/
switch (ch)
{
case '@':
/* Implement /GetWrapper/. */
va_arg(va, PyObject **);
/* Process the same argument next time round. */
--a;
break;
case 'q':
{
/* Qt receiver to connect. */
char *sig = va_arg(va, char *);
void **rx = va_arg(va, void **);
const char **slot = va_arg(va, const char **);
if (arg != NULL)
{
*rx = sip_api_convert_rx((sipWrapper *)self, sig, arg,
*slot, slot, 0);
if (*rx == NULL)
return FALSE;
}
break;
}
case 'Q':
{
/* Qt receiver to disconnect. */
char *sig = va_arg(va, char *);
void **rx = va_arg(va, void **);
const char **slot = va_arg(va, const char **);
if (arg != NULL)
*rx = sipGetRx(self, sig, arg, *slot, slot);
break;
}
case 'g':
{
/* Python single shot slot to connect. */
char *sig = va_arg(va, char *);
void **rx = va_arg(va, void **);
const char **slot = va_arg(va, const char **);
if (arg != NULL)
{
*rx = sip_api_convert_rx((sipWrapper *)self, sig, arg,
NULL, slot, SIP_SINGLE_SHOT);
if (*rx == NULL)
return FALSE;
}
break;
}
case 'y':
{
/* Python slot to connect. */
char *sig = va_arg(va, char *);
void **rx = va_arg(va, void **);
const char **slot = va_arg(va, const char **);
if (arg != NULL)
{
*rx = sip_api_convert_rx((sipWrapper *)self, sig, arg,
NULL, slot, 0);
if (*rx == NULL)
return FALSE;
}
break;
}
case 'Y':
{
/* Python slot to disconnect. */
char *sig = va_arg(va, char *);
void **rx = va_arg(va, void **);
const char **slot = va_arg(va, const char **);
if (arg != NULL)
*rx = sipGetRx(self, sig, arg, NULL, slot);
break;
}
case 'r':
{
/* Sequence of class or mapped type instances. */
const sipTypeDef *td;
void **array;
Py_ssize_t *nr_elem;
td = va_arg(va, const sipTypeDef *);
array = va_arg(va, void **);
nr_elem = va_arg(va, Py_ssize_t *);
if (arg != NULL && !convertFromSequence(arg, td, array, nr_elem))
return FALSE;
break;
}
case 'J':
{
/* Class or mapped type instance. */
int flags = *fmt++ - '0';
const sipTypeDef *td;
void **p;
int iflgs = 0;
int *state;
PyObject *xfer, **owner;
td = va_arg(va, const sipTypeDef *);
p = va_arg(va, void **);
if (flags & FMT_AP_TRANSFER)
xfer = (self ? (PyObject *)self : arg);
else if (flags & FMT_AP_TRANSFER_BACK)
xfer = Py_None;
else
xfer = NULL;
if (flags & FMT_AP_DEREF)
iflgs |= SIP_NOT_NONE;
if (flags & FMT_AP_TRANSFER_THIS)
owner = va_arg(va, PyObject **);
if (flags & FMT_AP_NO_CONVERTORS)
{
iflgs |= SIP_NO_CONVERTORS;
state = NULL;
}
else
{
state = va_arg(va, int *);
}
if (arg != NULL)
{
int iserr = FALSE;
*p = sip_api_convert_to_type(arg, td, xfer, iflgs, state,
&iserr);
if (iserr)
return FALSE;
if (flags & FMT_AP_TRANSFER_THIS && *p != NULL)
*owner = arg;
}
break;
}
case 'P':
{
/* Python object of any type with a sub-format. */
PyObject **p = va_arg(va, PyObject **);
int flags = *fmt++ - '0';
if (arg != NULL)
{
if (flags & FMT_AP_TRANSFER)
{
Py_XINCREF(arg);
}
else if (flags & FMT_AP_TRANSFER_BACK)
{
Py_XDECREF(arg);
}
*p = arg;
}
break;
}
case 'X':
{
/* Constrained types. */
if (*fmt++ == 'E')
va_arg(va, void *);
va_arg(va, void *);
break;
}
case 'A':
{
/* String from a Python string or None. */
PyObject **keep = va_arg(va, PyObject **);
const char **p = va_arg(va, const char **);
char sub_fmt = *fmt++;
if (arg != NULL)
{
PyObject *s = NULL;
switch (sub_fmt)
{
case 'A':
s = parseString_AsASCIIString(arg, p);
break;
case 'L':
s = parseString_AsLatin1String(arg, p);
break;
case '8':
s = parseString_AsUTF8String(arg, p);
break;
}
if (s == NULL)
return FALSE;
*keep = s;
}
break;
}
case 'a':
{
/* Character from a Python string. */
char *p = va_arg(va, char *);
char sub_fmt = *fmt++;
if (arg != NULL)
{
int enc;
switch (sub_fmt)
{
case 'A':
enc = parseString_AsASCIIChar(arg, p);
break;
case 'L':
enc = parseString_AsLatin1Char(arg, p);
break;
case '8':
enc = parseString_AsUTF8Char(arg, p);
break;
}
if (enc < 0)
return FALSE;
}
break;
}
/*
* Every other argument is a pointer and only differ in how many there
* are.
*/
case 'N':
case 'T':
case 'k':
case 'K':
case 'U':
case 'E':
va_arg(va, void *);
/* Drop through. */
default:
va_arg(va, void *);
}
}
/* Handle any ellipsis argument. */
if (*fmt == 'W')
{
PyObject *al;
int da = 0;
/* Create a tuple for any remaining arguments. */
if ((al = PyTuple_New(nr_pos_args - a)) == NULL)
return FALSE;
while (a < nr_pos_args)
{
PyObject *arg = PyTuple_GET_ITEM(sipArgs, a);
/* Add the remaining argument to the tuple. */
Py_INCREF(arg);
PyTuple_SET_ITEM(al, da, arg);
++a;
++da;
}
/* Return the tuple. */
*va_arg(va, PyObject **) = al;
}
return TRUE;
}
/*
* Return TRUE if an object is a QObject.
*/
static int isQObject(PyObject *obj)
{
return (sipQtSupport != NULL && PyObject_TypeCheck(obj, sipTypeAsPyTypeObject(sipQObjectType)));
}
/*
* See if a Python object is a sequence of a particular type.
*/
static int canConvertFromSequence(PyObject *seq, const sipTypeDef *td)
{
Py_ssize_t i, size = PySequence_Size(seq);
if (size < 0)
return FALSE;
for (i = 0; i < size; ++i)
{
int ok;
PyObject *val_obj;
if ((val_obj = PySequence_GetItem(seq, i)) == NULL)
return FALSE;
ok = sip_api_can_convert_to_type(val_obj, td,
SIP_NO_CONVERTORS|SIP_NOT_NONE);
Py_DECREF(val_obj);
if (!ok)
return FALSE;
}
return TRUE;
}
/*
* Convert a Python sequence to an array that has already "passed"
* canConvertFromSequence(). Return TRUE if the conversion was successful.
*/
static int convertFromSequence(PyObject *seq, const sipTypeDef *td,
void **array, Py_ssize_t *nr_elem)
{
int iserr = 0;
Py_ssize_t i, size = PySequence_Size(seq);
sipArrayFunc array_helper;
sipAssignFunc assign_helper;
void *array_mem;
/* Get the type's helpers. */
if (sipTypeIsMapped(td))
{
array_helper = ((const sipMappedTypeDef *)td)->mtd_array;
assign_helper = ((const sipMappedTypeDef *)td)->mtd_assign;
}
else
{
array_helper = ((const sipClassTypeDef *)td)->ctd_array;
assign_helper = ((const sipClassTypeDef *)td)->ctd_assign;
}
assert(array_helper != NULL);
assert(assign_helper != NULL);
/*
* Create the memory for the array of values. Note that this will leak if
* there is an error.
*/
array_mem = array_helper(size);
for (i = 0; i < size; ++i)
{
PyObject *val_obj;
void *val;
if ((val_obj = PySequence_GetItem(seq, i)) == NULL)
return FALSE;
val = sip_api_convert_to_type(val_obj, td, NULL,
SIP_NO_CONVERTORS|SIP_NOT_NONE, NULL, &iserr);
Py_DECREF(val_obj);
if (iserr)
return FALSE;
assign_helper(array_mem, i, val);
}
*array = array_mem;
*nr_elem = size;
return TRUE;
}
/*
* Convert an array of a type to a Python sequence.
*/
static PyObject *convertToSequence(void *array, Py_ssize_t nr_elem,
const sipTypeDef *td)
{
Py_ssize_t i;
PyObject *seq;
sipCopyFunc copy_helper;
/* Get the type's copy helper. */
if (sipTypeIsMapped(td))
copy_helper = ((const sipMappedTypeDef *)td)->mtd_copy;
else
copy_helper = ((const sipClassTypeDef *)td)->ctd_copy;
assert(copy_helper != NULL);
if ((seq = PyTuple_New(nr_elem)) == NULL)
return NULL;
for (i = 0; i < nr_elem; ++i)
{
void *el = copy_helper(array, i);
PyObject *el_obj = sip_api_convert_from_new_type(el, td, NULL);
if (el_obj == NULL)
{
release(el, td, 0);
Py_DECREF(seq);
}
PyTuple_SET_ITEM(seq, i, el_obj);
}
return seq;
}
/*
* Perform housekeeping after a C++ instance has been destroyed.
*/
void sip_api_instance_destroyed(sipSimpleWrapper *sw)
{
sip_api_instance_destroyed_ex(&sw);
}
/*
* Carry out actions common to all dtors.
*/
static void sip_api_instance_destroyed_ex(sipSimpleWrapper **sipSelfp)
{
/* If there is no interpreter just to the minimum and get out. */
if (sipInterpreter == NULL)
{
*sipSelfp = NULL;
return;
}
SIP_BLOCK_THREADS
sipSimpleWrapper *sipSelf = *sipSelfp;
if (sipSelf != NULL)
{
PyObject *xtype, *xvalue, *xtb;
/* We may be tidying up after an exception so preserve it. */
PyErr_Fetch(&xtype, &xvalue, &xtb);
callPyDtor(sipSelf);
PyErr_Restore(xtype, xvalue, xtb);
sipOMRemoveObject(&cppPyMap, sipSelf);
/*
* This no longer points to anything useful. Actually it might do as
* the partially destroyed C++ instance may still be trying to invoke
* reimplemented virtuals.
*/
clear_access_func(sipSelf);
/*
* If C/C++ has a reference (and therefore no parent) then remove it.
* Otherwise remove the object from any parent.
*/
if (sipCppHasRef(sipSelf))
{
sipResetCppHasRef(sipSelf);
Py_DECREF(sipSelf);
}
else if (PyObject_TypeCheck((PyObject *)sipSelf, (PyTypeObject *)&sipWrapper_Type))
{
removeFromParent((sipWrapper *)sipSelf);
}
/*
* Normally this is done in the generated dealloc function. However
* this is only called if the pointer/access function has not been
* reset (which it has). It acts as a guard to prevent any further
* invocations of reimplemented virtuals.
*/
*sipSelfp = NULL;
}
SIP_UNBLOCK_THREADS
}
/*
* Clear any access function so that sip_api_get_address() will always return a
* NULL pointer.
*/
static void clear_access_func(sipSimpleWrapper *sw)
{
if (sw->access_func != NULL)
{
sw->access_func(sw, ReleaseGuard);
sw->access_func = NULL;
}
sw->data = NULL;
}
/*
* Call self.__dtor__() if it is implemented.
*/
static void callPyDtor(sipSimpleWrapper *self)
{
sip_gilstate_t sipGILState;
char pymc = 0;
PyObject *meth;
meth = sip_api_is_py_method_12_8(&sipGILState, &pymc, &self, NULL,
"__dtor__");
if (meth != NULL)
{
PyObject *res = sip_api_call_method(0, meth, "", NULL);
Py_DECREF(meth);
/* Discard any result. */
Py_XDECREF(res);
/* Handle any error the best we can. */
if (PyErr_Occurred())
PyErr_Print();
SIP_RELEASE_GIL(sipGILState);
}
}
/*
* Add a wrapper to it's parent owner. The wrapper must not currently have a
* parent and, therefore, no siblings.
*/
static void addToParent(sipWrapper *self, sipWrapper *owner)
{
if (owner->first_child != NULL)
{
self->sibling_next = owner->first_child;
owner->first_child->sibling_prev = self;
}
owner->first_child = self;
self->parent = owner;
/*
* The owner holds a real reference so that the cyclic garbage collector
* works properly.
*/
Py_INCREF((sipSimpleWrapper *)self);
}
/*
* Remove a wrapper from it's parent if it has one.
*/
static void removeFromParent(sipWrapper *self)
{
if (self->parent != NULL)
{
if (self->parent->first_child == self)
self->parent->first_child = self->sibling_next;
if (self->sibling_next != NULL)
self->sibling_next->sibling_prev = self->sibling_prev;
if (self->sibling_prev != NULL)
self->sibling_prev->sibling_next = self->sibling_next;
self->parent = NULL;
self->sibling_next = NULL;
self->sibling_prev = NULL;
/*
* We must do this last, after all the pointers are correct, because
* this is used by the clear slot.
*/
Py_DECREF((sipSimpleWrapper *)self);
}
}
/*
* Detach and children of a parent.
*/
static void detachChildren(sipWrapper *self)
{
while (self->first_child != NULL)
removeFromParent(self->first_child);
}
/*
* Convert a sequence index. Return the index or a negative value if there was
* an error.
*/
static Py_ssize_t sip_api_convert_from_sequence_index(Py_ssize_t idx,
Py_ssize_t len)
{
/* Negative indices start from the other end. */
if (idx < 0)
idx = len + idx;
if (idx < 0 || idx >= len)
{
PyErr_Format(PyExc_IndexError, "sequence index out of range");
return -1;
}
return idx;
}
/*
* Return a tuple of the base class of a type that has no explicit super-type.
*/
static PyObject *getDefaultBase(void)
{
static PyObject *default_base = NULL;
/* Only do this once. */
if (default_base == NULL)
{
if ((default_base = PyTuple_Pack(1, (PyObject *)&sipWrapper_Type)) == NULL)
return NULL;
}
Py_INCREF(default_base);
return default_base;
}
/*
* Return a tuple of the base class of a simple type that has no explicit
* super-type.
*/
static PyObject *getDefaultSimpleBase(void)
{
static PyObject *default_simple_base = NULL;
/* Only do this once. */
if (default_simple_base == NULL)
{
if ((default_simple_base = PyTuple_Pack(1, (PyObject *)&sipSimpleWrapper_Type)) == NULL)
return NULL;
}
Py_INCREF(default_simple_base);
return default_simple_base;
}
/*
* Return the dictionary of a type.
*/
static PyObject *getScopeDict(sipTypeDef *td, PyObject *mod_dict,
sipExportedModuleDef *client)
{
/*
* Initialise the scoping type if necessary. It will always be in the
* same module if it needs doing.
*/
if (sipTypeIsMapped(td))
{
if (createMappedType(client, (sipMappedTypeDef *)td, mod_dict) < 0)
return NULL;
/* Check that the mapped type can act as a container. */
assert(sipTypeAsPyTypeObject(td) != NULL);
}
else
{
if (createClassType(client, (sipClassTypeDef *)td, mod_dict) < 0)
return NULL;
}
return (sipTypeAsPyTypeObject(td))->tp_dict;
}
/*
* Create a container type and return a borrowed reference to it.
*/
static PyObject *createContainerType(sipContainerDef *cod, sipTypeDef *td,
PyObject *bases, PyObject *metatype, PyObject *mod_dict,
PyObject *type_dict, sipExportedModuleDef *client)
{
PyObject *py_type, *scope_dict, *name, *args;
sipTypeDef *scope_td;
/* Get the dictionary to place the type in. */
if (cod->cod_scope.sc_flag)
{
scope_td = NULL;
scope_dict = mod_dict;
}
else
{
scope_td = getGeneratedType(&cod->cod_scope, client);
scope_dict = getScopeDict(scope_td, mod_dict, client);
if (scope_dict == NULL)
goto reterr;
}
/* Create an object corresponding to the type name. */
if ((name = PyUnicode_FromString(sipPyNameOfContainer(cod, td))) == NULL)
goto reterr;
/* Create the type by calling the metatype. */
if ((args = PyTuple_Pack(3, name, bases, type_dict)) == NULL)
goto relname;
/* Pass the type via the back door. */
assert(currentType == NULL);
currentType = td;
py_type = PyObject_Call(metatype, args, NULL);
currentType = NULL;
if (py_type == NULL)
goto relargs;
/* Fix __qualname__ if there is a scope. */
if (scope_td != NULL)
{
PyHeapTypeObject *ht;
PyObject *qualname = get_qualname(scope_td, name);
if (qualname == NULL)
goto reltype;
ht = (PyHeapTypeObject *)py_type;
Py_CLEAR(ht->ht_qualname);
ht->ht_qualname = qualname;
}
/* Add the type to the "parent" dictionary. */
if (PyDict_SetItem(scope_dict, name, py_type) < 0)
goto reltype;
Py_DECREF(args);
Py_DECREF(name);
return py_type;
/* Unwind on error. */
reltype:
Py_DECREF(py_type);
relargs:
Py_DECREF(args);
relname:
Py_DECREF(name);
reterr:
return NULL;
}
/*
* Create a single class type object.
*/
static int createClassType(sipExportedModuleDef *client, sipClassTypeDef *ctd,
PyObject *mod_dict)
{
PyObject *bases, *metatype, *py_type, *type_dict;
sipEncodedTypeDef *sup;
int i;
/* Handle the trivial case where we have already been initialised. */
if (ctd->ctd_base.td_module != NULL)
return 0;
/* Set this up now to gain access to the string pool. */
ctd->ctd_base.td_module = client;
/* Create the tuple of super-types. */
if ((sup = ctd->ctd_supers) == NULL)
{
if (ctd->ctd_supertype < 0)
{
bases = (sipTypeIsNamespace(&ctd->ctd_base) ? getDefaultSimpleBase() : getDefaultBase());
}
else
{
PyObject *supertype;
const char *supertype_name = sipNameFromPool(client,
ctd->ctd_supertype);
if ((supertype = findPyType(supertype_name)) == NULL)
goto reterr;
bases = PyTuple_Pack(1, supertype);
}
if (bases == NULL)
goto reterr;
}
else
{
int nrsupers = 0;
do
++nrsupers;
while (!sup++->sc_flag);
if ((bases = PyTuple_New(nrsupers)) == NULL)
goto reterr;
for (sup = ctd->ctd_supers, i = 0; i < nrsupers; ++i, ++sup)
{
PyObject *st;
sipTypeDef *sup_td = getGeneratedType(sup, client);
/*
* Initialise the super-class if necessary. It will always be in
* the same module if it needs doing.
*/
if (createClassType(client, (sipClassTypeDef *)sup_td, mod_dict) < 0)
goto relbases;
st = (PyObject *)sipTypeAsPyTypeObject(sup_td);
Py_INCREF(st);
PyTuple_SET_ITEM(bases, i, st);
/*
* Inherit any garbage collector code rather than look for it each
* time it is needed.
*/
if (ctd->ctd_traverse == NULL)
ctd->ctd_traverse = ((sipClassTypeDef *)sup_td)->ctd_traverse;
if (ctd->ctd_clear == NULL)
ctd->ctd_clear = ((sipClassTypeDef *)sup_td)->ctd_clear;
}
}
/*
* Use the explicit meta-type if there is one, otherwise use the meta-type
* of the first super-type.
*/
if (ctd->ctd_metatype >= 0)
{
const char *metatype_name = sipNameFromPool(client, ctd->ctd_metatype);
if ((metatype = findPyType(metatype_name)) == NULL)
goto relbases;
}
else
metatype = (PyObject *)Py_TYPE(PyTuple_GET_ITEM(bases, 0));
/* Create the type dictionary and populate it with any non-lazy methods. */
if ((type_dict = createTypeDict(client)) == NULL)
goto relbases;
if (sipTypeHasNonlazyMethod(&ctd->ctd_base))
{
PyMethodDef *pmd = ctd->ctd_container.cod_methods;
for (i = 0; i < ctd->ctd_container.cod_nrmethods; ++i)
{
if (isNonlazyMethod(pmd) && addMethod(type_dict, pmd) < 0)
goto reldict;
++pmd;
}
}
if ((py_type = createContainerType(&ctd->ctd_container, (sipTypeDef *)ctd, bases, metatype, mod_dict, type_dict, client)) == NULL)
goto reldict;
if (ctd->ctd_pyslots != NULL)
fix_slots((PyTypeObject *)py_type, ctd->ctd_pyslots);
/* Handle the pickle function. */
if (ctd->ctd_pickle != NULL)
{
static PyMethodDef md = {
"_pickle_type", pickle_type, METH_NOARGS, NULL
};
if (setReduce((PyTypeObject *)py_type, &md) < 0)
goto reltype;
}
/* We can now release our references. */
Py_DECREF(bases);
Py_DECREF(type_dict);
return 0;
/* Unwind after an error. */
reltype:
Py_DECREF(py_type);
reldict:
Py_DECREF(type_dict);
relbases:
Py_DECREF(bases);
reterr:
ctd->ctd_base.td_module = NULL;
return -1;
}
/*
* Create a single mapped type object.
*/
static int createMappedType(sipExportedModuleDef *client,
sipMappedTypeDef *mtd, PyObject *mod_dict)
{
PyObject *bases, *type_dict;
/* Handle the trivial case where we have already been initialised. */
if (mtd->mtd_base.td_module != NULL)
return 0;
/* Set this up now to gain access to the string pool. */
mtd->mtd_base.td_module = client;
/* Create the tuple of super-types. */
if ((bases = getDefaultBase()) == NULL)
goto reterr;
/* Create the type dictionary. */
if ((type_dict = createTypeDict(client)) == NULL)
goto relbases;
if (createContainerType(&mtd->mtd_container, (sipTypeDef *)mtd, bases, (PyObject *)&sipWrapperType_Type, mod_dict, type_dict, client) == NULL)
goto reldict;
/* We can now release our references. */
Py_DECREF(bases);
Py_DECREF(type_dict);
return 0;
/* Unwind after an error. */
reldict:
Py_DECREF(type_dict);
relbases:
Py_DECREF(bases);
reterr:
mtd->mtd_base.td_module = NULL;
return -1;
}
/*
* Return the module definition for a named module.
*/
static sipExportedModuleDef *getModule(PyObject *mname_obj)
{
PyObject *mod;
sipExportedModuleDef *em;
/* Make sure the module is imported. */
if ((mod = PyImport_Import(mname_obj)) == NULL)
return NULL;
/* Find the module definition. */
for (em = moduleList; em != NULL; em = em->em_next)
if (PyUnicode_Compare(mname_obj, em->em_nameobj) == 0)
break;
Py_DECREF(mod);
if (em == NULL)
PyErr_Format(PyExc_SystemError, "unable to find to find module: %U",
mname_obj);
return em;
}
/*
* The type unpickler.
*/
static PyObject *unpickle_type(PyObject *obj, PyObject *args)
{
PyObject *mname_obj, *init_args;
const char *tname;
sipExportedModuleDef *em;
int i;
(void)obj;
if (!PyArg_ParseTuple(args, "UsO!:_unpickle_type", &mname_obj, &tname, &PyTuple_Type, &init_args))
return NULL;
/* Get the module definition. */
if ((em = getModule(mname_obj)) == NULL)
return NULL;
/* Find the class type object. */
for (i = 0; i < em->em_nrtypes; ++i)
{
sipTypeDef *td = em->em_types[i];
if (td != NULL && !sipTypeIsStub(td) && sipTypeIsClass(td))
{
const char *pyname = sipPyNameOfContainer(
&((sipClassTypeDef *)td)->ctd_container, td);
if (strcmp(pyname, tname) == 0)
return PyObject_CallObject((PyObject *)sipTypeAsPyTypeObject(td), init_args);
}
}
PyErr_Format(PyExc_SystemError, "unable to find to find type: %s", tname);
return NULL;
}
/*
* The type pickler.
*/
static PyObject *pickle_type(PyObject *obj, PyObject *args)
{
sipExportedModuleDef *em;
(void)args;
/* Find the type definition and defining module. */
for (em = moduleList; em != NULL; em = em->em_next)
{
int i;
for (i = 0; i < em->em_nrtypes; ++i)
{
sipTypeDef *td = em->em_types[i];
if (td != NULL && !sipTypeIsStub(td) && sipTypeIsClass(td))
if (sipTypeAsPyTypeObject(td) == Py_TYPE(obj))
{
PyObject *init_args;
sipClassTypeDef *ctd = (sipClassTypeDef *)td;
const char *pyname = sipPyNameOfContainer(&ctd->ctd_container, td);
/*
* Ask the handwritten pickle code for the tuple of
* arguments that will recreate the object.
*/
init_args = ctd->ctd_pickle(sip_api_get_cpp_ptr((sipSimpleWrapper *)obj, NULL));
if (init_args == NULL)
return NULL;
if (!PyTuple_Check(init_args))
{
PyErr_Format(PyExc_TypeError,
"%%PickleCode for type %s.%s did not return a tuple",
sipNameOfModule(em), pyname);
return NULL;
}
return Py_BuildValue("O(OsN)", type_unpickler,
em->em_nameobj, pyname, init_args);
}
}
}
/* We should never get here. */
PyErr_Format(PyExc_SystemError, "attempt to pickle unknown type '%s'",
Py_TYPE(obj)->tp_name);
return NULL;
}
/*
* The enum unpickler.
*/
static PyObject *unpickle_enum(PyObject *obj, PyObject *args)
{
PyObject *mname_obj, *evalue_obj;
const char *ename;
sipExportedModuleDef *em;
int i;
(void)obj;
if (!PyArg_ParseTuple(args, "UsO:_unpickle_enum", &mname_obj, &ename, &evalue_obj))
return NULL;
/* Get the module definition. */
if ((em = getModule(mname_obj)) == NULL)
return NULL;
/* Find the enum type object. */
for (i = 0; i < em->em_nrtypes; ++i)
{
sipTypeDef *td = em->em_types[i];
if (td != NULL && !sipTypeIsStub(td) && sipTypeIsEnum(td))
if (strcmp(sipPyNameOfEnum((sipEnumTypeDef *)td), ename) == 0)
return PyObject_CallFunctionObjArgs((PyObject *)sipTypeAsPyTypeObject(td), evalue_obj, NULL);
}
PyErr_Format(PyExc_SystemError, "unable to find to find enum: %s", ename);
return NULL;
}
/*
* The enum pickler.
*/
static PyObject *pickle_enum(PyObject *obj, PyObject *args)
{
sipTypeDef *td = ((sipEnumTypeObject *)Py_TYPE(obj))->type;
(void)args;
return Py_BuildValue("O(Osi)", enum_unpickler, td->td_module->em_nameobj,
sipPyNameOfEnum((sipEnumTypeDef *)td), (int)PyLong_AS_LONG(obj));
}
/*
* Set the __reduce__method for a type.
*/
static int setReduce(PyTypeObject *type, PyMethodDef *pickler)
{
static PyObject *rstr = NULL;
PyObject *descr;
int rc;
if (objectify("__reduce__", &rstr) < 0)
return -1;
/* Create the method descripter. */
if ((descr = PyDescr_NewMethod(type, pickler)) == NULL)
return -1;
/*
* Save the method. Note that we don't use PyObject_SetAttr() as we want
* to bypass any lazy attribute loading (which may not be safe yet).
*/
rc = PyType_Type.tp_setattro((PyObject *)type, rstr, descr);
Py_DECREF(descr);
return rc;
}
/*
* Create an enum object.
*/
static int createEnum(sipExportedModuleDef *client, sipEnumTypeDef *etd,
int enum_nr, PyObject *mod_dict)
{
int rc;
PyObject *name, *dict, *enum_obj;
etd->etd_base.td_module = client;
/* Get the dictionary into which the type will be placed. */
if (etd->etd_scope < 0)
dict = mod_dict;
else if ((dict = getScopeDict(client->em_types[etd->etd_scope], mod_dict, client)) == NULL)
return -1;
/* Create an object corresponding to the type name. */
if ((name = PyUnicode_FromString(sipPyNameOfEnum(etd))) == NULL)
return -1;
/* Create the enum. */
if (sipTypeIsEnum(&etd->etd_base))
enum_obj = createUnscopedEnum(client, etd, name);
else
enum_obj = createScopedEnum(client, etd, enum_nr, name);
if (enum_obj == NULL)
{
Py_DECREF(name);
return -1;
}
/* Add the enum to the "parent" dictionary. */
rc = PyDict_SetItem(dict, name, enum_obj);
/* We can now release our remaining references. */
Py_DECREF(name);
Py_DECREF(enum_obj);
return rc;
}
/*
* Create an unscoped enum.
*/
static PyObject *createUnscopedEnum(sipExportedModuleDef *client,
sipEnumTypeDef *etd, PyObject *name)
{
static PyObject *bases = NULL;
PyObject *type_dict, *args;
sipEnumTypeObject *eto;
/* Create the base type tuple if it hasn't already been done. */
if (bases == NULL)
if ((bases = PyTuple_Pack(1, (PyObject *)&PyLong_Type)) == NULL)
return NULL;
/* Create the type dictionary. */
if ((type_dict = createTypeDict(client)) == NULL)
return NULL;
/* Create the type by calling the metatype. */
args = PyTuple_Pack(3, name, bases, type_dict);
Py_DECREF(type_dict);
if (args == NULL)
return NULL;
/* Pass the type via the back door. */
assert(currentType == NULL);
currentType = &etd->etd_base;
eto = (sipEnumTypeObject *)PyObject_Call((PyObject *)&sipEnumType_Type,
args, NULL);
currentType = NULL;
Py_DECREF(args);
if (eto == NULL)
return NULL;
if (etd->etd_pyslots != NULL)
fix_slots((PyTypeObject *)eto, etd->etd_pyslots);
/*
* If the enum has a scope then the default __qualname__ will be incorrect.
*/
if (etd->etd_scope >= 0)
{
/* Append the name of the enum to the scope's __qualname__. */
Py_CLEAR(eto->super.ht_qualname);
eto->super.ht_qualname = get_qualname(
client->em_types[etd->etd_scope], name);
if (eto->super.ht_qualname == NULL)
{
Py_DECREF((PyObject *)eto);
return NULL;
}
}
return (PyObject *)eto;
}
/*
* Create a scoped enum.
*/
static PyObject *createScopedEnum(sipExportedModuleDef *client,
sipEnumTypeDef *etd, int enum_nr, PyObject *name)
{
static PyObject *enum_type = NULL, *module_arg = NULL;
static PyObject *qualname_arg = NULL;
int i, nr_members;
sipEnumMemberDef *enm;
PyObject *members, *enum_obj, *args, *kw_args;
/* Get the enum type if we haven't done so already. */
if (enum_type == NULL)
{
if ((enum_type = import_module_attr("enum", "IntEnum")) == NULL)
goto ret_err;
}
/* Create a dict of the members. */
if ((members = PyDict_New()) == NULL)
goto ret_err;
/*
* Note that the current structures for defining scoped enums are not ideal
* as we are re-using the ones used for unscoped enums (which are designed
* to support lazy implementations).
*/
if (etd->etd_scope < 0)
{
nr_members = client->em_nrenummembers;
enm = client->em_enummembers;
}
else
{
const sipContainerDef *cod = get_container(client->em_types[etd->etd_scope]);
nr_members = cod->cod_nrenummembers;
enm = cod->cod_enummembers;
}
for (i = 0; i < nr_members; ++i)
{
if (enm->em_enum == enum_nr)
{
PyObject *val = PyLong_FromLong(enm->em_val);
if (dict_set_and_discard(members, enm->em_name, val) < 0)
goto rel_members;
}
++enm;
}
if ((args = PyTuple_Pack(2, name, members)) == NULL)
goto rel_members;
if ((kw_args = PyDict_New()) == NULL)
goto rel_args;
if (objectify("module", &module_arg) < 0)
goto rel_kw_args;
if (PyDict_SetItem(kw_args, module_arg, client->em_nameobj) < 0)
goto rel_kw_args;
/*
* If the enum has a scope then the default __qualname__ will be incorrect.
*/
if (etd->etd_scope >= 0)
{
int rc;
PyObject *qualname;
if (objectify("qualname", &qualname_arg) < 0)
goto rel_kw_args;
if ((qualname = get_qualname(client->em_types[etd->etd_scope], name)) == NULL)
goto rel_kw_args;
rc = PyDict_SetItem(kw_args, qualname_arg, qualname);
Py_DECREF(qualname);
if (rc < 0)
goto rel_kw_args;
}
if ((enum_obj = PyObject_Call(enum_type, args, kw_args)) == NULL)
goto rel_kw_args;
Py_DECREF(kw_args);
Py_DECREF(args);
Py_DECREF(members);
/* Note that it isn't actually a PyTypeObject. */
etd->etd_base.td_py_type = (PyTypeObject *)enum_obj;
return enum_obj;
/* Unwind on errors. */
rel_kw_args:
Py_DECREF(kw_args);
rel_args:
Py_DECREF(args);
rel_members:
Py_DECREF(members);
ret_err:
return NULL;
}
/*
* Create a type dictionary for dynamic type being created in a module.
*/
static PyObject *createTypeDict(sipExportedModuleDef *em)
{
static PyObject *mstr = NULL;
PyObject *dict;
if (objectify("__module__", &mstr) < 0)
return NULL;
/* Create the dictionary. */
if ((dict = PyDict_New()) == NULL)
return NULL;
/* We need to set the module name as an attribute for dynamic types. */
if (PyDict_SetItem(dict, mstr, em->em_nameobj) < 0)
{
Py_DECREF(dict);
return NULL;
}
return dict;
}
/*
* Convert an ASCII string to a Python object if it hasn't already been done.
*/
static int objectify(const char *s, PyObject **objp)
{
if (*objp == NULL)
if ((*objp = PyUnicode_FromString(s)) == NULL)
return -1;
return 0;
}
/*
* Add a set of static instances to a dictionary.
*/
static int addInstances(PyObject *dict, sipInstancesDef *id)
{
if (id->id_type != NULL && addTypeInstances(dict, id->id_type) < 0)
return -1;
if (id->id_voidp != NULL && addVoidPtrInstances(dict,id->id_voidp) < 0)
return -1;
if (id->id_char != NULL && addCharInstances(dict,id->id_char) < 0)
return -1;
if (id->id_string != NULL && addStringInstances(dict,id->id_string) < 0)
return -1;
if (id->id_int != NULL && addIntInstances(dict, id->id_int) < 0)
return -1;
if (id->id_long != NULL && addLongInstances(dict,id->id_long) < 0)
return -1;
if (id->id_ulong != NULL && addUnsignedLongInstances(dict, id->id_ulong) < 0)
return -1;
if (id->id_llong != NULL && addLongLongInstances(dict, id->id_llong) < 0)
return -1;
if (id->id_ullong != NULL && addUnsignedLongLongInstances(dict, id->id_ullong) < 0)
return -1;
if (id->id_double != NULL && addDoubleInstances(dict,id->id_double) < 0)
return -1;
return 0;
}
/*
* Get "self" from the argument tuple for a method called as
* Class.Method(self, ...) rather than self.Method(...).
*/
static int getSelfFromArgs(sipTypeDef *td, PyObject *args, int argnr,
sipSimpleWrapper **selfp)
{
PyObject *self;
/* Get self from the argument tuple. */
if (argnr >= PyTuple_GET_SIZE(args))
return FALSE;
self = PyTuple_GET_ITEM(args, argnr);
if (!PyObject_TypeCheck(self, sipTypeAsPyTypeObject(td)))
return FALSE;
*selfp = (sipSimpleWrapper *)self;
return TRUE;
}
/*
* Return non-zero if a method is non-lazy, ie. it must be added to the type
* when it is created.
*/
static int isNonlazyMethod(PyMethodDef *pmd)
{
static const char *lazy[] = {
"__getattribute__",
"__getattr__",
"__enter__",
"__exit__",
"__aenter__",
"__aexit__",
NULL
};
const char **l;
for (l = lazy; *l != NULL; ++l)
if (strcmp(pmd->ml_name, *l) == 0)
return TRUE;
return FALSE;
}
/*
* Add a method to a dictionary.
*/
static int addMethod(PyObject *dict, PyMethodDef *pmd)
{
PyObject *descr = sipMethodDescr_New(pmd);
return dict_set_and_discard(dict, pmd->ml_name, descr);
}
/*
* Populate a container's type dictionary.
*/
static int add_lazy_container_attrs(sipTypeDef *td, sipContainerDef *cod,
PyObject *dict)
{
int i;
PyMethodDef *pmd;
sipEnumMemberDef *enm;
sipVariableDef *vd;
/* Do the methods. */
for (pmd = cod->cod_methods, i = 0; i < cod->cod_nrmethods; ++i, ++pmd)
{
/* Non-lazy methods will already have been handled. */
if (!sipTypeHasNonlazyMethod(td) || !isNonlazyMethod(pmd))
{
if (addMethod(dict, pmd) < 0)
return -1;
}
}
/* Do the unscoped enum members. */
for (enm = cod->cod_enummembers, i = 0; i < cod->cod_nrenummembers; ++i, ++enm)
{
PyObject *val;
if (enm->em_enum < 0)
{
/* It's an unnamed unscoped enum. */
val = PyLong_FromLong(enm->em_val);
}
else
{
sipTypeDef *etd = td->td_module->em_types[enm->em_enum];
if (sipTypeIsScopedEnum(etd))
continue;
val = sip_api_convert_from_enum(enm->em_val, etd);
}
if (dict_set_and_discard(dict, enm->em_name, val) < 0)
return -1;
}
/* Do the variables. */
for (vd = cod->cod_variables, i = 0; i < cod->cod_nrvariables; ++i, ++vd)
{
PyObject *descr;
if (vd->vd_type == PropertyVariable)
descr = create_property(vd);
else
descr = sipVariableDescr_New(vd, td, cod);
if (dict_set_and_discard(dict, vd->vd_name, descr) < 0)
return -1;
}
return 0;
}
/*
* Create a Python property object from the SIP generated structure.
*/
static PyObject *create_property(sipVariableDef *vd)
{
PyObject *descr, *fget, *fset, *fdel, *doc;
descr = fget = fset = fdel = doc = NULL;
if ((fget = create_function(vd->vd_getter)) == NULL)
goto done;
if ((fset = create_function(vd->vd_setter)) == NULL)
goto done;
if ((fdel = create_function(vd->vd_deleter)) == NULL)
goto done;
if (vd->vd_docstring == NULL)
{
doc = Py_None;
Py_INCREF(doc);
}
else if ((doc = PyUnicode_FromString(vd->vd_docstring)) == NULL)
{
goto done;
}
descr = PyObject_CallFunctionObjArgs((PyObject *)&PyProperty_Type, fget,
fset, fdel, doc, NULL);
done:
Py_XDECREF(fget);
Py_XDECREF(fset);
Py_XDECREF(fdel);
Py_XDECREF(doc);
return descr;
}
/*
* Return a PyCFunction as an object or Py_None if there isn't one.
*/
static PyObject *create_function(PyMethodDef *ml)
{
if (ml != NULL)
return PyCFunction_New(ml, NULL);
Py_INCREF(Py_None);
return Py_None;
}
/*
* Populate a type dictionary with all lazy attributes if it hasn't already
* been done.
*/
static int add_lazy_attrs(sipTypeDef *td)
{
sipWrapperType *wt = (sipWrapperType *)sipTypeAsPyTypeObject(td);
PyObject *dict;
sipAttrGetter *ag;
/* Handle the trivial case. */
if (wt->wt_dict_complete)
return 0;
dict = ((PyTypeObject *)wt)->tp_dict;
if (sipTypeIsMapped(td))
{
if (add_lazy_container_attrs(td, &((sipMappedTypeDef *)td)->mtd_container, dict) < 0)
return -1;
}
else
{
sipClassTypeDef *nsx;
/* Search the possible linked list of namespace extenders. */
for (nsx = (sipClassTypeDef *)td; nsx != NULL; nsx = nsx->ctd_nsextender)
if (add_lazy_container_attrs((sipTypeDef *)nsx, &nsx->ctd_container, dict) < 0)
return -1;
}
/*
* Get any lazy attributes from registered getters. This must be done last
* to allow any existing attributes to be replaced.
*/
/* TODO: Deprecate this mechanism in favour of an event handler. */
for (ag = sipAttrGetters; ag != NULL; ag = ag->next)
if (ag->type == NULL || PyType_IsSubtype((PyTypeObject *)wt, ag->type))
if (ag->getter(td, dict) < 0)
return -1;
wt->wt_dict_complete = TRUE;
PyType_Modified((PyTypeObject *)wt);
return 0;
}
/*
* Populate the type dictionary and all its super-types.
*/
static int add_all_lazy_attrs(sipTypeDef *td)
{
if (td == NULL)
return 0;
if (add_lazy_attrs(td) < 0)
return -1;
if (sipTypeIsClass(td))
{
sipClassTypeDef *ctd = (sipClassTypeDef *)td;
sipEncodedTypeDef *sup;
if ((sup = ctd->ctd_supers) != NULL)
do
{
sipTypeDef *sup_td = getGeneratedType(sup, td->td_module);
if (add_all_lazy_attrs(sup_td) < 0)
return -1;
}
while (!sup++->sc_flag);
}
return 0;
}
/*
* Return the generated type structure corresponding to the given Python type
* object.
*/
static const sipTypeDef *sip_api_type_from_py_type_object(PyTypeObject *py_type)
{
if (PyObject_TypeCheck((PyObject *)py_type, &sipWrapperType_Type))
return ((sipWrapperType *)py_type)->wt_td;
if (PyObject_TypeCheck((PyObject *)py_type, &sipEnumType_Type))
return ((sipEnumTypeObject *)py_type)->type;
return NULL;
}
/*
* Return the generated type structure corresponding to the scope of the given
* type.
*/
static const sipTypeDef *sip_api_type_scope(const sipTypeDef *td)
{
if (sipTypeIsEnum(td) || sipTypeIsScopedEnum(td))
{
const sipEnumTypeDef *etd = (const sipEnumTypeDef *)td;
if (etd->etd_scope >= 0)
return td->td_module->em_types[etd->etd_scope];
}
else
{
const sipContainerDef *cod;
if (sipTypeIsMapped(td))
cod = &((const sipMappedTypeDef *)td)->mtd_container;
else
cod = &((const sipClassTypeDef *)td)->ctd_container;
if (!cod->cod_scope.sc_flag)
return getGeneratedType(&cod->cod_scope, td->td_module);
}
return NULL;
}
/*
* Return TRUE if an object can be converted to a named enum.
*/
static int sip_api_can_convert_to_enum(PyObject *obj, const sipTypeDef *td)
{
/* Remove in v5.1. */
assert(sipTypeIsEnum(td));
/* If the object is an enum then it must be the right enum. */
if (PyObject_TypeCheck((PyObject *)Py_TYPE(obj), &sipEnumType_Type))
return (PyObject_TypeCheck(obj, sipTypeAsPyTypeObject(td)));
return PyLong_Check(obj);
}
/*
* Convert a Python object implementing a named enum to an integer value.
*/
static int sip_api_convert_to_enum(PyObject *obj, const sipTypeDef *td)
{
return convert_to_enum(obj, td, TRUE);
}
/*
* Convert a Python object implementing a named enum (or, optionally, an int)
* to an integer value.
*/
static int convert_to_enum(PyObject *obj, const sipTypeDef *td, int allow_int)
{
int val;
assert(sipTypeIsEnum(td) || sipTypeIsScopedEnum(td));
if (sipTypeIsScopedEnum(td))
{
static PyObject *value = NULL;
PyObject *val_obj;
if (PyObject_IsInstance(obj, (PyObject *)sipTypeAsPyTypeObject(td)) <= 0)
{
enum_expected(obj, td);
return -1;
}
if (objectify("value", &value) < 0)
return -1;
if ((val_obj = PyObject_GetAttr(obj, value)) == NULL)
return -1;
/* This will never overflow. */
val = long_as_nonoverflow_int(val_obj);
Py_DECREF(val_obj);
}
else
{
if (PyObject_TypeCheck((PyObject *)Py_TYPE(obj), &sipEnumType_Type))
{
if (!PyObject_TypeCheck(obj, sipTypeAsPyTypeObject(td)))
{
enum_expected(obj, td);
return -1;
}
/* This will never overflow. */
val = long_as_nonoverflow_int(obj);
}
else if (allow_int && PyLong_Check(obj))
{
val = long_as_nonoverflow_int(obj);
}
else
{
enum_expected(obj, td);
return -1;
}
}
return val;
}
/*
* Raise an exception when failing to convert an enum because of its type.
*/
static void enum_expected(PyObject *obj, const sipTypeDef *td)
{
PyErr_Format(PyExc_TypeError, "a member of enum '%s' is expected not '%s'",
sipPyNameOfEnum((sipEnumTypeDef *)td), Py_TYPE(obj)->tp_name);
}
/* Convert to a C/C++ int while checking for overflow. */
static int long_as_nonoverflow_int(PyObject *val_obj)
{
int old_overflow, val;
old_overflow = sip_api_enable_overflow_checking(TRUE);
val = sip_api_long_as_int(val_obj);
sip_api_enable_overflow_checking(old_overflow);
return val;
}
/*
* Create a Python object for a member of a named enum.
*/
static PyObject *sip_api_convert_from_enum(int eval, const sipTypeDef *td)
{
assert(sipTypeIsEnum(td) || sipTypeIsScopedEnum(td));
return PyObject_CallFunction((PyObject *)sipTypeAsPyTypeObject(td), "(i)",
eval);
}
/*
* Register a getter for unknown attributes.
*/
static int sip_api_register_attribute_getter(const sipTypeDef *td,
sipAttrGetterFunc getter)
{
sipAttrGetter *ag = sip_api_malloc(sizeof (sipAttrGetter));
if (ag == NULL)
return -1;
ag->type = sipTypeAsPyTypeObject(td);
ag->getter = getter;
ag->next = sipAttrGetters;
sipAttrGetters = ag;
return 0;
}
/*
* Register a proxy resolver.
*/
static int sip_api_register_proxy_resolver(const sipTypeDef *td,
sipProxyResolverFunc resolver)
{
sipProxyResolver *pr = sip_api_malloc(sizeof (sipProxyResolver));
if (pr == NULL)
return -1;
pr->td = td;
pr->resolver = resolver;
pr->next = proxyResolvers;
proxyResolvers = pr;
return 0;
}
/*
* Report a function with invalid argument types.
*/
static void sip_api_no_function(PyObject *parseErr, const char *func,
const char *doc)
{
sip_api_no_method(parseErr, NULL, func, doc);
}
/*
* Report a method/function/signal with invalid argument types.
*/
static void sip_api_no_method(PyObject *parseErr, const char *scope,
const char *method, const char *doc)
{
const char *sep = ".";
if (scope == NULL)
scope = ++sep;
if (parseErr == NULL)
{
/*
* If we have got this far without trying a parse then there must be no
* overloads.
*/
PyErr_Format(PyExc_TypeError, "%s%s%s() is a private method", scope,
sep, method);
}
else if (PyList_Check(parseErr))
{
PyObject *exc;
/* There is an entry for each overload that was tried. */
if (PyList_GET_SIZE(parseErr) == 1)
{
PyObject *detail = detail_FromFailure(
PyList_GET_ITEM(parseErr, 0));
if (detail != NULL)
{
if (doc != NULL)
{
PyObject *doc_obj = signature_FromDocstring(doc, 0);
if (doc_obj != NULL)
{
exc = PyUnicode_FromFormat("%U: %U", doc_obj, detail);
Py_DECREF(doc_obj);
}
else
{
exc = NULL;
}
}
else
{
exc = PyUnicode_FromFormat("%s%s%s(): %U", scope, sep,
method, detail);
}
Py_DECREF(detail);
}
else
{
exc = NULL;
}
}
else
{
static const char *summary = "arguments did not match any overloaded call:";
Py_ssize_t i;
if (doc != NULL)
exc = PyUnicode_FromString(summary);
else
exc = PyUnicode_FromFormat("%s%s%s(): %s", scope, sep, method,
summary);
for (i = 0; i < PyList_GET_SIZE(parseErr); ++i)
{
PyObject *failure;
PyObject *detail = detail_FromFailure(
PyList_GET_ITEM(parseErr, i));
if (detail != NULL)
{
if (doc != NULL)
{
PyObject *doc_obj = signature_FromDocstring(doc, i);
if (doc_obj != NULL)
{
failure = PyUnicode_FromFormat("\n %U: %U",
doc_obj, detail);
Py_DECREF(doc_obj);
}
else
{
Py_XDECREF(exc);
exc = NULL;
break;
}
}
else
{
failure = PyUnicode_FromFormat("\n overload %zd: %U",
i + 1, detail);
}
Py_DECREF(detail);
PyUnicode_AppendAndDel(&exc, failure);
}
else
{
Py_XDECREF(exc);
exc = NULL;
break;
}
}
}
if (exc != NULL)
{
PyErr_SetObject(PyExc_TypeError, exc);
Py_DECREF(exc);
}
}
else
{
/*
* None is used as a marker to say that an exception has already been
* raised.
*/
assert(parseErr == Py_None);
}
Py_XDECREF(parseErr);
}
/*
* Return a string/unicode object extracted from a particular line of a
* docstring.
*/
static PyObject *signature_FromDocstring(const char *doc, Py_ssize_t line)
{
const char *eol;
Py_ssize_t size = 0;
/*
* Find the start of the line. If there is a non-default versioned
* overload that has been enabled then it won't have an entry in the
* docstring. This means that the returned signature may be incorrect.
*/
while (line-- > 0)
{
const char *next = strchr(doc, '\n');
if (next == NULL)
break;
doc = next + 1;
}
/* Find the last closing parenthesis. */
for (eol = doc; *eol != '\n' && *eol != '\0'; ++eol)
if (*eol == ')')
size = eol - doc + 1;
return PyUnicode_FromStringAndSize(doc, size);
}
/*
* Return a string/unicode object that describes the given failure.
*/
static PyObject *detail_FromFailure(PyObject *failure_obj)
{
sipParseFailure *failure;
PyObject *detail;
failure = (sipParseFailure *)PyCapsule_GetPointer(failure_obj, NULL);
switch (failure->reason)
{
case Unbound:
detail = PyUnicode_FromFormat(
"first argument of unbound method must have type '%s'",
failure->detail_str);
break;
case TooFew:
detail = PyUnicode_FromString("not enough arguments");
break;
case TooMany:
detail = PyUnicode_FromString("too many arguments");
break;
case KeywordNotString:
detail = PyUnicode_FromFormat(
"%S keyword argument name is not a string",
failure->detail_obj);
break;
case UnknownKeyword:
detail = PyUnicode_FromFormat("'%U' is not a valid keyword argument",
failure->detail_obj);
break;
case Duplicate:
detail = PyUnicode_FromFormat(
"'%U' has already been given as a positional argument",
failure->detail_obj);
break;
case WrongType:
if (failure->arg_nr >= 0)
detail = bad_type_str(failure->arg_nr, failure->detail_obj);
else
detail = PyUnicode_FromFormat(
"argument '%s' has unexpected type '%s'",
failure->arg_name, Py_TYPE(failure->detail_obj)->tp_name);
break;
case Exception:
detail = failure->detail_obj;
if (detail)
{
Py_INCREF(detail);
break;
}
/* Drop through. */
default:
detail = PyUnicode_FromString("unknown reason");
}
return detail;
}
/*
* Report an abstract method called with an unbound self.
*/
static void sip_api_abstract_method(const char *classname, const char *method)
{
PyErr_Format(PyExc_TypeError,
"%s.%s() is abstract and cannot be called as an unbound method",
classname, method);
}
/*
* Report a deprecated class or method.
*/
int sip_api_deprecated(const char *classname, const char *method)
{
char buf[100];
if (classname == NULL)
PyOS_snprintf(buf, sizeof (buf), "%s() is deprecated", method);
else if (method == NULL)
PyOS_snprintf(buf, sizeof (buf), "%s constructor is deprecated",
classname);
else
PyOS_snprintf(buf, sizeof (buf), "%s.%s() is deprecated", classname,
method);
return PyErr_WarnEx(PyExc_DeprecationWarning, buf, 1);
}
/*
* Report a bad operator argument. Only a small subset of operators need to
* be handled (those that don't return Py_NotImplemented).
*/
static void sip_api_bad_operator_arg(PyObject *self, PyObject *arg,
sipPySlotType st)
{
const char *sn = NULL;
/* Try and get the text to match a Python exception. */
switch (st)
{
case concat_slot:
case iconcat_slot:
PyErr_Format(PyExc_TypeError,
"cannot concatenate '%s' and '%s' objects",
Py_TYPE(self)->tp_name, Py_TYPE(arg)->tp_name);
break;
case repeat_slot:
sn = "*";
break;
case irepeat_slot:
sn = "*=";
break;
default:
sn = "unknown";
}
if (sn != NULL)
PyErr_Format(PyExc_TypeError,
"unsupported operand type(s) for %s: '%s' and '%s'", sn,
Py_TYPE(self)->tp_name, Py_TYPE(arg)->tp_name);
}
/*
* Report a sequence length that does not match the length of a slice.
*/
static void sip_api_bad_length_for_slice(Py_ssize_t seqlen,
Py_ssize_t slicelen)
{
PyErr_Format(PyExc_ValueError,
"attempt to assign sequence of size %zd to slice of size %zd",
seqlen, slicelen);
}
/*
* Report a Python object that cannot be converted to a particular class.
*/
static void sip_api_bad_class(const char *classname)
{
PyErr_Format(PyExc_TypeError,
"cannot convert Python object to an instance of %s", classname);
}
/*
* Report a Python member function with an unexpected result.
*/
static void sip_api_bad_catcher_result(PyObject *method)
{
PyObject *mname, *etype, *evalue, *etraceback;
/*
* Get the current exception object if there is one. Its string
* representation will be used as the detail of a new exception.
*/
PyErr_Fetch(&etype, &evalue, &etraceback);
PyErr_NormalizeException(&etype, &evalue, &etraceback);
Py_XDECREF(etraceback);
/*
* This is part of the public API so we make no assumptions about the
* method object.
*/
if (!PyMethod_Check(method) ||
PyMethod_GET_FUNCTION(method) == NULL ||
!PyFunction_Check(PyMethod_GET_FUNCTION(method)) ||
PyMethod_GET_SELF(method) == NULL)
{
PyErr_Format(PyExc_TypeError,
"invalid argument to sipBadCatcherResult()");
return;
}
mname = ((PyFunctionObject *)PyMethod_GET_FUNCTION(method))->func_name;
if (evalue != NULL)
{
PyErr_Format(etype, "invalid result from %s.%U(), %S",
Py_TYPE(PyMethod_GET_SELF(method))->tp_name, mname, evalue);
Py_DECREF(evalue);
}
else
{
PyErr_Format(PyExc_TypeError, "invalid result from %s.%U()",
Py_TYPE(PyMethod_GET_SELF(method))->tp_name, mname);
}
Py_XDECREF(etype);
}
/*
* Transfer ownership of a class instance to Python from C/C++.
*/
static void sip_api_transfer_back(PyObject *self)
{
if (self != NULL && PyObject_TypeCheck(self, (PyTypeObject *)&sipWrapper_Type))
{
sipSimpleWrapper *sw = (sipSimpleWrapper *)self;
if (sipCppHasRef(sw))
{
sipResetCppHasRef(sw);
Py_DECREF(sw);
}
else
{
removeFromParent((sipWrapper *)sw);
}
sipSetPyOwned(sw);
}
}
/*
* Break the association of a C++ owned Python object with any parent. This is
* deprecated because it is the equivalent of sip_api_transfer_to(self, NULL).
*/
static void sip_api_transfer_break(PyObject *self)
{
/* Remove in v5.1. */
if (self != NULL && PyObject_TypeCheck(self, (PyTypeObject *)&sipWrapper_Type))
{
sipSimpleWrapper *sw = (sipSimpleWrapper *)self;
if (sipCppHasRef(sw))
{
sipResetCppHasRef(sw);
Py_DECREF(sw);
}
else
{
removeFromParent((sipWrapper *)sw);
}
}
}
/*
* Transfer ownership of a class instance to C/C++ from Python.
*/
static void sip_api_transfer_to(PyObject *self, PyObject *owner)
{
/*
* There is a legitimate case where we try to transfer a PyObject that
* may not be a SIP generated class. The virtual handler code calls
* this function to keep the C/C++ instance alive when it gets rid of
* the Python object returned by the Python method. A class may have
* handwritten code that converts a regular Python type - so we can't
* assume that we can simply cast to sipWrapper.
*/
if (self != NULL && PyObject_TypeCheck(self, (PyTypeObject *)&sipWrapper_Type))
{
sipSimpleWrapper *sw = (sipSimpleWrapper *)self;
if (owner == NULL)
{
/* There is no owner. */
if (sipCppHasRef(sw))
{
sipResetCppHasRef(sw);
}
else
{
Py_INCREF(sw);
removeFromParent((sipWrapper *)sw);
sipResetPyOwned(sw);
}
Py_DECREF(sw);
}
else if (owner == Py_None)
{
/*
* The owner is a C++ instance and not a Python object (ie. there
* is no parent) so there is an explicit extra reference to keep
* this Python object alive. Note that there is no way to
* specify this from a .sip file - it is useful when embedding in
* C/C++ applications.
*/
if (!sipCppHasRef(sw))
{
Py_INCREF(sw);
removeFromParent((sipWrapper *)sw);
sipResetPyOwned(sw);
sipSetCppHasRef(sw);
}
}
else if (PyObject_TypeCheck(owner, (PyTypeObject *)&sipWrapper_Type))
{
/*
* The owner is a Python object (ie. the C++ instance that the
* Python object wraps).
*/
if (sipCppHasRef(sw))
{
sipResetCppHasRef(sw);
}
else
{
Py_INCREF(sw);
removeFromParent((sipWrapper *)sw);
sipResetPyOwned(sw);
}
addToParent((sipWrapper *)sw, (sipWrapper *)owner);
Py_DECREF(sw);
}
}
}
/*
* Add a license to a dictionary.
*/
static int addLicense(PyObject *dict,sipLicenseDef *lc)
{
int rc;
PyObject *ldict, *proxy, *o;
/* Convert the strings we use to objects if not already done. */
if (objectify("__license__", &licenseName) < 0)
return -1;
if (objectify("Licensee", &licenseeName) < 0)
return -1;
if (objectify("Type", &typeName) < 0)
return -1;
if (objectify("Timestamp", &timestampName) < 0)
return -1;
if (objectify("Signature", &signatureName) < 0)
return -1;
/* We use a dictionary to hold the license information. */
if ((ldict = PyDict_New()) == NULL)
return -1;
/* The license type is compulsory, the rest are optional. */
if (lc->lc_type == NULL)
goto deldict;
if ((o = PyUnicode_FromString(lc->lc_type)) == NULL)
goto deldict;
rc = PyDict_SetItem(ldict,typeName,o);
Py_DECREF(o);
if (rc < 0)
goto deldict;
if (lc->lc_licensee != NULL)
{
if ((o = PyUnicode_FromString(lc->lc_licensee)) == NULL)
goto deldict;
rc = PyDict_SetItem(ldict,licenseeName,o);
Py_DECREF(o);
if (rc < 0)
goto deldict;
}
if (lc->lc_timestamp != NULL)
{
if ((o = PyUnicode_FromString(lc->lc_timestamp)) == NULL)
goto deldict;
rc = PyDict_SetItem(ldict,timestampName,o);
Py_DECREF(o);
if (rc < 0)
goto deldict;
}
if (lc->lc_signature != NULL)
{
if ((o = PyUnicode_FromString(lc->lc_signature)) == NULL)
goto deldict;
rc = PyDict_SetItem(ldict,signatureName,o);
Py_DECREF(o);
if (rc < 0)
goto deldict;
}
/* Create a read-only proxy. */
if ((proxy = PyDictProxy_New(ldict)) == NULL)
goto deldict;
Py_DECREF(ldict);
rc = PyDict_SetItem(dict, licenseName, proxy);
Py_DECREF(proxy);
return rc;
deldict:
Py_DECREF(ldict);
return -1;
}
/*
* Add the void pointer instances to a dictionary.
*/
static int addVoidPtrInstances(PyObject *dict,sipVoidPtrInstanceDef *vi)
{
while (vi->vi_name != NULL)
{
PyObject *w = sip_api_convert_from_void_ptr(vi->vi_val);
if (dict_set_and_discard(dict, vi->vi_name, w) < 0)
return -1;
++vi;
}
return 0;
}
/*
* Add the char instances to a dictionary.
*/
static int addCharInstances(PyObject *dict, sipCharInstanceDef *ci)
{
while (ci->ci_name != NULL)
{
PyObject *w;
switch (ci->ci_encoding)
{
case 'A':
w = PyUnicode_DecodeASCII(&ci->ci_val, 1, NULL);
break;
case 'L':
w = PyUnicode_DecodeLatin1(&ci->ci_val, 1, NULL);
break;
case '8':
w = PyUnicode_FromStringAndSize(&ci->ci_val, 1);
break;
default:
w = PyBytes_FromStringAndSize(&ci->ci_val, 1);
}
if (dict_set_and_discard(dict, ci->ci_name, w) < 0)
return -1;
++ci;
}
return 0;
}
/*
* Add the string instances to a dictionary.
*/
static int addStringInstances(PyObject *dict, sipStringInstanceDef *si)
{
while (si->si_name != NULL)
{
PyObject *w;
switch (si->si_encoding)
{
case 'A':
w = PyUnicode_DecodeASCII(si->si_val, strlen(si->si_val), NULL);
break;
case 'L':
w = PyUnicode_DecodeLatin1(si->si_val, strlen(si->si_val), NULL);
break;
case '8':
w = PyUnicode_FromString(si->si_val);
break;
case 'w':
/* The hack for wchar_t. */
#if defined(HAVE_WCHAR_H)
w = PyUnicode_FromWideChar((const wchar_t *)si->si_val, 1);
break;
#else
raiseNoWChar();
return -1;
#endif
case 'W':
/* The hack for wchar_t*. */
#if defined(HAVE_WCHAR_H)
w = PyUnicode_FromWideChar((const wchar_t *)si->si_val,
wcslen((const wchar_t *)si->si_val));
break;
#else
raiseNoWChar();
return -1;
#endif
default:
w = PyBytes_FromString(si->si_val);
}
if (dict_set_and_discard(dict, si->si_name, w) < 0)
return -1;
++si;
}
return 0;
}
/*
* Add the int instances to a dictionary.
*/
static int addIntInstances(PyObject *dict, sipIntInstanceDef *ii)
{
while (ii->ii_name != NULL)
{
PyObject *w = PyLong_FromLong(ii->ii_val);
if (dict_set_and_discard(dict, ii->ii_name, w) < 0)
return -1;
++ii;
}
return 0;
}
/*
* Add the long instances to a dictionary.
*/
static int addLongInstances(PyObject *dict,sipLongInstanceDef *li)
{
while (li->li_name != NULL)
{
PyObject *w = PyLong_FromLong(li->li_val);
if (dict_set_and_discard(dict, li->li_name, w) < 0)
return -1;
++li;
}
return 0;
}
/*
* Add the unsigned long instances to a dictionary.
*/
static int addUnsignedLongInstances(PyObject *dict, sipUnsignedLongInstanceDef *uli)
{
while (uli->uli_name != NULL)
{
PyObject *w = PyLong_FromUnsignedLong(uli->uli_val);
if (dict_set_and_discard(dict, uli->uli_name, w) < 0)
return -1;
++uli;
}
return 0;
}
/*
* Add the long long instances to a dictionary.
*/
static int addLongLongInstances(PyObject *dict, sipLongLongInstanceDef *lli)
{
while (lli->lli_name != NULL)
{
PyObject *w;
#if defined(HAVE_LONG_LONG)
w = PyLong_FromLongLong(lli->lli_val);
#else
w = PyLong_FromLong(lli->lli_val);
#endif
if (dict_set_and_discard(dict, lli->lli_name, w) < 0)
return -1;
++lli;
}
return 0;
}
/*
* Add the unsigned long long instances to a dictionary.
*/
static int addUnsignedLongLongInstances(PyObject *dict, sipUnsignedLongLongInstanceDef *ulli)
{
while (ulli->ulli_name != NULL)
{
PyObject *w;
#if defined(HAVE_LONG_LONG)
w = PyLong_FromUnsignedLongLong(ulli->ulli_val);
#else
w = PyLong_FromUnsignedLong(ulli->ulli_val);
#endif
if (dict_set_and_discard(dict, ulli->ulli_name, w) < 0)
return -1;
++ulli;
}
return 0;
}
/*
* Add the double instances to a dictionary.
*/
static int addDoubleInstances(PyObject *dict,sipDoubleInstanceDef *di)
{
while (di->di_name != NULL)
{
PyObject *w = PyFloat_FromDouble(di->di_val);
if (dict_set_and_discard(dict, di->di_name, w) < 0)
return -1;
++di;
}
return 0;
}
/*
* Wrap a set of type instances and add them to a dictionary.
*/
static int addTypeInstances(PyObject *dict, sipTypeInstanceDef *ti)
{
while (ti->ti_name != NULL)
{
if (addSingleTypeInstance(dict, ti->ti_name, ti->ti_ptr, *ti->ti_type, ti->ti_flags) < 0)
return -1;
++ti;
}
return 0;
}
/*
* Wrap a single type instance and add it to a dictionary.
*/
static int addSingleTypeInstance(PyObject *dict, const char *name,
void *cppPtr, const sipTypeDef *td, int initflags)
{
PyObject *obj;
if (sipTypeIsEnum(td) || sipTypeIsScopedEnum(td))
{
obj = sip_api_convert_from_enum(*(int *)cppPtr, td);
}
else
{
sipConvertFromFunc cfrom;
cppPtr = resolve_proxy(td, cppPtr);
cfrom = get_from_convertor(td);
if (cfrom != NULL)
obj = cfrom(cppPtr, NULL);
else
obj = wrap_simple_instance(cppPtr, td, NULL, initflags);
}
return dict_set_and_discard(dict, name, obj);
}
/*
* Convert a type instance and add it to a dictionary.
*/
static int sip_api_add_type_instance(PyObject *dict, const char *name,
void *cppPtr, const sipTypeDef *td)
{
return addSingleTypeInstance(getDictFromObject(dict), name, cppPtr, td, 0);
}
/*
* Return the instance dictionary for an object if it is a wrapped type.
* Otherwise assume that it is a module dictionary.
*/
static PyObject *getDictFromObject(PyObject *obj)
{
if (PyObject_TypeCheck(obj, (PyTypeObject *)&sipWrapperType_Type))
obj = ((PyTypeObject *)obj)->tp_dict;
return obj;
}
/*
* Return a Python reimplementation corresponding to a C/C++ virtual function,
* if any. If one was found then the GIL is acquired. This is deprecated, use
* sip_api_is_python_method_12_8() instead.
*/
static PyObject *sip_api_is_py_method(sip_gilstate_t *gil, char *pymc,
sipSimpleWrapper *sipSelf, const char *cname, const char *mname)
{
return sip_api_is_py_method_12_8(gil, pymc, &sipSelf, cname, mname);
}
/*
* Return a Python reimplementation corresponding to a C/C++ virtual function,
* if any. If one was found then the GIL is acquired.
*/
static PyObject *sip_api_is_py_method_12_8(sip_gilstate_t *gil, char *pymc,
sipSimpleWrapper **sipSelfp, const char *cname, const char *mname)
{
sipSimpleWrapper *sipSelf;
PyObject *mname_obj, *reimp, *mro, *cls;
Py_ssize_t i;
/*
* This is the most common case (where there is no Python reimplementation)
* so we take a fast shortcut without acquiring the GIL.
*/
if (*pymc != 0)
return NULL;
/* We might still have C++ going after the interpreter has gone. */
if (sipInterpreter == NULL)
return NULL;
#ifdef WITH_THREAD
*gil = PyGILState_Ensure();
#endif
/* Only read this when we have the GIL. */
sipSelf = *sipSelfp;
/*
* It's possible that the Python object has been deleted but the underlying
* C++ instance is still working and trying to handle virtual functions.
* Alternatively, an instance has started handling virtual functions before
* its ctor has returned. In either case say there is no Python
* reimplementation.
*/
if (sipSelf != NULL)
sipSelf = deref_mixin(sipSelf);
if (sipSelf == NULL)
goto release_gil;
/*
* It's possible that the object's type's tp_mro is NULL. A possible
* circumstance is when a type has been created dynamically and the only
* reference to it is the single instance of the type which is in the
* process of being garbage collected.
*/
cls = (PyObject *)Py_TYPE(sipSelf);
mro = ((PyTypeObject *)cls)->tp_mro;
if (mro == NULL)
goto release_gil;
/* Get any reimplementation. */
if ((mname_obj = PyUnicode_FromString(mname)) == NULL)
goto release_gil;
/*
* We don't use PyObject_GetAttr() because that might find the generated
* C function before a reimplementation defined in a mixin (ie. later in
* the MRO). However that means we must explicitly check that the class
* hierarchy is fully initialised.
*/
if (add_all_lazy_attrs(((sipWrapperType *)Py_TYPE(sipSelf))->wt_td) < 0)
{
Py_DECREF(mname_obj);
goto release_gil;
}
if (sipSelf->dict != NULL)
{
/* Check the instance dictionary in case it has been monkey patched. */
if ((reimp = PyDict_GetItem(sipSelf->dict, mname_obj)) != NULL && PyCallable_Check(reimp))
{
Py_DECREF(mname_obj);
Py_INCREF(reimp);
return reimp;
}
}
assert(PyTuple_Check(mro));
reimp = NULL;
for (i = 0; i < PyTuple_GET_SIZE(mro); ++i)
{
PyObject *cls_dict, *cls_attr;
cls = PyTuple_GET_ITEM(mro, i);
cls_dict = ((PyTypeObject *)cls)->tp_dict;
/*
* Check any possible reimplementation is not the wrapped C++ method or
* a default special method implementation.
*/
if (cls_dict != NULL && (cls_attr = PyDict_GetItem(cls_dict, mname_obj)) != NULL && Py_TYPE(cls_attr) != &sipMethodDescr_Type && Py_TYPE(cls_attr) != &PyWrapperDescr_Type)
{
reimp = cls_attr;
break;
}
}
Py_DECREF(mname_obj);
if (reimp != NULL)
{
/*
* Emulate the behaviour of a descriptor to make sure we return a bound
* method.
*/
if (PyMethod_Check(reimp))
{
/* It's already a method but make sure it is bound. */
if (PyMethod_GET_SELF(reimp) != NULL)
Py_INCREF(reimp);
else
reimp = PyMethod_New(PyMethod_GET_FUNCTION(reimp),
(PyObject *)sipSelf);
}
else if (PyFunction_Check(reimp))
{
reimp = PyMethod_New(reimp, (PyObject *)sipSelf);
}
else if (Py_TYPE(reimp)->tp_descr_get)
{
/* It is a descriptor, so assume it will do the right thing. */
reimp = Py_TYPE(reimp)->tp_descr_get(reimp, (PyObject *)sipSelf,
cls);
}
else
{
/*
* We don't know what it is so just return and assume that an
* appropriate exception will be raised later on.
*/
Py_INCREF(reimp);
}
}
else
{
/* Use the fast track in future. */
*pymc = 1;
if (cname != NULL)
{
/* Note that this will only be raised once per method. */
PyErr_Format(PyExc_NotImplementedError,
"%s.%s() is abstract and must be overridden", cname,
mname);
PyErr_Print();
}
#ifdef WITH_THREAD
PyGILState_Release(*gil);
#endif
}
return reimp;
release_gil:
#ifdef WITH_THREAD
PyGILState_Release(*gil);
#endif
return NULL;
}
/*
* Convert a C/C++ pointer to the object that wraps it.
*/
static PyObject *sip_api_get_pyobject(void *cppPtr, const sipTypeDef *td)
{
return (PyObject *)sipOMFindObject(&cppPyMap, cppPtr, td);
}
/*
* The default access function.
*/
void *sip_api_get_address(sipSimpleWrapper *w)
{
return (w->access_func != NULL) ? w->access_func(w, GuardedPointer) : w->data;
}
/*
* The access function for handwritten access functions.
*/
static void *explicit_access_func(sipSimpleWrapper *sw, AccessFuncOp op)
{
typedef void *(*explicitAccessFunc)(void);
if (op == ReleaseGuard)
return NULL;
return ((explicitAccessFunc)(sw->data))();
}
/*
* The access function for indirect access.
*/
static void *indirect_access_func(sipSimpleWrapper *sw, AccessFuncOp op)
{
void *addr;
switch (op)
{
case UnguardedPointer:
addr = sw->data;
break;
case GuardedPointer:
addr = *((void **)sw->data);
break;
default:
addr = NULL;
}
return addr;
}
/*
* Get the C/C++ pointer for a complex object. Note that not casting the C++
* pointer is a bug. However this would only ever be called by PyQt3 signal
* emitter code and PyQt doesn't contain anything that multiply inherits from
* QObject.
*/
static void *sip_api_get_complex_cpp_ptr(sipSimpleWrapper *sw)
{
return getComplexCppPtr(sw, NULL);
}
/*
* Get the C/C++ pointer for a complex object and optionally cast it to the
* required type.
*/
static void *getComplexCppPtr(sipSimpleWrapper *sw, const sipTypeDef *td)
{
if (!sipIsDerived(sw))
{
PyErr_SetString(PyExc_RuntimeError,
"no access to protected functions or signals for objects not created from Python");
return NULL;
}
return sip_api_get_cpp_ptr(sw, td);
}
/*
* Get the C/C++ pointer from a wrapper and optionally cast it to the required
* type.
*/
void *sip_api_get_cpp_ptr(sipSimpleWrapper *sw, const sipTypeDef *td)
{
void *ptr = sip_api_get_address(sw);
if (checkPointer(ptr, sw) < 0)
return NULL;
if (td != NULL)
{
if (PyObject_TypeCheck((PyObject *)sw, sipTypeAsPyTypeObject(td)))
ptr = cast_cpp_ptr(ptr, Py_TYPE(sw), td);
else
ptr = NULL;
if (ptr == NULL)
PyErr_Format(PyExc_TypeError, "could not convert '%s' to '%s'",
Py_TYPE(sw)->tp_name,
sipPyNameOfContainer(&((const sipClassTypeDef *)td)->ctd_container, td));
}
return ptr;
}
/*
* Cast a C/C++ pointer from a source type to a destination type.
*/
static void *cast_cpp_ptr(void *ptr, PyTypeObject *src_type,
const sipTypeDef *dst_type)
{
sipCastFunc cast = ((const sipClassTypeDef *)((sipWrapperType *)src_type)->wt_td)->ctd_cast;
/* C structures and base classes don't have cast functions. */
if (cast != NULL)
ptr = (*cast)(ptr, dst_type);
return ptr;
}
/*
* Check that a pointer is non-NULL.
*/
static int checkPointer(void *ptr, sipSimpleWrapper *sw)
{
if (ptr == NULL)
{
PyErr_Format(PyExc_RuntimeError, (sipWasCreated(sw) ?
"wrapped C/C++ object of type %s has been deleted" :
"super-class __init__() of type %s was never called"),
Py_TYPE(sw)->tp_name);
return -1;
}
return 0;
}
/*
* Keep an extra reference to an object.
*/
static void sip_api_keep_reference(PyObject *self, int key, PyObject *obj)
{
PyObject *dict, *key_obj;
/*
* If there isn't a "self" to keep the extra reference for later garbage
* collection then just take a reference and let it leak.
*/
if (self == NULL)
{
Py_XINCREF(obj);
return;
}
/* Create the extra references dictionary if needed. */
if ((dict = ((sipSimpleWrapper *)self)->extra_refs) == NULL)
{
if ((dict = PyDict_New()) == NULL)
return;
((sipSimpleWrapper *)self)->extra_refs = dict;
}
if ((key_obj = PyLong_FromLong(key)) != NULL)
{
/* This can happen if the argument was optional. */
if (obj == NULL)
obj = Py_None;
PyDict_SetItem(dict, key_obj, obj);
Py_DECREF(key_obj);
}
}
/*
* Get an object that has an extra reference.
*/
static PyObject *sip_api_get_reference(PyObject *self, int key)
{
PyObject *dict, *key_obj, *obj;
/* Get the extra references dictionary if there is one. */
if ((dict = ((sipSimpleWrapper *)self)->extra_refs) == NULL)
return NULL;
if ((key_obj = PyLong_FromLong(key)) == NULL)
return NULL;
obj = PyDict_GetItem(dict, key_obj);
Py_DECREF(key_obj);
Py_XINCREF(obj);
return obj;
}
/*
* Return TRUE if an object is owned by Python. Note that this isn't
* implemented as a macro in sip.h because the position of the sw_flags field
* is dependent on the version of Python.
*/
static int sip_api_is_owned_by_python(sipSimpleWrapper *sw)
{
return sipIsPyOwned(sw);
}
/*
* Return TRUE if the type of a C++ instance is a derived class. Note that
* this isn't implemented as a macro in sip.h because the position of the
* sw_flags field is dependent on the version of Python.
*/
static int sip_api_is_derived_class(sipSimpleWrapper *sw)
{
return sipIsDerived(sw);
}
/*
* Get the user defined object from a wrapped object. Note that this isn't
* implemented as a macro in sip.h because the position of the user field is
* dependent on the version of Python.
*/
static PyObject *sip_api_get_user_object(const sipSimpleWrapper *sw)
{
return sw->user;
}
/*
* Set the user defined object in a wrapped object. Note that this isn't
* implemented as a macro in sip.h because the position of the user field is
* dependent on the version of Python.
*/
static void sip_api_set_user_object(sipSimpleWrapper *sw, PyObject *user)
{
sw->user = user;
}
/*
* Check to see if a Python object can be converted to a type.
*/
static int sip_api_can_convert_to_type(PyObject *pyObj, const sipTypeDef *td,
int flags)
{
int ok;
assert(td == NULL || sipTypeIsClass(td) || sipTypeIsMapped(td));
if (td == NULL)
{
/*
* The type must be /External/ and the module that contains the
* implementation hasn't been imported.
*/
ok = FALSE;
}
else if (pyObj == Py_None)
{
/* If the type explicitly handles None then ignore the flags. */
if (sipTypeAllowNone(td))
ok = TRUE;
else
ok = ((flags & SIP_NOT_NONE) == 0);
}
else
{
sipConvertToFunc cto;
if (sipTypeIsClass(td))
{
cto = ((const sipClassTypeDef *)td)->ctd_cto;
if (cto == NULL || (flags & SIP_NO_CONVERTORS) != 0)
ok = PyObject_TypeCheck(pyObj, sipTypeAsPyTypeObject(td));
else
ok = cto(pyObj, NULL, NULL, NULL);
}
else
{
cto = ((const sipMappedTypeDef *)td)->mtd_cto;
ok = cto(pyObj, NULL, NULL, NULL);
}
}
return ok;
}
/*
* Convert a Python object to a C/C++ pointer, assuming a previous call to
* sip_api_can_convert_to_type() has been successful. Allow ownership to be
* transferred and any type converters to be disabled.
*/
static void *sip_api_convert_to_type(PyObject *pyObj, const sipTypeDef *td,
PyObject *transferObj, int flags, int *statep, int *iserrp)
{
void *cpp = NULL;
int state = 0;
assert(sipTypeIsClass(td) || sipTypeIsMapped(td));
/* Don't convert if there has already been an error. */
if (!*iserrp)
{
/* Do the conversion. */
if (pyObj == Py_None && !sipTypeAllowNone(td))
cpp = NULL;
else
{
sipConvertToFunc cto;
if (sipTypeIsClass(td))
{
cto = ((const sipClassTypeDef *)td)->ctd_cto;
if (cto == NULL || (flags & SIP_NO_CONVERTORS) != 0)
{
if ((cpp = sip_api_get_cpp_ptr((sipSimpleWrapper *)pyObj, td)) == NULL)
*iserrp = TRUE;
else if (transferObj != NULL)
{
if (transferObj == Py_None)
sip_api_transfer_back(pyObj);
else
sip_api_transfer_to(pyObj, transferObj);
}
}
else
{
state = cto(pyObj, &cpp, iserrp, transferObj);
}
}
else
{
cto = ((const sipMappedTypeDef *)td)->mtd_cto;
state = cto(pyObj, &cpp, iserrp, transferObj);
}
}
}
if (statep != NULL)
*statep = state;
return cpp;
}
/*
* Convert a Python object to a C/C++ pointer and raise an exception if it
* can't be done.
*/
void *sip_api_force_convert_to_type(PyObject *pyObj, const sipTypeDef *td,
PyObject *transferObj, int flags, int *statep, int *iserrp)
{
/* Don't even try if there has already been an error. */
if (*iserrp)
return NULL;
/* See if the object's type can be converted. */
if (!sip_api_can_convert_to_type(pyObj, td, flags))
{
if (sipTypeIsMapped(td))
PyErr_Format(PyExc_TypeError,
"%s cannot be converted to a C/C++ %s in this context",
Py_TYPE(pyObj)->tp_name, sipTypeName(td));
else
PyErr_Format(PyExc_TypeError,
"%s cannot be converted to %s.%s in this context",
Py_TYPE(pyObj)->tp_name, sipNameOfModule(td->td_module),
sipPyNameOfContainer(&((const sipClassTypeDef *)td)->ctd_container, td));
if (statep != NULL)
*statep = 0;
*iserrp = TRUE;
return NULL;
}
/* Do the conversion. */
return sip_api_convert_to_type(pyObj, td, transferObj, flags, statep,
iserrp);
}
/*
* Release a possibly temporary C/C++ instance created by a type converter.
*/
static void sip_api_release_type(void *cpp, const sipTypeDef *td, int state)
{
/* See if there is something to release. */
if (state & SIP_TEMPORARY)
release(cpp, td, state);
}
/*
* Release an instance.
*/
static void release(void *addr, const sipTypeDef *td, int state)
{
sipReleaseFunc rel;
if (sipTypeIsClass(td))
{
rel = ((const sipClassTypeDef *)td)->ctd_release;
/*
* If there is no release function then it must be a C structure and we
* can just free it.
*/
if (rel == NULL)
sip_api_free(addr);
}
else if (sipTypeIsMapped(td))
rel = ((const sipMappedTypeDef *)td)->mtd_release;
else
rel = NULL;
if (rel != NULL)
rel(addr, state);
}
/*
* Convert a C/C++ instance to a Python instance.
*/
PyObject *sip_api_convert_from_type(void *cpp, const sipTypeDef *td,
PyObject *transferObj)
{
PyObject *py;
sipConvertFromFunc cfrom;
assert(sipTypeIsClass(td) || sipTypeIsMapped(td));
/* Handle None. */
if (cpp == NULL)
{
Py_INCREF(Py_None);
return Py_None;
}
cpp = resolve_proxy(td, cpp);
cfrom = get_from_convertor(td);
if (cfrom != NULL)
return cfrom(cpp, transferObj);
/*
* See if we have already wrapped it. Invoking sub-class code can be
* expensive so we check the cache first, even though the sub-class code
* might perform a down-cast.
*/
if ((py = sip_api_get_pyobject(cpp, td)) == NULL && sipTypeHasSCC(td))
{
void *orig_cpp = cpp;
const sipTypeDef *orig_td = td;
/* Apply the sub-class converter. */
td = convertSubClass(td, &cpp);
/*
* If the sub-class converter has done something then check the cache
* again using the modified values.
*/
if (cpp != orig_cpp || td != orig_td)
py = sip_api_get_pyobject(cpp, td);
}
if (py != NULL)
Py_INCREF(py);
else if ((py = wrap_simple_instance(cpp, td, NULL, SIP_SHARE_MAP)) == NULL)
return NULL;
/* Handle any ownership transfer. */
if (transferObj != NULL)
{
if (transferObj == Py_None)
sip_api_transfer_back(py);
else
sip_api_transfer_to(py, transferObj);
}
return py;
}
/*
* Convert a new C/C++ instance to a Python instance.
*/
static PyObject *sip_api_convert_from_new_type(void *cpp, const sipTypeDef *td,
PyObject *transferObj)
{
sipWrapper *owner;
sipConvertFromFunc cfrom;
/* Handle None. */
if (cpp == NULL)
{
Py_INCREF(Py_None);
return Py_None;
}
cpp = resolve_proxy(td, cpp);
cfrom = get_from_convertor(td);
if (cfrom != NULL)
{
PyObject *res = cfrom(cpp, transferObj);
if (res != NULL)
{
/*
* We no longer need the C/C++ instance so we release it (unless
* its ownership is transferred). This means this call is
* semantically equivalent to the case where we are wrapping a
* class.
*/
if (transferObj == NULL || transferObj == Py_None)
release(cpp, td, 0);
}
return res;
}
/* Apply any sub-class converter. */
if (sipTypeHasSCC(td))
td = convertSubClass(td, &cpp);
/* Handle any ownership transfer. */
if (transferObj == NULL || transferObj == Py_None)
owner = NULL;
else
owner = (sipWrapper *)transferObj;
return wrap_simple_instance(cpp, td, owner,
(owner == NULL ? SIP_PY_OWNED : 0));
}
/*
* Implement the normal transfer policy for the result of %ConvertToTypeCode,
* ie. it is temporary unless it is being transferred from Python.
*/
int sip_api_get_state(PyObject *transferObj)
{
return (transferObj == NULL || transferObj == Py_None) ? SIP_TEMPORARY : 0;
}
/*
* This is set by sip_api_find_type() before calling bsearch() on the types
* table for the module. This is a hack that works around the problem of
* unresolved externally defined types.
*/
static sipExportedModuleDef *module_searched;
/*
* The bsearch() helper function for searching the types table.
*/
static int compareTypeDef(const void *key, const void *el)
{
const char *s1 = (const char *)key;
const char *s2 = NULL;
const sipTypeDef *td;
char ch1, ch2;
/* Allow for unresolved externally defined types. */
td = *(const sipTypeDef **)el;
if (td != NULL)
{
s2 = sipTypeName(td);
}
else
{
sipExternalTypeDef *etd = module_searched->em_external;
assert(etd != NULL);
/* Find which external type it is. */
while (etd->et_nr >= 0)
{
const void *tdp = &module_searched->em_types[etd->et_nr];
if (tdp == el)
{
s2 = etd->et_name;
break;
}
++etd;
}
assert(s2 != NULL);
}
/*
* Compare while ignoring spaces so that we don't impose a rigorous naming
* standard. This only really affects template-based mapped types.
*/
do
{
while ((ch1 = *s1++) == ' ')
;
while ((ch2 = *s2++) == ' ')
;
/* We might be looking for a pointer or a reference. */
if ((ch1 == '*' || ch1 == '&' || ch1 == '\0') && ch2 == '\0')
return 0;
}
while (ch1 == ch2);
return (ch1 < ch2 ? -1 : 1);
}
/*
* Return the type structure for a particular type.
*/
static const sipTypeDef *sip_api_find_type(const char *type)
{
sipExportedModuleDef *em;
for (em = moduleList; em != NULL; em = em->em_next)
{
sipTypeDef **tdp;
/* The backdoor to the comparison helper. */
module_searched = em;
tdp = (sipTypeDef **)bsearch((const void *)type,
(const void *)em->em_types, em->em_nrtypes,
sizeof (sipTypeDef *), compareTypeDef);
if (tdp != NULL)
{
/*
* Note that this will be NULL for unresolved externally defined
* types.
*/
return *tdp;
}
}
return NULL;
}
/*
* Return the mapped type structure for a particular mapped type. This is
* deprecated.
*/
static const sipMappedType *sip_api_find_mapped_type(const char *type)
{
/* Remove in v5.1. */
const sipTypeDef *td = sip_api_find_type(type);
if (td != NULL && sipTypeIsMapped(td))
return (const sipMappedType *)td;
return NULL;
}
/*
* Return the type structure for a particular class. This is deprecated.
*/
static sipWrapperType *sip_api_find_class(const char *type)
{
/* Remove in v5.1. */
const sipTypeDef *td = sip_api_find_type(type);
if (td != NULL && sipTypeIsClass(td))
return (sipWrapperType *)sipTypeAsPyTypeObject(td);
return NULL;
}
/*
* Return the type structure for a particular named unscoped enum. This is
* deprecated.
*/
static PyTypeObject *sip_api_find_named_enum(const char *type)
{
/* Remove in v5.1. */
const sipTypeDef *td = sip_api_find_type(type);
if (td != NULL && sipTypeIsEnum(td))
return sipTypeAsPyTypeObject(td);
return NULL;
}
/*
* Save the components of a Python method.
*/
void sipSaveMethod(sipPyMethod *pm, PyObject *meth)
{
pm->mfunc = PyMethod_GET_FUNCTION(meth);
pm->mself = PyMethod_GET_SELF(meth);
}
/*
* Call a hook.
*/
static void sip_api_call_hook(const char *hookname)
{
PyObject *dictofmods, *mod, *dict, *hook, *res;
/* Get the dictionary of modules. */
if ((dictofmods = PyImport_GetModuleDict()) == NULL)
return;
/* Get the builtins module. */
if ((mod = PyDict_GetItemString(dictofmods, "builtins")) == NULL)
return;
/* Get it's dictionary. */
if ((dict = PyModule_GetDict(mod)) == NULL)
return;
/* Get the function hook. */
if ((hook = PyDict_GetItemString(dict, hookname)) == NULL)
return;
/* Call the hook and discard any result. */
res = PyObject_Call(hook, empty_tuple, NULL);
Py_XDECREF(res);
}
/*
* Call any sub-class converters for a given type returning a pointer to the
* sub-type object, and possibly modifying the C++ address (in the case of
* multiple inheritance).
*/
static const sipTypeDef *convertSubClass(const sipTypeDef *td, void **cppPtr)
{
/* Handle the trivial case. */
if (*cppPtr == NULL)
return NULL;
/* Try the conversions until told to stop. */
while (convertPass(&td, cppPtr))
;
return td;
}
/*
* Do a single pass through the available converters.
*/
static int convertPass(const sipTypeDef **tdp, void **cppPtr)
{
PyTypeObject *py_type = sipTypeAsPyTypeObject(*tdp);
sipExportedModuleDef *em;
/*
* Note that this code depends on the fact that a module appears in the
* list of modules before any module it imports, ie. sub-class converters
* will be invoked for more specific types first.
*/
for (em = moduleList; em != NULL; em = em->em_next)
{
sipSubClassConvertorDef *scc;
if ((scc = em->em_convertors) == NULL)
continue;
while (scc->scc_convertor != NULL)
{
PyTypeObject *base_type = sipTypeAsPyTypeObject(scc->scc_basetype);
/*
* The base type is the "root" class that may have a number of
* converters each handling a "branch" of the derived tree of
* classes. The "root" normally implements the base function that
* provides the RTTI used by the converters and is re-implemented
* by derived classes. We therefore see if the target type is a
* sub-class of the root, ie. see if the converter might be able to
* convert the target type to something more specific.
*/
if (PyType_IsSubtype(py_type, base_type))
{
void *ptr;
const sipTypeDef *sub_td;
ptr = cast_cpp_ptr(*cppPtr, py_type, scc->scc_basetype);
if ((sub_td = (*scc->scc_convertor)(&ptr)) != NULL)
{
PyTypeObject *sub_type = sipTypeAsPyTypeObject(sub_td);
/*
* We are only interested in types that are not
* super-classes of the target. This happens either
* because it is in an earlier converter than the one that
* handles the type or it is in a later converter that
* handles a different branch of the hierarchy. Either
* way, the ordering of the modules ensures that there will
* be no more than one and that it will be the right one.
*/
if (!PyType_IsSubtype(py_type, sub_type))
{
*tdp = sub_td;
*cppPtr = ptr;
/*
* Finally we allow the converter to return a type that
* is apparently unrelated to the current converter.
* This causes the whole process to be restarted with
* the new values. The use case is PyQt's QLayoutItem.
*/
return !PyType_IsSubtype(sub_type, base_type);
}
}
}
++scc;
}
}
/*
* We haven't found the exact type, so return the most specific type that
* it must be. This can happen legitimately if the wrapped library is
* returning an internal class that is down-cast to a more generic class.
* Also we want this function to be safe when a class doesn't have any
* converters.
*/
return FALSE;
}
/*
* The bsearch() helper function for searching a sorted string map table.
*/
static int compareStringMapEntry(const void *key,const void *el)
{
return strcmp((const char *)key,((const sipStringTypeClassMap *)el)->typeString);
}
/*
* A convenience function for %ConvertToSubClassCode for types represented as a
* string. Returns the Python class object or NULL if the type wasn't
* recognised. This is deprecated.
*/
static sipWrapperType *sip_api_map_string_to_class(const char *typeString,
const sipStringTypeClassMap *map, int maplen)
{
/* Remove in v5.1. */
sipStringTypeClassMap *me;
me = (sipStringTypeClassMap *)bsearch((const void *)typeString,
(const void *)map,maplen,
sizeof (sipStringTypeClassMap),
compareStringMapEntry);
return ((me != NULL) ? *me->pyType : NULL);
}
/*
* The bsearch() helper function for searching a sorted integer map table.
*/
static int compareIntMapEntry(const void *keyp,const void *el)
{
int key = *(int *)keyp;
if (key > ((const sipIntTypeClassMap *)el)->typeInt)
return 1;
if (key < ((const sipIntTypeClassMap *)el)->typeInt)
return -1;
return 0;
}
/*
* A convenience function for %ConvertToSubClassCode for types represented as
* an integer. Returns the Python class object or NULL if the type wasn't
* recognised. This is deprecated.
*/
static sipWrapperType *sip_api_map_int_to_class(int typeInt,
const sipIntTypeClassMap *map, int maplen)
{
/* Remove in v5.1. */
sipIntTypeClassMap *me;
me = (sipIntTypeClassMap *)bsearch((const void *)&typeInt,
(const void *)map,maplen,
sizeof (sipIntTypeClassMap),
compareIntMapEntry);
return ((me != NULL) ? *me->pyType : NULL);
}
/*
* Raise an unknown exception. Make no assumptions about the GIL.
*/
static void sip_api_raise_unknown_exception(void)
{
static PyObject *mobj = NULL;
SIP_BLOCK_THREADS
objectify("unknown", &mobj);
PyErr_SetObject(PyExc_Exception, mobj);
SIP_UNBLOCK_THREADS
}
/*
* Raise an exception implemented as a type. Make no assumptions about the
* GIL.
*/
static void sip_api_raise_type_exception(const sipTypeDef *td, void *ptr)
{
PyObject *self;
assert(sipTypeIsClass(td));
SIP_BLOCK_THREADS
self = wrap_simple_instance(ptr, td, NULL, SIP_PY_OWNED);
PyErr_SetObject((PyObject *)sipTypeAsPyTypeObject(td), self);
Py_XDECREF(self);
SIP_UNBLOCK_THREADS
}
/*
* Return the generated type structure of an encoded type.
*/
static sipTypeDef *getGeneratedType(const sipEncodedTypeDef *enc,
sipExportedModuleDef *em)
{
if (enc->sc_module == 255)
return em->em_types[enc->sc_type];
return em->em_imports[enc->sc_module].im_imported_types[enc->sc_type].it_td;
}
/*
* Return the generated class type structure of a class's super-class.
*/
sipClassTypeDef *sipGetGeneratedClassType(const sipEncodedTypeDef *enc,
const sipClassTypeDef *ctd)
{
return (sipClassTypeDef *)getGeneratedType(enc, ctd->ctd_base.td_module);
}
/*
* Find a particular slot function for a type.
*/
static void *findSlot(PyObject *self, sipPySlotType st)
{
void *slot;
PyTypeObject *py_type = Py_TYPE(self);
/* See if it is a wrapper. */
if (PyObject_TypeCheck((PyObject *)py_type, &sipWrapperType_Type))
{
const sipClassTypeDef *ctd;
ctd = (sipClassTypeDef *)((sipWrapperType *)(py_type))->wt_td;
slot = findSlotInClass(ctd, st);
}
else
{
sipEnumTypeDef *etd;
/* If it is not a wrapper then it must be an enum. */
assert(PyObject_TypeCheck((PyObject *)py_type, &sipEnumType_Type));
etd = (sipEnumTypeDef *)((sipEnumTypeObject *)(py_type))->type;
assert(etd->etd_pyslots != NULL);
slot = findSlotInSlotList(etd->etd_pyslots, st);
}
return slot;
}
/*
* Find a particular slot function in a class hierarchy.
*/
static void *findSlotInClass(const sipClassTypeDef *ctd, sipPySlotType st)
{
void *slot;
if (ctd->ctd_pyslots != NULL)
slot = findSlotInSlotList(ctd->ctd_pyslots, st);
else
slot = NULL;
if (slot == NULL)
{
sipEncodedTypeDef *sup;
/* Search any super-types. */
if ((sup = ctd->ctd_supers) != NULL)
{
do
{
const sipClassTypeDef *sup_ctd = sipGetGeneratedClassType(
sup, ctd);
slot = findSlotInClass(sup_ctd, st);
}
while (slot == NULL && !sup++->sc_flag);
}
}
return slot;
}
/*
* Find a particular slot function in a particular type.
*/
static void *findSlotInSlotList(sipPySlotDef *psd, sipPySlotType st)
{
while (psd->psd_func != NULL)
{
if (psd->psd_type == st)
return psd->psd_func;
++psd;
}
return NULL;
}
/*
* Return the C/C++ address and the generated class structure for a wrapper.
*/
static void *getPtrTypeDef(sipSimpleWrapper *self, const sipClassTypeDef **ctd)
{
*ctd = (const sipClassTypeDef *)((sipWrapperType *)Py_TYPE(self))->wt_td;
return (sipNotInMap(self) ? NULL : sip_api_get_address(self));
}
/*
* Handle an objobjargproc slot.
*/
static int objobjargprocSlot(PyObject *self, PyObject *arg1, PyObject *arg2,
sipPySlotType st)
{
int (*f)(PyObject *, PyObject *);
int res;
f = (int (*)(PyObject *, PyObject *))findSlot(self, st);
if (f != NULL)
{
PyObject *args;
/*
* Slot handlers require a single PyObject *. The second argument is
* optional.
*/
if (arg2 == NULL)
{
args = arg1;
Py_INCREF(args);
}
else if ((args = PyTuple_Pack(2, arg1, arg2)) == NULL)
{
return -1;
}
res = f(self, args);
Py_DECREF(args);
}
else
{
PyErr_SetNone(PyExc_NotImplementedError);
res = -1;
}
return res;
}
/*
* Handle an ssizeobjargproc slot.
*/
static int ssizeobjargprocSlot(PyObject *self, Py_ssize_t arg1,
PyObject *arg2, sipPySlotType st)
{
int (*f)(PyObject *, PyObject *);
int res;
f = (int (*)(PyObject *, PyObject *))findSlot(self, st);
if (f != NULL)
{
PyObject *args;
/*
* Slot handlers require a single PyObject *. The second argument is
* optional.
*/
if (arg2 == NULL)
args = PyLong_FromSsize_t(arg1);
else
args = Py_BuildValue("(nO)", arg1, arg2);
if (args == NULL)
return -1;
res = f(self, args);
Py_DECREF(args);
}
else
{
PyErr_SetNone(PyExc_NotImplementedError);
res = -1;
}
return res;
}
/*
* The metatype alloc slot.
*/
static PyObject *sipWrapperType_alloc(PyTypeObject *self, Py_ssize_t nitems)
{
PyObject *o;
/* Call the standard super-metatype alloc. */
if ((o = PyType_Type.tp_alloc(self, nitems)) == NULL)
return NULL;
/*
* Consume any extra type specific information and use it to initialise the
* slots. This only happens for directly wrapped classes (and not
* programmer written sub-classes). This must be done in the alloc
* function because it is the only place we can break out of the default
* new() function before PyType_Ready() is called.
*/
if (currentType != NULL)
{
assert(!sipTypeIsEnum(currentType));
((sipWrapperType *)o)->wt_td = currentType;
if (sipTypeIsClass(currentType))
{
const sipClassTypeDef *ctd = (const sipClassTypeDef *)currentType;
const char *docstring = ctd->ctd_docstring;
/*
* Skip the marker that identifies the docstring as being
* automatically generated.
*/
if (docstring != NULL && *docstring == AUTO_DOCSTRING)
++docstring;
((PyTypeObject *)o)->tp_doc = docstring;
addClassSlots((sipWrapperType *)o, ctd);
/* Patch any mixin initialiser. */
if (ctd->ctd_init_mixin != NULL)
((PyTypeObject *)o)->tp_init = ctd->ctd_init_mixin;
}
}
return o;
}
/*
* The metatype init slot.
*/
static int sipWrapperType_init(sipWrapperType *self, PyObject *args,
PyObject *kwds)
{
/* Call the standard super-metatype init. */
if (PyType_Type.tp_init((PyObject *)self, args, kwds) < 0)
return -1;
/*
* If we don't yet have any extra type specific information (because we are
* a programmer defined sub-class) then get it from the (first) super-type.
*/
if (self->wt_td == NULL)
{
PyTypeObject *base = ((PyTypeObject *)self)->tp_base;
self->wt_user_type = TRUE;
/*
* We allow the class to use this as a meta-type without being derived
* from a class that uses it. This allows mixin classes that need
* their own meta-type to work so long as their meta-type is derived
* from this meta-type. This condition is indicated by the pointer to
* the generated type structure being NULL.
*/
if (base != NULL && PyObject_TypeCheck((PyObject *)base, (PyTypeObject *)&sipWrapperType_Type))
{
/* TODO: Deprecate this mechanism in favour of an event handler. */
sipNewUserTypeFunc new_user_type_handler;
self->wt_td = ((sipWrapperType *)base)->wt_td;
if (self->wt_td != NULL)
{
/* Call any new type handler. */
new_user_type_handler = find_new_user_type_handler(
(sipWrapperType *)sipTypeAsPyTypeObject(self->wt_td));
if (new_user_type_handler != NULL)
if (new_user_type_handler(self) < 0)
return -1;
}
}
}
else
{
/*
* We must be a generated type so remember the type object in the
* generated type structure.
*/
assert(self->wt_td->td_py_type == NULL);
self->wt_td->td_py_type = (PyTypeObject *)self;
}
return 0;
}
/*
* The metatype getattro slot.
*/
static PyObject *sipWrapperType_getattro(PyObject *self, PyObject *name)
{
if (add_all_lazy_attrs(((sipWrapperType *)self)->wt_td) < 0)
return NULL;
return PyType_Type.tp_getattro(self, name);
}
/*
* The metatype setattro slot.
*/
static int sipWrapperType_setattro(PyObject *self, PyObject *name,
PyObject *value)
{
if (add_all_lazy_attrs(((sipWrapperType *)self)->wt_td) < 0)
return -1;
return PyType_Type.tp_setattro(self, name, value);
}
/*
* The instance new slot.
*/
static PyObject *sipSimpleWrapper_new(sipWrapperType *wt, PyObject *args,
PyObject *kwds)
{
sipTypeDef *td = wt->wt_td;
(void)args;
(void)kwds;
/* Check the base types are not being used directly. */
if (wt == &sipSimpleWrapper_Type || wt == &sipWrapper_Type)
{
PyErr_Format(PyExc_TypeError,
"the %s type cannot be instantiated or sub-classed",
((PyTypeObject *)wt)->tp_name);
return NULL;
}
if (add_all_lazy_attrs(td) < 0)
return NULL;
/* See if it is a mapped type. */
if (sipTypeIsMapped(td))
{
PyErr_Format(PyExc_TypeError,
"%s.%s represents a mapped type and cannot be instantiated",
sipNameOfModule(td->td_module),
sipPyNameOfContainer(get_container(td), td));
return NULL;
}
/* See if it is a namespace. */
if (sipTypeIsNamespace(td))
{
PyErr_Format(PyExc_TypeError,
"%s.%s represents a C++ namespace and cannot be instantiated",
sipNameOfModule(td->td_module),
sipPyNameOfContainer(get_container(td), td));
return NULL;
}
/*
* See if the object is being created explicitly rather than being wrapped.
*/
if (!sipIsPending())
{
/*
* See if it cannot be instantiated or sub-classed from Python, eg.
* it's an opaque class. Some restrictions might be overcome with
* better SIP support.
*/
if (((sipClassTypeDef *)td)->ctd_init == NULL)
{
PyErr_Format(PyExc_TypeError,
"%s.%s cannot be instantiated or sub-classed",
sipNameOfModule(td->td_module),
sipPyNameOfContainer(get_container(td), td));
return NULL;
}
/* See if it is an abstract type. */
if (sipTypeIsAbstract(td) && !wt->wt_user_type && ((sipClassTypeDef *)td)->ctd_init_mixin == NULL)
{
PyErr_Format(PyExc_TypeError,
"%s.%s represents a C++ abstract class and cannot be instantiated",
sipNameOfModule(td->td_module),
sipPyNameOfContainer(get_container(td), td));
return NULL;
}
}
/* Call the standard super-type new. */
return PyBaseObject_Type.tp_new((PyTypeObject *)wt, empty_tuple, NULL);
}
/*
* The instance init slot.
*/
static int sipSimpleWrapper_init(sipSimpleWrapper *self, PyObject *args,
PyObject *kwds)
{
void *sipNew;
int sipFlags, from_cpp = TRUE;
sipWrapper *owner;
sipWrapperType *wt = (sipWrapperType *)Py_TYPE(self);
sipTypeDef *td = wt->wt_td;
sipClassTypeDef *ctd = (sipClassTypeDef *)td;
PyObject *unused = NULL;
sipFinalFunc final_func = find_finalisation(ctd);
/* Check for an existing C++ instance waiting to be wrapped. */
if (sipGetPending(&sipNew, &owner, &sipFlags) < 0)
return -1;
if (sipNew == NULL)
{
PyObject *parseErr = NULL, **unused_p = NULL;
/* See if we are interested in any unused keyword arguments. */
if (sipTypeCallSuperInit(&ctd->ctd_base) || final_func != NULL || kw_handler != NULL)
unused_p = &unused;
/* Call the C++ ctor. */
owner = NULL;
sipNew = ctd->ctd_init(self, args, kwds, unused_p, (PyObject **)&owner,
&parseErr);
if (sipNew != NULL)
{
sipFlags = SIP_DERIVED_CLASS;
}
else if (parseErr == NULL)
{
/*
* The C++ ctor must have raised an exception which has been
* translated to a Python exception.
*/
return -1;
}
else
{
sipInitExtenderDef *ie = wt->wt_iextend;
/*
* If we have not found an appropriate overload then try any
* extenders.
*/
while (PyList_Check(parseErr) && ie != NULL)
{
sipNew = ie->ie_extender(self, args, kwds, &unused,
(PyObject **)&owner, &parseErr);
if (sipNew != NULL)
break;
ie = ie->ie_next;
}
if (sipNew == NULL)
{
const char *docstring = ctd->ctd_docstring;
/*
* Use the docstring for errors if it was automatically
* generated.
*/
if (docstring != NULL)
{
if (*docstring == AUTO_DOCSTRING)
++docstring;
else
docstring = NULL;
}
sip_api_no_function(parseErr,
sipPyNameOfContainer(&ctd->ctd_container, td),
docstring);
return -1;
}
sipFlags = 0;
}
if (owner == NULL)
sipFlags |= SIP_PY_OWNED;
else if ((PyObject *)owner == Py_None)
{
/* This is the hack that means that C++ owns the new instance. */
sipFlags |= SIP_CPP_HAS_REF;
Py_INCREF(self);
owner = NULL;
}
/* The instance was created from Python. */
from_cpp = FALSE;
}
/* Handler any owner if the type supports the concept. */
if (PyObject_TypeCheck((PyObject *)self, (PyTypeObject *)&sipWrapper_Type))
{
/*
* The application may be doing something very unadvisable (like
* calling __init__() for a second time), so make sure we don't already
* have a parent.
*/
removeFromParent((sipWrapper *)self);
if (owner != NULL)
{
assert(PyObject_TypeCheck((PyObject *)owner, (PyTypeObject *)&sipWrapper_Type));
addToParent((sipWrapper *)self, (sipWrapper *)owner);
}
}
self->data = sipNew;
self->sw_flags = sipFlags | SIP_CREATED;
/* Set the access function. */
if (sipIsAccessFunc(self))
self->access_func = explicit_access_func;
else if (sipIsIndirect(self))
self->access_func = indirect_access_func;
else
self->access_func = NULL;
if (!sipNotInMap(self))
sipOMAddObject(&cppPyMap, self);
/* If we are wrapping an instance returned from C/C++ then we are done. */
if (from_cpp)
{
/*
* Invoke any event handlers for instances that are accessed directly.
*/
if (self->access_func == NULL)
{
sipEventHandler *eh;
for (eh = event_handlers[sipEventWrappedInstance]; eh != NULL; eh = eh->next)
{
if (is_subtype(ctd, eh->ctd))
{
sipWrappedInstanceEventHandler handler = (sipWrappedInstanceEventHandler)eh->handler;
handler(sipNew);
}
}
}
return 0;
}
/* Call any finalisation code. */
if (final_func != NULL)
{
PyObject *new_unused = NULL, **new_unused_p;
if (unused == NULL || unused != kwds)
{
/*
* There are no unused arguments or we have already created a dict
* containing the unused sub-set, so there is no need to create
* another.
*/
new_unused_p = NULL;
}
else
{
/*
* All of the keyword arguments are unused, so if some of them are
* now going to be used then a new dict will be needed.
*/
new_unused_p = &new_unused;
}
if (final_func((PyObject *)self, sipNew, unused, new_unused_p) < 0)
{
Py_XDECREF(unused);
return -1;
}
if (new_unused != NULL)
{
Py_DECREF(unused);
unused = new_unused;
}
}
/* Call the handler if we have one. Remove this in SIP v5. */
if (kw_handler != NULL && unused != NULL && isQObject((PyObject *)self))
{
int rc = kw_handler((PyObject *)self, sipNew, unused);
/*
* A handler will always consume all unused keyword arguments (or raise
* an exception) so discard the dict now.
*/
Py_DECREF(unused);
if (rc < 0)
return -1;
unused = NULL;
}
/* See if we should call the equivalent of super().__init__(). */
if (sipTypeCallSuperInit(&ctd->ctd_base))
{
PyObject *next;
/* Find the next type in the MRO. */
next = next_in_mro((PyObject *)self,
(PyObject *)&sipSimpleWrapper_Type);
/*
* If the next type in the MRO is object then take a shortcut by not
* calling super().__init__() but emulating object.__init__() instead.
* This will be the most common case and also allows us to generate a
* better exception message if there are unused keyword arguments. The
* disadvantage is that the exception message will be different if
* there is a mixin.
*/
if (next != (PyObject *)&PyBaseObject_Type)
{
int rc = super_init((PyObject *)self, empty_tuple, unused, next);
Py_XDECREF(unused);
return rc;
}
}
if (unused_backdoor != NULL)
{
/*
* We are being called by a mixin's __init__ so save any unused
* arguments for it to pass on to the main class's __init__.
*/
*unused_backdoor = unused;
}
else if (unused != NULL)
{
/* We shouldn't have any unused keyword arguments. */
if (PyDict_Size(unused) != 0)
{
PyObject *key, *value;
Py_ssize_t pos = 0;
/* Just report one of the unused arguments. */
PyDict_Next(unused, &pos, &key, &value);
PyErr_Format(PyExc_TypeError,
"'%S' is an unknown keyword argument", key);
Py_DECREF(unused);
return -1;
}
Py_DECREF(unused);
}
return 0;
}
/*
* Get the C++ address of a mixin.
*/
static void *sip_api_get_mixin_address(sipSimpleWrapper *w,
const sipTypeDef *td)
{
PyObject *mixin;
void *cpp;
if ((mixin = PyObject_GetAttrString((PyObject *)w, sipTypeName(td))) == NULL)
{
PyErr_Clear();
return NULL;
}
cpp = sip_api_get_address((sipSimpleWrapper *)mixin);
Py_DECREF(mixin);
return cpp;
}
/*
* Initialise a mixin.
*/
static int sip_api_init_mixin(PyObject *self, PyObject *args, PyObject *kwds,
const sipClassTypeDef *ctd)
{
int rc;
Py_ssize_t pos;
PyObject *unused, *mixin, *mixin_name, *key, *value;
PyTypeObject *self_wt = sipTypeAsPyTypeObject(((sipWrapperType *)Py_TYPE(self))->wt_td);
PyTypeObject *wt = sipTypeAsPyTypeObject(&ctd->ctd_base);
static PyObject *double_us = NULL;
if (objectify("__", &double_us) < 0)
return -1;
/* If we are not a mixin to another wrapped class then behave as normal. */
if (PyType_IsSubtype(self_wt, wt))
return super_init(self, args, kwds, next_in_mro(self, (PyObject *)wt));
/*
* Create the mixin instance. Retain the positional arguments for the
* super-class. Remember that, even though the mixin appears after the
* main class in the MRO, it appears before sipWrapperType where the main
* class's arguments are actually parsed.
*/
unused = NULL;
unused_backdoor = &unused;
mixin = PyObject_Call((PyObject *)wt, empty_tuple, kwds);
unused_backdoor = NULL;
if (mixin == NULL)
goto gc_unused;
/* Make sure the mixin can find the main instance. */
((sipSimpleWrapper *)mixin)->mixin_main = self;
Py_INCREF(self);
if ((mixin_name = PyUnicode_FromString(sipTypeName(&ctd->ctd_base))) == NULL)
{
Py_DECREF(mixin);
goto gc_unused;
}
rc = PyObject_SetAttr(self, mixin_name, mixin);
Py_DECREF(mixin);
if (rc < 0)
goto gc_mixin_name;
/* Add the mixin's useful attributes to the main class. */
pos = 0;
while (PyDict_Next(wt->tp_dict, &pos, &key, &value))
{
/* Don't replace existing values. */
if (PyDict_Contains(Py_TYPE(self)->tp_dict, key) != 0)
continue;
/* Skip values with names that start with double underscore. */
if (!PyUnicode_Check(key))
continue;
/*
* Despite what the docs say this returns a Py_ssize_t - although the
* docs are probably right.
*/
rc = (int)PyUnicode_Tailmatch(key, double_us, 0, 2, -1);
if (rc < 0)
goto gc_mixin_name;
if (rc > 0)
continue;
if (PyObject_IsInstance(value, (PyObject *)&sipMethodDescr_Type))
{
if ((value = sipMethodDescr_Copy(value, mixin_name)) == NULL)
goto gc_mixin_name;
}
else if (PyObject_IsInstance(value, (PyObject *)&sipVariableDescr_Type))
{
if ((value = sipVariableDescr_Copy(value, mixin_name)) == NULL)
goto gc_mixin_name;
}
else
{
Py_INCREF(value);
}
rc = PyDict_SetItem(Py_TYPE(self)->tp_dict, key, value);
Py_DECREF(value);
if (rc < 0)
goto gc_mixin_name;
}
Py_DECREF(mixin_name);
/* Call the super-class's __init__ with any remaining arguments. */
rc = super_init(self, args, unused, next_in_mro(self, (PyObject *)wt));
Py_XDECREF(unused);
return rc;
gc_mixin_name:
Py_DECREF(mixin_name);
gc_unused:
Py_XDECREF(unused);
return -1;
}
/*
* Return the next in the MRO of an instance after a given type.
*/
static PyObject *next_in_mro(PyObject *self, PyObject *after)
{
Py_ssize_t i;
PyObject *mro;
mro = Py_TYPE(self)->tp_mro;
assert(PyTuple_Check(mro));
for (i = 0; i < PyTuple_GET_SIZE(mro); ++i)
if (PyTuple_GET_ITEM(mro, i) == after)
break;
/* Assert that we have found ourself and that we are not the last. */
assert(i + 1 < PyTuple_GET_SIZE(mro));
return PyTuple_GET_ITEM(mro, i + 1);
}
/*
* Call the equivalent of super()__init__() of an instance.
*/
static int super_init(PyObject *self, PyObject *args, PyObject *kwds,
PyObject *type)
{
int i;
PyObject *init, *init_args, *init_res;
if ((init = PyObject_GetAttr(type, init_name)) == NULL)
return -1;
if ((init_args = PyTuple_New(1 + PyTuple_GET_SIZE(args))) == NULL)
{
Py_DECREF(init);
return -1;
}
PyTuple_SET_ITEM(init_args, 0, self);
Py_INCREF(self);
for (i = 0; i < PyTuple_GET_SIZE(args); ++i)
{
PyObject *arg = PyTuple_GET_ITEM(args, i);
PyTuple_SET_ITEM(init_args, 1 + i, arg);
Py_INCREF(arg);
}
init_res = PyObject_Call(init, init_args, kwds);
Py_DECREF(init_args);
Py_DECREF(init);
Py_XDECREF(init_res);
return (init_res != NULL) ? 0 : -1;
}
/*
* Find any finalisation function for a class, searching its super-classes if
* necessary.
*/
static sipFinalFunc find_finalisation(sipClassTypeDef *ctd)
{
sipEncodedTypeDef *sup;
if (ctd->ctd_final != NULL)
return ctd->ctd_final;
if ((sup = ctd->ctd_supers) != NULL)
do
{
sipClassTypeDef *sup_ctd = sipGetGeneratedClassType(sup, ctd);
sipFinalFunc func;
if ((func = find_finalisation(sup_ctd)) != NULL)
return func;
}
while (!sup++->sc_flag);
return NULL;
}
/*
* Find any new user type handler function for a class, searching its
* super-classes if necessary.
*/
static sipNewUserTypeFunc find_new_user_type_handler(sipWrapperType *wt)
{
sipEncodedTypeDef *sup;
sipClassTypeDef *ctd;
if (wt->wt_new_user_type_handler != NULL)
return wt->wt_new_user_type_handler;
ctd = (sipClassTypeDef *)wt->wt_td;
if ((sup = ctd->ctd_supers) != NULL)
{
do
{
sipTypeDef *sup_td = getGeneratedType(sup, ctd->ctd_base.td_module);
sipNewUserTypeFunc func;
wt = (sipWrapperType *)sipTypeAsPyTypeObject(sup_td);
if ((func = find_new_user_type_handler(wt)) != NULL)
return func;
}
while (!sup++->sc_flag);
}
return NULL;
}
/*
* The instance traverse slot.
*/
static int sipSimpleWrapper_traverse(sipSimpleWrapper *self, visitproc visit,
void *arg)
{
int vret;
void *ptr;
const sipClassTypeDef *ctd;
/* Call any handwritten traverse code. */
if ((ptr = getPtrTypeDef(self, &ctd)) != NULL)
if (ctd->ctd_traverse != NULL)
if ((vret = ctd->ctd_traverse(ptr, visit, arg)) != 0)
return vret;
if (self->dict != NULL)
if ((vret = visit(self->dict, arg)) != 0)
return vret;
if (self->extra_refs != NULL)
if ((vret = visit(self->extra_refs, arg)) != 0)
return vret;
if (self->user != NULL)
if ((vret = visit(self->user, arg)) != 0)
return vret;
if (self->mixin_main != NULL)
if ((vret = visit(self->mixin_main, arg)) != 0)
return vret;
return 0;
}
/*
* The instance clear slot.
*/
static int sipSimpleWrapper_clear(sipSimpleWrapper *self)
{
int vret = 0;
void *ptr;
const sipClassTypeDef *ctd;
PyObject *tmp;
/* Call any handwritten clear code. */
if ((ptr = getPtrTypeDef(self, &ctd)) != NULL)
if (ctd->ctd_clear != NULL)
vret = ctd->ctd_clear(ptr);
/* Remove the instance dictionary. */
tmp = self->dict;
self->dict = NULL;
Py_XDECREF(tmp);
/* Remove any extra references dictionary. */
tmp = self->extra_refs;
self->extra_refs = NULL;
Py_XDECREF(tmp);
/* Remove any user object. */
tmp = self->user;
self->user = NULL;
Py_XDECREF(tmp);
/* Remove any mixin main. */
tmp = self->mixin_main;
self->mixin_main = NULL;
Py_XDECREF(tmp);
return vret;
}
/*
* The instance get buffer slot.
*/
static int sipSimpleWrapper_getbuffer(sipSimpleWrapper *self, Py_buffer *buf,
int flags)
{
void *ptr;
const sipClassTypeDef *ctd;
if ((ptr = getPtrTypeDef(self, &ctd)) == NULL)
return -1;
if (sipTypeUseLimitedAPI(&ctd->ctd_base))
{
sipGetBufferFuncLimited getbuffer = (sipGetBufferFuncLimited)ctd->ctd_getbuffer;
sipBufferDef bd;
/*
* Ensure all fields have a default value. This means that extra
* fields can be appended in the future that older handwritten code
* doesn't know about.
*/
memset(&bd, 0, sizeof(sipBufferDef));
if (getbuffer((PyObject *)self, ptr, &bd) < 0)
return -1;
return PyBuffer_FillInfo(buf, (PyObject *)self, bd.bd_buffer,
bd.bd_length, bd.bd_readonly, flags);
}
return ctd->ctd_getbuffer((PyObject *)self, ptr, buf, flags);
}
/*
* The instance release buffer slot.
*/
static void sipSimpleWrapper_releasebuffer(sipSimpleWrapper *self,
Py_buffer *buf)
{
void *ptr;
const sipClassTypeDef *ctd;
if ((ptr = getPtrTypeDef(self, &ctd)) == NULL)
return;
if (sipTypeUseLimitedAPI(&ctd->ctd_base))
{
sipReleaseBufferFuncLimited releasebuffer = (sipReleaseBufferFuncLimited)ctd->ctd_releasebuffer;
releasebuffer((PyObject *)self, ptr);
return;
}
ctd->ctd_releasebuffer((PyObject *)self, ptr, buf);
}
/*
* The instance dealloc slot.
*/
static void sipSimpleWrapper_dealloc(sipSimpleWrapper *self)
{
PyObject *error_type, *error_value, *error_traceback;
/* Save the current exception, if any. */
PyErr_Fetch(&error_type, &error_value, &error_traceback);
forgetObject(self);
/*
* Now that the C++ object no longer exists we can tidy up the Python
* object. We used to do this first but that meant lambda slots were
* removed too soon (if they were connected to QObject.destroyed()).
*/
sipSimpleWrapper_clear(self);
/* Call the standard super-type dealloc. */
PyBaseObject_Type.tp_dealloc((PyObject *)self);
/* Restore the saved exception. */
PyErr_Restore(error_type, error_value, error_traceback);
}
/*
* The type call slot.
*/
static PyObject *slot_call(PyObject *self, PyObject *args, PyObject *kw)
{
PyObject *(*f)(PyObject *, PyObject *, PyObject *);
f = (PyObject *(*)(PyObject *, PyObject *, PyObject *))findSlot(self, call_slot);
assert(f != NULL);
return f(self, args, kw);
}
/*
* The sequence type item slot.
*/
static PyObject *slot_sq_item(PyObject *self, Py_ssize_t n)
{
PyObject *(*f)(PyObject *,PyObject *);
PyObject *arg, *res;
if ((arg = PyLong_FromSsize_t(n)) == NULL)
return NULL;
f = (PyObject *(*)(PyObject *,PyObject *))findSlot(self, getitem_slot);
assert(f != NULL);
res = f(self,arg);
Py_DECREF(arg);
return res;
}
/*
* The mapping type assign subscript slot.
*/
static int slot_mp_ass_subscript(PyObject *self, PyObject *key,
PyObject *value)
{
return objobjargprocSlot(self, key, value,
(value != NULL ? setitem_slot : delitem_slot));
}
/*
* The sequence type assign item slot.
*/
static int slot_sq_ass_item(PyObject *self, Py_ssize_t i, PyObject *o)
{
return ssizeobjargprocSlot(self, i, o,
(o != NULL ? setitem_slot : delitem_slot));
}
/*
* The type rich compare slot.
*/
static PyObject *slot_richcompare(PyObject *self, PyObject *arg, int op)
{
PyObject *(*f)(PyObject *,PyObject *);
sipPySlotType st;
/* Convert the operation to a slot type. */
switch (op)
{
case Py_LT:
st = lt_slot;
break;
case Py_LE:
st = le_slot;
break;
case Py_EQ:
st = eq_slot;
break;
case Py_NE:
st = ne_slot;
break;
case Py_GT:
st = gt_slot;
break;
case Py_GE:
st = ge_slot;
break;
}
/* It might not exist if not all the above have been implemented. */
if ((f = (PyObject *(*)(PyObject *,PyObject *))findSlot(self, st)) == NULL)
{
Py_INCREF(Py_NotImplemented);
return Py_NotImplemented;
}
return f(self, arg);
}
/*
* The __dict__ getter.
*/
static PyObject *sipSimpleWrapper_get_dict(sipSimpleWrapper *sw, void *closure)
{
(void)closure;
/* Create the dictionary if needed. */
if (sw->dict == NULL)
{
sw->dict = PyDict_New();
if (sw->dict == NULL)
return NULL;
}
Py_INCREF(sw->dict);
return sw->dict;
}
/*
* The __dict__ setter.
*/
static int sipSimpleWrapper_set_dict(sipSimpleWrapper *sw, PyObject *value,
void *closure)
{
(void)closure;
/* Check that any new value really is a dictionary. */
if (value != NULL && !PyDict_Check(value))
{
PyErr_Format(PyExc_TypeError,
"__dict__ must be set to a dictionary, not a '%s'",
Py_TYPE(value)->tp_name);
return -1;
}
Py_XDECREF(sw->dict);
Py_XINCREF(value);
sw->dict = value;
return 0;
}
/*
* The table of getters and setters.
*/
static PyGetSetDef sipSimpleWrapper_getset[] = {
{(char *)"__dict__", (getter)sipSimpleWrapper_get_dict,
(setter)sipSimpleWrapper_set_dict, NULL, NULL},
{NULL, NULL, NULL, NULL, NULL}
};
/*
* The type data structure. Note that we pretend to be a mapping object and a
* sequence object at the same time. Python will choose one over another,
* depending on the context, but we implement as much as we can and don't make
* assumptions about which Python will choose.
*/
sipWrapperType sipSimpleWrapper_Type = {
#if !defined(STACKLESS)
{
#endif
{
PyVarObject_HEAD_INIT(&sipWrapperType_Type, 0)
"sip.simplewrapper", /* tp_name */
sizeof (sipSimpleWrapper), /* tp_basicsize */
0, /* tp_itemsize */
(destructor)sipSimpleWrapper_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_as_async (Python v3.5), tp_compare (Python v2) */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
0, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC, /* tp_flags */
0, /* tp_doc */
(traverseproc)sipSimpleWrapper_traverse, /* tp_traverse */
(inquiry)sipSimpleWrapper_clear, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
0, /* tp_methods */
0, /* tp_members */
sipSimpleWrapper_getset, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
offsetof(sipSimpleWrapper, dict), /* tp_dictoffset */
(initproc)sipSimpleWrapper_init, /* tp_init */
0, /* tp_alloc */
(newfunc)sipSimpleWrapper_new, /* tp_new */
0, /* tp_free */
0, /* tp_is_gc */
0, /* tp_bases */
0, /* tp_mro */
0, /* tp_cache */
0, /* tp_subclasses */
0, /* tp_weaklist */
0, /* tp_del */
0, /* tp_version_tag */
0, /* tp_finalize */
#if PY_VERSION_HEX >= 0x03080000
0, /* tp_vectorcall */
#endif
},
{
0, /* am_await */
0, /* am_aiter */
0, /* am_anext */
},
{
0, /* nb_add */
0, /* nb_subtract */
0, /* nb_multiply */
0, /* nb_remainder */
0, /* nb_divmod */
0, /* nb_power */
0, /* nb_negative */
0, /* nb_positive */
0, /* nb_absolute */
0, /* nb_bool */
0, /* nb_invert */
0, /* nb_lshift */
0, /* nb_rshift */
0, /* nb_and */
0, /* nb_xor */
0, /* nb_or */
0, /* nb_int */
0, /* nb_reserved */
0, /* nb_float */
0, /* nb_inplace_add */
0, /* nb_inplace_subtract */
0, /* nb_inplace_multiply */
0, /* nb_inplace_remainder */
0, /* nb_inplace_power */
0, /* nb_inplace_lshift */
0, /* nb_inplace_rshift */
0, /* nb_inplace_and */
0, /* nb_inplace_xor */
0, /* nb_inplace_or */
0, /* nb_floor_divide */
0, /* nb_true_divide */
0, /* nb_inplace_floor_divide */
0, /* nb_inplace_true_divide */
0, /* nb_index */
0, /* nb_matrix_multiply */
0, /* nb_inplace_matrix_multiply */
},
{
0, /* mp_length */
0, /* mp_subscript */
0, /* mp_ass_subscript */
},
{
0, /* sq_length */
0, /* sq_concat */
0, /* sq_repeat */
0, /* sq_item */
0, /* was_sq_slice */
0, /* sq_ass_item */
0, /* was_sq_ass_slice */
0, /* sq_contains */
0, /* sq_inplace_concat */
0, /* sq_inplace_repeat */
},
{
0, /* bf_getbuffer */
0, /* bf_releasebuffer */
},
0, /* ht_name */
0, /* ht_slots */
0, /* ht_qualname */
0, /* ht_cached_keys */
#if PY_VERSION_HEX >= 0x03090000
0, /* ht_module */
#endif
#if !defined(STACKLESS)
},
#endif
0, /* wt_user_type */
0, /* wt_dict_complete */
0, /* wt_unused */
0, /* wt_td */
0, /* wt_iextend */
0, /* wt_new_user_type_handler */
0, /* wt_user_data */
};
/*
* The wrapper clear slot.
*/
static int sipWrapper_clear(sipWrapper *self)
{
int vret;
sipSimpleWrapper *sw = (sipSimpleWrapper *)self;
vret = sipSimpleWrapper_clear(sw);
/* Remove any slots connected via a proxy. */
if (sipQtSupport != NULL && sipPossibleProxy(sw) && !sipNotInMap(sw))
{
void *tx = sip_api_get_address(sw);
if (tx != NULL)
{
sipSlot *slot;
void *context = NULL;
assert (sipQtSupport->qt_find_sipslot);
while ((slot = sipQtSupport->qt_find_sipslot(tx, &context)) != NULL)
{
sip_api_clear_any_slot_reference(slot);
if (context == NULL)
break;
}
}
}
/* Detach any children (which will be owned by C/C++). */
detachChildren(self);
return vret;
}
/*
* The wrapper dealloc slot.
*/
static void sipWrapper_dealloc(sipWrapper *self)
{
PyObject *error_type, *error_value, *error_traceback;
/* Save the current exception, if any. */
PyErr_Fetch(&error_type, &error_value, &error_traceback);
/*
* We can't simply call the super-type because things have to be done in a
* certain order. The first thing is to get rid of the wrapped instance.
*/
forgetObject((sipSimpleWrapper *)self);
sipWrapper_clear(self);
/* Skip the super-type's dealloc. */
PyBaseObject_Type.tp_dealloc((PyObject *)self);
/* Restore the saved exception. */
PyErr_Restore(error_type, error_value, error_traceback);
}
/*
* The wrapper traverse slot.
*/
static int sipWrapper_traverse(sipWrapper *self, visitproc visit, void *arg)
{
int vret;
sipSimpleWrapper *sw = (sipSimpleWrapper *)self;
sipWrapper *w;
if ((vret = sipSimpleWrapper_traverse(sw, visit, arg)) != 0)
return vret;
/*
* This should be handwritten code in PyQt. The map check is a bit of a
* hack to work around PyQt4 problems with qApp and a user created
* instance. qt_find_sipslot() will return the same slot information for
* both causing the gc module to trigger assert() failures.
*/
if (sipQtSupport != NULL && sipQtSupport->qt_find_sipslot && !sipNotInMap(sw))
{
void *tx = sip_api_get_address(sw);
if (tx != NULL)
{
sipSlot *slot;
void *context = NULL;
while ((slot = sipQtSupport->qt_find_sipslot(tx, &context)) != NULL)
{
if ((vret = sip_api_visit_slot(slot, visit, arg)) != 0)
return vret;
if (context == NULL)
break;
}
}
}
for (w = self->first_child; w != NULL; w = w->sibling_next)
{
/*
* We don't traverse if the wrapper is a child of itself. We do this
* so that wrapped objects returned by virtual methods with the
* /Factory/ don't have those objects collected. This then means that
* plugins implemented in Python have a chance of working.
*/
if (w != self)
if ((vret = visit((PyObject *)w, arg)) != 0)
return vret;
}
return 0;
}
/*
* Add the slots for a class type and all its super-types.
*/
static void addClassSlots(sipWrapperType *wt, const sipClassTypeDef *ctd)
{
PyHeapTypeObject *heap_to = &wt->super;
PyBufferProcs *bp = &heap_to->as_buffer;
/* Add the buffer interface. */
if (ctd->ctd_getbuffer != NULL)
bp->bf_getbuffer = (getbufferproc)sipSimpleWrapper_getbuffer;
if (ctd->ctd_releasebuffer != NULL)
bp->bf_releasebuffer = (releasebufferproc)sipSimpleWrapper_releasebuffer;
/* Add the slots for this type. */
if (ctd->ctd_pyslots != NULL)
addTypeSlots(heap_to, ctd->ctd_pyslots);
}
/*
* Add the slot handler for each slot present in the type.
*/
static void addTypeSlots(PyHeapTypeObject *heap_to, sipPySlotDef *slots)
{
PyTypeObject *to;
PyNumberMethods *nb;
PySequenceMethods *sq;
PyMappingMethods *mp;
PyAsyncMethods *am;
void *f;
to = &heap_to->ht_type;
nb = &heap_to->as_number;
sq = &heap_to->as_sequence;
mp = &heap_to->as_mapping;
am = &heap_to->as_async;
while ((f = slots->psd_func) != NULL)
switch (slots++->psd_type)
{
case str_slot:
to->tp_str = (reprfunc)f;
break;
case int_slot:
nb->nb_int = (unaryfunc)f;
break;
case float_slot:
nb->nb_float = (unaryfunc)f;
break;
case len_slot:
mp->mp_length = (lenfunc)f;
sq->sq_length = (lenfunc)f;
break;
case contains_slot:
sq->sq_contains = (objobjproc)f;
break;
case add_slot:
nb->nb_add = (binaryfunc)f;
break;
case concat_slot:
sq->sq_concat = (binaryfunc)f;
break;
case sub_slot:
nb->nb_subtract = (binaryfunc)f;
break;
case mul_slot:
nb->nb_multiply = (binaryfunc)f;
break;
case repeat_slot:
sq->sq_repeat = (ssizeargfunc)f;
break;
case div_slot:
nb->nb_true_divide = (binaryfunc)f;
break;
case mod_slot:
nb->nb_remainder = (binaryfunc)f;
break;
case floordiv_slot:
nb->nb_floor_divide = (binaryfunc)f;
break;
case truediv_slot:
nb->nb_true_divide = (binaryfunc)f;
break;
case and_slot:
nb->nb_and = (binaryfunc)f;
break;
case or_slot:
nb->nb_or = (binaryfunc)f;
break;
case xor_slot:
nb->nb_xor = (binaryfunc)f;
break;
case lshift_slot:
nb->nb_lshift = (binaryfunc)f;
break;
case rshift_slot:
nb->nb_rshift = (binaryfunc)f;
break;
case iadd_slot:
nb->nb_inplace_add = (binaryfunc)f;
break;
case iconcat_slot:
sq->sq_inplace_concat = (binaryfunc)f;
break;
case isub_slot:
nb->nb_inplace_subtract = (binaryfunc)f;
break;
case imul_slot:
nb->nb_inplace_multiply = (binaryfunc)f;
break;
case irepeat_slot:
sq->sq_inplace_repeat = (ssizeargfunc)f;
break;
case idiv_slot:
nb->nb_inplace_true_divide = (binaryfunc)f;
break;
case imod_slot:
nb->nb_inplace_remainder = (binaryfunc)f;
break;
case ifloordiv_slot:
nb->nb_inplace_floor_divide = (binaryfunc)f;
break;
case itruediv_slot:
nb->nb_inplace_true_divide = (binaryfunc)f;
break;
case iand_slot:
nb->nb_inplace_and = (binaryfunc)f;
break;
case ior_slot:
nb->nb_inplace_or = (binaryfunc)f;
break;
case ixor_slot:
nb->nb_inplace_xor = (binaryfunc)f;
break;
case ilshift_slot:
nb->nb_inplace_lshift = (binaryfunc)f;
break;
case irshift_slot:
nb->nb_inplace_rshift = (binaryfunc)f;
break;
case invert_slot:
nb->nb_invert = (unaryfunc)f;
break;
case call_slot:
to->tp_call = slot_call;
break;
case getitem_slot:
mp->mp_subscript = (binaryfunc)f;
sq->sq_item = slot_sq_item;
break;
case setitem_slot:
case delitem_slot:
mp->mp_ass_subscript = slot_mp_ass_subscript;
sq->sq_ass_item = slot_sq_ass_item;
break;
case lt_slot:
case le_slot:
case eq_slot:
case ne_slot:
case gt_slot:
case ge_slot:
to->tp_richcompare = slot_richcompare;
break;
case bool_slot:
nb->nb_bool = (inquiry)f;
break;
case neg_slot:
nb->nb_negative = (unaryfunc)f;
break;
case repr_slot:
to->tp_repr = (reprfunc)f;
break;
case hash_slot:
to->tp_hash = (hashfunc)f;
break;
case pos_slot:
nb->nb_positive = (unaryfunc)f;
break;
case abs_slot:
nb->nb_absolute = (unaryfunc)f;
break;
case index_slot:
nb->nb_index = (unaryfunc)f;
break;
case iter_slot:
to->tp_iter = (getiterfunc)f;
break;
case next_slot:
to->tp_iternext = (iternextfunc)f;
break;
case setattr_slot:
to->tp_setattro = (setattrofunc)f;
break;
case matmul_slot:
nb->nb_matrix_multiply = (binaryfunc)f;
break;
case imatmul_slot:
nb->nb_inplace_matrix_multiply = (binaryfunc)f;
break;
case await_slot:
am->am_await = (unaryfunc)f;
break;
case aiter_slot:
am->am_aiter = (unaryfunc)f;
break;
case anext_slot:
am->am_anext = (unaryfunc)f;
break;
/* Suppress a compiler warning. */
default:
;
}
}
/*
* Remove the object from the map and call the C/C++ dtor if we own the
* instance.
*/
static void forgetObject(sipSimpleWrapper *sw)
{
sipEventHandler *eh;
const sipClassTypeDef *ctd = (const sipClassTypeDef *)((sipWrapperType *)Py_TYPE(sw))->wt_td;
/* Invoke any event handlers. */
for (eh = event_handlers[sipEventCollectingWrapper]; eh != NULL; eh = eh->next)
{
if (is_subtype(ctd, eh->ctd))
{
sipCollectingWrapperEventHandler handler = (sipCollectingWrapperEventHandler)eh->handler;
handler(sw);
}
}
/*
* This is needed because we might release the GIL when calling a C++ dtor.
* Without it the cyclic garbage collector can be invoked from another
* thread resulting in a crash.
*/
PyObject_GC_UnTrack((PyObject *)sw);
/*
* Remove the object from the map before calling the class specific dealloc
* code. This code calls the C++ dtor and may result in further calls that
* pass the instance as an argument. If this is still in the map then it's
* reference count would be increased (to one) and bad things happen when
* it drops back to zero again. (An example is PyQt events generated
* during the dtor call being passed to an event filter implemented in
* Python.) By removing it from the map first we ensure that a new Python
* object is created.
*/
sipOMRemoveObject(&cppPyMap, sw);
if (sipInterpreter != NULL || destroy_on_exit)
{
const sipClassTypeDef *ctd;
if (getPtrTypeDef(sw, &ctd) != NULL && ctd->ctd_dealloc != NULL)
ctd->ctd_dealloc(sw);
}
clear_access_func(sw);
}
/*
* If the given name is that of a typedef then the corresponding type is
* returned.
*/
static const char *sip_api_resolve_typedef(const char *name)
{
const sipExportedModuleDef *em;
/*
* Note that if the same name is defined as more than one type (which is
* possible if more than one completely independent modules are being
* used) then we might pick the wrong one.
*/
for (em = moduleList; em != NULL; em = em->em_next)
{
if (em->em_nrtypedefs > 0)
{
sipTypedefDef *tdd;
tdd = (sipTypedefDef *)bsearch(name, em->em_typedefs,
em->em_nrtypedefs, sizeof (sipTypedefDef),
compareTypedefName);
if (tdd != NULL)
return tdd->tdd_type_name;
}
}
return NULL;
}
/*
* The bsearch() helper function for searching a sorted typedef table.
*/
static int compareTypedefName(const void *key, const void *el)
{
return strcmp((const char *)key, ((const sipTypedefDef *)el)->tdd_name);
}
/*
* Add the given Python object to the given list. Return 0 if there was no
* error.
*/
static int addPyObjectToList(sipPyObject **head, PyObject *object)
{
sipPyObject *po;
if ((po = sip_api_malloc(sizeof (sipPyObject))) == NULL)
return -1;
po->object = object;
po->next = *head;
*head = po;
return 0;
}
/*
* Register a symbol with a name. A negative value is returned if the name was
* already registered.
*/
static int sip_api_export_symbol(const char *name, void *sym)
{
sipSymbol *ss;
if (sip_api_import_symbol(name) != NULL)
return -1;
if ((ss = sip_api_malloc(sizeof (sipSymbol))) == NULL)
return -1;
ss->name = name;
ss->symbol = sym;
ss->next = sipSymbolList;
sipSymbolList = ss;
return 0;
}
/*
* Return the symbol registered with the given name. NULL is returned if the
* name was not registered.
*/
static void *sip_api_import_symbol(const char *name)
{
sipSymbol *ss;
for (ss = sipSymbolList; ss != NULL; ss = ss->next)
if (strcmp(ss->name, name) == 0)
return ss->symbol;
return NULL;
}
/*
* Visit a slot connected to an object for the cyclic garbage collector. This
* would only be called externally by PyQt3.
*/
static int sip_api_visit_slot(sipSlot *slot, visitproc visit, void *arg)
{
/* See if the slot has an extra reference. */
if (slot->weakSlot == Py_True && slot->pyobj != Py_None)
return visit(slot->pyobj, arg);
return 0;
}
/*
* Clear a slot if it has an extra reference to keep it alive. This would only
* be called externally by PyQt3.
*/
static void sip_api_clear_any_slot_reference(sipSlot *slot)
{
if (slot->weakSlot == Py_True)
{
PyObject *xref = slot->pyobj;
/*
* Replace the slot with None. We don't use NULL as this has another
* meaning.
*/
Py_INCREF(Py_None);
slot->pyobj = Py_None;
Py_DECREF(xref);
}
}
/*
* Convert a Python object to a character and raise an exception if there was
* an error.
*/
static char sip_api_bytes_as_char(PyObject *obj)
{
char ch;
if (parseBytes_AsChar(obj, &ch) < 0)
{
PyErr_Format(PyExc_TypeError, "bytes of length 1 expected not '%s'",
Py_TYPE(obj)->tp_name);
return '\0';
}
return ch;
}
/*
* Convert a Python object to a string and raise an exception if there was
* an error.
*/
static const char *sip_api_bytes_as_string(PyObject *obj)
{
const char *a;
if (parseBytes_AsString(obj, &a) < 0)
{
PyErr_Format(PyExc_TypeError, "bytes expected not '%s'",
Py_TYPE(obj)->tp_name);
return NULL;
}
return a;
}
/*
* Convert a Python ASCII string object to a character and raise an exception
* if there was an error.
*/
static char sip_api_string_as_ascii_char(PyObject *obj)
{
char ch;
if (parseString_AsASCIIChar(obj, &ch) < 0)
ch = '\0';
return ch;
}
/*
* Parse an ASCII character and return it.
*/
static int parseString_AsASCIIChar(PyObject *obj, char *ap)
{
if (parseString_AsEncodedChar(PyUnicode_AsASCIIString(obj), obj, ap) < 0)
{
/* Use the exception set if it was an encoding error. */
if (!PyUnicode_Check(obj) || PyUnicode_GET_LENGTH(obj) != 1)
PyErr_SetString(PyExc_TypeError,
"bytes or ASCII string of length 1 expected");
return -1;
}
return 0;
}
/*
* Convert a Python Latin-1 string object to a character and raise an exception
* if there was an error.
*/
static char sip_api_string_as_latin1_char(PyObject *obj)
{
char ch;
if (parseString_AsLatin1Char(obj, &ch) < 0)
ch = '\0';
return ch;
}
/*
* Parse a Latin-1 character and return it via a pointer.
*/
static int parseString_AsLatin1Char(PyObject *obj, char *ap)
{
if (parseString_AsEncodedChar(PyUnicode_AsLatin1String(obj), obj, ap) < 0)
{
/* Use the exception set if it was an encoding error. */
if (!PyUnicode_Check(obj) || PyUnicode_GET_LENGTH(obj) != 1)
PyErr_SetString(PyExc_TypeError,
"bytes or Latin-1 string of length 1 expected");
return -1;
}
return 0;
}
/*
* Convert a Python UTF-8 string object to a character and raise an exception
* if there was an error.
*/
static char sip_api_string_as_utf8_char(PyObject *obj)
{
char ch;
if (parseString_AsUTF8Char(obj, &ch) < 0)
ch = '\0';
return ch;
}
/*
* Parse a UTF-8 character and return it.
*/
static int parseString_AsUTF8Char(PyObject *obj, char *ap)
{
if (parseString_AsEncodedChar(PyUnicode_AsUTF8String(obj), obj, ap) < 0)
{
/* Use the exception set if it was an encoding error. */
if (!PyUnicode_Check(obj) || PyUnicode_GET_LENGTH(obj) != 1)
PyErr_SetString(PyExc_TypeError,
"bytes or UTF-8 string of length 1 expected");
return -1;
}
return 0;
}
/*
* Parse an encoded character and return it.
*/
static int parseString_AsEncodedChar(PyObject *bytes, PyObject *obj, char *ap)
{
Py_ssize_t size;
if (bytes == NULL)
{
PyErr_Clear();
return parseBytes_AsChar(obj, ap);
}
size = PyBytes_GET_SIZE(bytes);
if (size != 1)
{
Py_DECREF(bytes);
return -1;
}
if (ap != NULL)
*ap = *PyBytes_AS_STRING(bytes);
Py_DECREF(bytes);
return 0;
}
/*
* Convert a Python ASCII string object to a string and raise an exception if
* there was an error. The object is updated with the one that owns the
* string. Note that None is considered an error.
*/
static const char *sip_api_string_as_ascii_string(PyObject **obj)
{
PyObject *s = *obj;
const char *a;
if (s == Py_None || (*obj = parseString_AsASCIIString(s, &a)) == NULL)
{
/* Use the exception set if it was an encoding error. */
if (!PyUnicode_Check(s))
PyErr_Format(PyExc_TypeError,
"bytes or ASCII string expected not '%s'",
Py_TYPE(s)->tp_name);
return NULL;
}
return a;
}
/*
* Parse an ASCII string and return it and a new reference to the object that
* owns the string.
*/
static PyObject *parseString_AsASCIIString(PyObject *obj, const char **ap)
{
return parseString_AsEncodedString(PyUnicode_AsASCIIString(obj), obj, ap);
}
/*
* Convert a Python Latin-1 string object to a string and raise an exception if
* there was an error. The object is updated with the one that owns the
* string. Note that None is considered an error.
*/
static const char *sip_api_string_as_latin1_string(PyObject **obj)
{
PyObject *s = *obj;
const char *a;
if (s == Py_None || (*obj = parseString_AsLatin1String(s, &a)) == NULL)
{
/* Use the exception set if it was an encoding error. */
if (!PyUnicode_Check(s))
PyErr_Format(PyExc_TypeError,
"bytes or Latin-1 string expected not '%s'",
Py_TYPE(s)->tp_name);
return NULL;
}
return a;
}
/*
* Parse a Latin-1 string and return it and a new reference to the object that
* owns the string.
*/
static PyObject *parseString_AsLatin1String(PyObject *obj, const char **ap)
{
return parseString_AsEncodedString(PyUnicode_AsLatin1String(obj), obj, ap);
}
/*
* Convert a Python UTF-8 string object to a string and raise an exception if
* there was an error. The object is updated with the one that owns the
* string. Note that None is considered an error.
*/
static const char *sip_api_string_as_utf8_string(PyObject **obj)
{
PyObject *s = *obj;
const char *a;
if (s == Py_None || (*obj = parseString_AsUTF8String(s, &a)) == NULL)
{
/* Use the exception set if it was an encoding error. */
if (!PyUnicode_Check(s))
PyErr_Format(PyExc_TypeError,
"bytes or UTF-8 string expected not '%s'",
Py_TYPE(s)->tp_name);
return NULL;
}
return a;
}
/*
* Parse a UTF-8 string and return it and a new reference to the object that
* owns the string.
*/
static PyObject *parseString_AsUTF8String(PyObject *obj, const char **ap)
{
return parseString_AsEncodedString(PyUnicode_AsUTF8String(obj), obj, ap);
}
/*
* Parse an encoded string and return it and a new reference to the object that
* owns the string.
*/
static PyObject *parseString_AsEncodedString(PyObject *bytes, PyObject *obj,
const char **ap)
{
if (bytes != NULL)
{
*ap = PyBytes_AS_STRING(bytes);
return bytes;
}
/* Don't try anything else if there was an encoding error. */
if (PyUnicode_Check(obj))
return NULL;
PyErr_Clear();
if (parseBytes_AsString(obj, ap) < 0)
return NULL;
Py_INCREF(obj);
return obj;
}
/*
* Parse a character array and return it's address and length.
*/
static int parseBytes_AsCharArray(PyObject *obj, const char **ap,
Py_ssize_t *aszp)
{
const char *a;
Py_ssize_t asz;
if (obj == Py_None)
{
a = NULL;
asz = 0;
}
else if (PyBytes_Check(obj))
{
a = PyBytes_AS_STRING(obj);
asz = PyBytes_GET_SIZE(obj);
}
else
{
Py_buffer view;
if (PyObject_GetBuffer(obj, &view, PyBUF_SIMPLE) < 0)
return -1;
a = view.buf;
asz = view.len;
PyBuffer_Release(&view);
}
if (ap != NULL)
*ap = a;
if (aszp != NULL)
*aszp = asz;
return 0;
}
/*
* Parse a character and return it.
*/
static int parseBytes_AsChar(PyObject *obj, char *ap)
{
const char *chp;
Py_ssize_t sz;
if (PyBytes_Check(obj))
{
chp = PyBytes_AS_STRING(obj);
sz = PyBytes_GET_SIZE(obj);
}
else
{
Py_buffer view;
if (PyObject_GetBuffer(obj, &view, PyBUF_SIMPLE) < 0)
return -1;
chp = view.buf;
sz = view.len;
PyBuffer_Release(&view);
}
if (sz != 1)
return -1;
if (ap != NULL)
*ap = *chp;
return 0;
}
/*
* Parse a character string and return it.
*/
static int parseBytes_AsString(PyObject *obj, const char **ap)
{
const char *a;
Py_ssize_t sz;
if (parseBytes_AsCharArray(obj, &a, &sz) < 0)
return -1;
if (ap != NULL)
*ap = a;
return 0;
}
#if defined(HAVE_WCHAR_H)
/*
* Convert a Python object to a wide character.
*/
static wchar_t sip_api_unicode_as_wchar(PyObject *obj)
{
wchar_t ch;
if (parseWChar(obj, &ch) < 0)
{
PyErr_Format(PyExc_ValueError,
"string of length 1 expected, not %s", Py_TYPE(obj)->tp_name);
return L'\0';
}
return ch;
}
/*
* Convert a Python object to a wide character string on the heap.
*/
static wchar_t *sip_api_unicode_as_wstring(PyObject *obj)
{
wchar_t *p;
if (parseWCharString(obj, &p) < 0)
{
PyErr_Format(PyExc_ValueError,
"string expected, not %s", Py_TYPE(obj)->tp_name);
return NULL;
}
return p;
}
/*
* Parse a wide character array and return it's address and length.
*/
static int parseWCharArray(PyObject *obj, wchar_t **ap, Py_ssize_t *aszp)
{
wchar_t *a;
Py_ssize_t asz;
if (obj == Py_None)
{
a = NULL;
asz = 0;
}
else if (PyUnicode_Check(obj))
{
if (convertToWCharArray(obj, &a, &asz) < 0)
return -1;
}
else
{
return -1;
}
if (ap != NULL)
*ap = a;
if (aszp != NULL)
*aszp = asz;
return 0;
}
/*
* Convert a Unicode object to a wide character array and return it's address
* and length.
*/
static int convertToWCharArray(PyObject *obj, wchar_t **ap, Py_ssize_t *aszp)
{
Py_ssize_t ulen;
wchar_t *wc;
ulen = PyUnicode_GET_LENGTH(obj);
if ((wc = sip_api_malloc(ulen * sizeof (wchar_t))) == NULL)
return -1;
if ((ulen = PyUnicode_AsWideChar(obj, wc, ulen)) < 0)
{
sip_api_free(wc);
return -1;
}
*ap = wc;
*aszp = ulen;
return 0;
}
/*
* Parse a wide character and return it.
*/
static int parseWChar(PyObject *obj, wchar_t *ap)
{
wchar_t a;
if (PyUnicode_Check(obj))
{
if (convertToWChar(obj, &a) < 0)
return -1;
}
else
{
return -1;
}
if (ap != NULL)
*ap = a;
return 0;
}
/*
* Convert a Unicode object to a wide character and return it.
*/
static int convertToWChar(PyObject *obj, wchar_t *ap)
{
if (PyUnicode_GET_LENGTH(obj) != 1)
return -1;
if (PyUnicode_AsWideChar(obj, ap, 1) != 1)
return -1;
return 0;
}
/*
* Parse a wide character string and return a copy on the heap.
*/
static int parseWCharString(PyObject *obj, wchar_t **ap)
{
wchar_t *a;
if (obj == Py_None)
{
a = NULL;
}
else if (PyUnicode_Check(obj))
{
if (convertToWCharString(obj, &a) < 0)
return -1;
}
else
{
return -1;
}
if (ap != NULL)
*ap = a;
return 0;
}
/*
* Convert a Unicode object to a wide character string and return a copy on
* the heap.
*/
static int convertToWCharString(PyObject *obj, wchar_t **ap)
{
Py_ssize_t ulen;
wchar_t *wc;
ulen = PyUnicode_GET_LENGTH(obj);
if ((wc = sip_api_malloc((ulen + 1) * sizeof (wchar_t))) == NULL)
return -1;
if ((ulen = PyUnicode_AsWideChar(obj, wc, ulen)) < 0)
{
sip_api_free(wc);
return -1;
}
wc[ulen] = L'\0';
*ap = wc;
return 0;
}
#else
/*
* Convert a Python object to a wide character.
*/
static int sip_api_unicode_as_wchar(PyObject *obj)
{
raiseNoWChar();
return 0;
}
/*
* Convert a Python object to a wide character.
*/
static int *sip_api_unicode_as_wstring(PyObject *obj)
{
raiseNoWChar();
return NULL;
}
/*
* Report the need for absent wide character support.
*/
static void raiseNoWChar()
{
PyErr_SetString(PyExc_SystemError, "sip built without wchar_t support");
}
#endif
/*
* The enum type alloc slot.
*/
static PyObject *sipEnumType_alloc(PyTypeObject *self, Py_ssize_t nitems)
{
sipEnumTypeObject *py_type;
sipPySlotDef *psd;
assert(currentType != NULL);
assert(sipTypeIsEnum(currentType));
/* Call the standard super-metatype alloc. */
if ((py_type = (sipEnumTypeObject *)PyType_Type.tp_alloc(self, nitems)) == NULL)
return NULL;
/*
* Set the links between the Python type object and the generated type
* structure. Strictly speaking this doesn't need to be done here.
*/
py_type->type = currentType;
currentType->td_py_type = (PyTypeObject *)py_type;
/*
* Initialise any slots. This must be done here, after the type is
* allocated but before PyType_Ready() is called.
*/
if ((psd = ((sipEnumTypeDef *)currentType)->etd_pyslots) != NULL)
addTypeSlots(&py_type->super, psd);
return (PyObject *)py_type;
}
/*
* The enum type getattro slot.
*/
static PyObject *sipEnumType_getattro(PyObject *self, PyObject *name)
{
PyObject *res;
sipEnumTypeDef *etd;
sipExportedModuleDef *client;
const sipEnumMemberDef *enm, *emd;
int enum_nr, nr_members, m;
const char *name_str;
/*
* Try a generic lookup first. This has the side effect of checking the
* type of the name object.
*/
if ((res = PyObject_GenericGetAttr(self, name)) != NULL)
return res;
if (!PyErr_ExceptionMatches(PyExc_AttributeError))
return NULL;
PyErr_Clear();
/* Get the member name. */
if ((name_str = PyUnicode_AsUTF8(name)) == NULL)
return NULL;
etd = (sipEnumTypeDef *)((sipEnumTypeObject *)self)->type;
client = ((sipTypeDef *)etd)->td_module;
/* Find the number of this enum. */
for (enum_nr = 0; enum_nr < client->em_nrtypes; ++enum_nr)
if (client->em_types[enum_nr] == (sipTypeDef *)etd)
break;
/* Get the enum members in the same scope. */
if (etd->etd_scope < 0)
{
nr_members = client->em_nrenummembers;
enm = client->em_enummembers;
}
else
{
const sipContainerDef *cod = get_container(client->em_types[etd->etd_scope]);
nr_members = cod->cod_nrenummembers;
enm = cod->cod_enummembers;
}
/* Find the enum member. */
for (emd = enm, m = 0; m < nr_members; ++m, ++emd)
if (emd->em_enum == enum_nr && strcmp(emd->em_name, name_str) == 0)
return sip_api_convert_from_enum(emd->em_val, (sipTypeDef *)etd);
PyErr_Format(PyExc_AttributeError,
"sip.enumtype object '%s' has no member '%s'",
sipPyNameOfEnum(etd), name_str);
return NULL;
}
/*
* Check if an object is of the right type to convert to an encoded string.
*/
static int check_encoded_string(PyObject *obj)
{
Py_buffer view;
if (obj == Py_None)
return 0;
if (PyUnicode_Check(obj))
return 0;
if (PyBytes_Check(obj))
return 0;
if (PyObject_GetBuffer(obj, &view, PyBUF_SIMPLE) < 0)
{
PyErr_Clear();
}
else
{
PyBuffer_Release(&view);
return 0;
}
return -1;
}
/*
* This is called by the atexit module.
*/
static PyObject *sip_exit(PyObject *self, PyObject *args)
{
(void)self;
(void)args;
/* Disable all Python reimplementations of virtuals. */
sipInterpreter = NULL;
Py_INCREF(Py_None);
return Py_None;
}
/*
* Register an exit notifier with the atexit module.
*/
static int sip_api_register_exit_notifier(PyMethodDef *md)
{
static PyObject *register_func = NULL;
PyObject *notifier, *res;
if (register_func == NULL && (register_func = import_module_attr("atexit", "register")) == NULL)
return -1;
if ((notifier = PyCFunction_New(md, NULL)) == NULL)
return -1;
res = PyObject_CallFunctionObjArgs(register_func, notifier, NULL);
Py_DECREF(notifier);
if (res == NULL)
return -1;
Py_DECREF(res);
return 0;
}
/*
* Return the function that converts a C++ instance to a Python object.
*/
static sipConvertFromFunc get_from_convertor(const sipTypeDef *td)
{
if (sipTypeIsMapped(td))
return ((const sipMappedTypeDef *)td)->mtd_cfrom;
assert(sipTypeIsClass(td));
if (autoconversion_disabled(td) != NULL)
return NULL;
return ((const sipClassTypeDef *)td)->ctd_cfrom;
}
/*
* Enable or disable the auto-conversion. Returns the previous enabled state
* or -1 on error.
*/
static int sip_api_enable_autoconversion(const sipTypeDef *td, int enable)
{
sipPyObject **pop;
assert(sipTypeIsClass(td));
pop = autoconversion_disabled(td);
/* See if there is anything to do. */
if (pop == NULL && enable)
return TRUE;
if (pop != NULL && !enable)
return FALSE;
if (pop != NULL)
{
/* Remove it from the list. */
sipPyObject *po = *pop;
*pop = po->next;
sip_api_free(po);
}
else
{
/* Add it to the list. */
if (addPyObjectToList(&sipDisabledAutoconversions, (PyObject *)sipTypeAsPyTypeObject(td)) < 0)
return -1;
}
return !enable;
}
/*
* Return a pointer to the entry in the list of disabled auto-conversions for a
* type.
*/
static sipPyObject **autoconversion_disabled(const sipTypeDef *td)
{
PyObject *type = (PyObject *)sipTypeAsPyTypeObject(td);
sipPyObject **pop;
for (pop = &sipDisabledAutoconversions; *pop != NULL; pop = &(*pop)->next)
if ((*pop)->object == type)
return pop;
return NULL;
}
/*
* Enable or disable auto-conversion of a class that supports it.
*/
static PyObject *enableAutoconversion(PyObject *self, PyObject *args)
{
sipWrapperType *wt;
int enable;
(void)self;
if (PyArg_ParseTuple(args, "O!i:enableautoconversion", &sipWrapperType_Type, &wt, &enable))
{
sipTypeDef *td = wt->wt_td;
int was_enabled;
PyObject *res;
if (!sipTypeIsClass(td) || ((sipClassTypeDef *)td)->ctd_cfrom == NULL)
{
PyErr_Format(PyExc_TypeError,
"%s is not a wrapped class that supports optional auto-conversion", ((PyTypeObject *)wt)->tp_name);
return NULL;
}
if ((was_enabled = sip_api_enable_autoconversion(td, enable)) < 0)
return NULL;
res = (was_enabled ? Py_True : Py_False);
Py_INCREF(res);
return res;
}
return NULL;
}
/*
* Python copies the nb_inplace_add slot to the sq_inplace_concat slot and vice
* versa if either are missing. This is a bug because they don't have the same
* API. We therefore reverse this.
*/
static void fix_slots(PyTypeObject *py_type, sipPySlotDef *psd)
{
while (psd->psd_func != NULL)
{
if (psd->psd_type == iadd_slot && py_type->tp_as_sequence != NULL)
py_type->tp_as_sequence->sq_inplace_concat = NULL;
if (psd->psd_type == iconcat_slot && py_type->tp_as_number != NULL)
py_type->tp_as_number->nb_inplace_add = NULL;
++psd;
}
}
/*
* Return the main instance for an object if it is a mixin.
*/
static sipSimpleWrapper *deref_mixin(sipSimpleWrapper *w)
{
return w->mixin_main != NULL ? (sipSimpleWrapper *)w->mixin_main : w;
}
/*
* Convert a new C/C++ pointer to a Python instance.
*/
static PyObject *wrap_simple_instance(void *cpp, const sipTypeDef *td,
sipWrapper *owner, int flags)
{
return sipWrapInstance(cpp, sipTypeAsPyTypeObject(td), empty_tuple, owner,
flags);
}
/*
* Resolve a proxy, if applicable.
*/
static void *resolve_proxy(const sipTypeDef *td, void *proxy)
{
sipProxyResolver *pr;
/* TODO: Deprecate this mechanism in favour of an event handler. */
for (pr = proxyResolvers; pr != NULL; pr = pr->next)
if (pr->td == td)
proxy = pr->resolver(proxy);
return proxy;
}
/*
* Clear a simple wrapper.
*/
static void clear_wrapper(sipSimpleWrapper *sw)
{
if (PyObject_TypeCheck((PyObject *)sw, (PyTypeObject *)&sipWrapper_Type))
removeFromParent((sipWrapper *)sw);
/*
* Transfer ownership to C++ so we don't try to release it when the
* Python object is garbage collected.
*/
sipResetPyOwned(sw);
sipOMRemoveObject(&cppPyMap, sw);
clear_access_func(sw);
}
/*
* Set the handler to invoke when a new user Python sub-class is defined and
* return the old handler.
*/
static sipNewUserTypeFunc sip_api_set_new_user_type_handler(
const sipTypeDef *td, sipNewUserTypeFunc handler)
{
sipWrapperType *wt = (sipWrapperType *)sipTypeAsPyTypeObject(td);
sipNewUserTypeFunc old_handler = wt->wt_new_user_type_handler;;
wt->wt_new_user_type_handler = handler;
return old_handler;
}
/*
* Set the user-specific type data.
*/
static void sip_api_set_type_user_data(sipWrapperType *wt, void *data)
{
wt->wt_user_data = data;
}
/*
* Get the user-specific type data.
*/
static void *sip_api_get_type_user_data(const sipWrapperType *wt)
{
return wt->wt_user_data;
}
/*
* Get the dict of a Python type (on behalf of the limited API).
*/
static PyObject *sip_api_py_type_dict(const PyTypeObject *py_type)
{
return py_type->tp_dict;
}
/*
* Get the name of a Python type (on behalf of the limited API).
*/
static const char *sip_api_py_type_name(const PyTypeObject *py_type)
{
return py_type->tp_name;
}
/*
* Check an object is a method and return TRUE and its component parts if it
* is.
*/
static int sip_api_get_method(PyObject *obj, sipMethodDef *method)
{
if (!PyMethod_Check(obj))
return FALSE;
if (method != NULL)
{
method->pm_self = PyMethod_GET_SELF(obj);
method->pm_function = PyMethod_GET_FUNCTION(obj);
}
return TRUE;
}
/*
* Create a method from its component parts.
*/
static PyObject *sip_api_from_method(const sipMethodDef *method)
{
return PyMethod_New(method->pm_function, method->pm_self);
}
/*
* Check an object is a C function and return TRUE and its component parts if
* it is.
*/
static int sip_api_get_c_function(PyObject *obj, sipCFunctionDef *c_function)
{
if (!PyCFunction_Check(obj))
return FALSE;
if (c_function != NULL)
{
c_function->cf_function = ((PyCFunctionObject *)obj)->m_ml;
c_function->cf_self = PyCFunction_GET_SELF(obj);
}
return TRUE;
}
/*
* Check an object is a date and return TRUE and its component parts if it is.
*/
static int sip_api_get_date(PyObject *obj, sipDateDef *date)
{
if (!PyDateTimeAPI)
PyDateTime_IMPORT;
if (!PyDate_Check(obj))
return FALSE;
if (date != NULL)
{
date->pd_year = PyDateTime_GET_YEAR(obj);
date->pd_month = PyDateTime_GET_MONTH(obj);
date->pd_day = PyDateTime_GET_DAY(obj);
}
return TRUE;
}
/*
* Create a date from its component parts.
*/
static PyObject *sip_api_from_date(const sipDateDef *date)
{
if (!PyDateTimeAPI)
PyDateTime_IMPORT;
return PyDate_FromDate(date->pd_year, date->pd_month, date->pd_day);
}
/*
* Check an object is a datetime and return TRUE and its component parts if it
* is.
*/
static int sip_api_get_datetime(PyObject *obj, sipDateDef *date,
sipTimeDef *time)
{
if (!PyDateTimeAPI)
PyDateTime_IMPORT;
if (!PyDateTime_Check(obj))
return FALSE;
if (date != NULL)
{
date->pd_year = PyDateTime_GET_YEAR(obj);
date->pd_month = PyDateTime_GET_MONTH(obj);
date->pd_day = PyDateTime_GET_DAY(obj);
}
if (time != NULL)
{
time->pt_hour = PyDateTime_DATE_GET_HOUR(obj);
time->pt_minute = PyDateTime_DATE_GET_MINUTE(obj);
time->pt_second = PyDateTime_DATE_GET_SECOND(obj);
time->pt_microsecond = PyDateTime_DATE_GET_MICROSECOND(obj);
}
return TRUE;
}
/*
* Create a datetime from its component parts.
*/
static PyObject *sip_api_from_datetime(const sipDateDef *date,
const sipTimeDef *time)
{
if (!PyDateTimeAPI)
PyDateTime_IMPORT;
return PyDateTime_FromDateAndTime(date->pd_year, date->pd_month,
date->pd_day, time->pt_hour, time->pt_minute, time->pt_second,
time->pt_microsecond);
}
/*
* Check an object is a time and return TRUE and its component parts if it is.
*/
static int sip_api_get_time(PyObject *obj, sipTimeDef *time)
{
if (!PyDateTimeAPI)
PyDateTime_IMPORT;
if (!PyTime_Check(obj))
return FALSE;
if (time != NULL)
{
time->pt_hour = PyDateTime_TIME_GET_HOUR(obj);
time->pt_minute = PyDateTime_TIME_GET_MINUTE(obj);
time->pt_second = PyDateTime_TIME_GET_SECOND(obj);
time->pt_microsecond = PyDateTime_TIME_GET_MICROSECOND(obj);
}
return TRUE;
}
/*
* Create a time from its component parts.
*/
static PyObject *sip_api_from_time(const sipTimeDef *time)
{
if (!PyDateTimeAPI)
PyDateTime_IMPORT;
return PyTime_FromTime(time->pt_hour, time->pt_minute, time->pt_second,
time->pt_microsecond);
}
/*
* See if a type is user defined.
*/
static int sip_api_is_user_type(const sipWrapperType *wt)
{
return wt->wt_user_type;
}
/*
* Return a frame from the execution stack.
*/
static struct _frame *sip_api_get_frame(int depth)
{
#if defined(PYPY_VERSION)
/* PyPy only supports a depth of 0. */
return NULL;
#else
struct _frame *frame = PyEval_GetFrame();
while (frame != NULL && depth > 0)
{
frame = frame->f_back;
--depth;
}
return frame;
#endif
}
/*
* Check if a type was generated using the given plugin. Note that, although
* this is part of the public API it is undocumented on purpose.
*/
static int sip_api_check_plugin_for_type(const sipTypeDef *td,
const char *name)
{
/*
* The current thinking on plugins is that SIP v5 will look for a plugin
* with a name derived from the name as the current module in the same
* directory as the .sip defining the module (ie. no %Plugin directive). A
* module hierarchy may have multiple plugins but they must co-operate. If
* a plugin generates user data then it should include a void* (and a
* run-time API) so that other plugins can extend it further. This
* approach means that a plugin's user data structure can be opaque.
*/
sipExportedModuleDef *em = td->td_module;
sipImportedModuleDef *im;
if (strcmp(sipNameOfModule(em), name) == 0)
return TRUE;
if ((im = em->em_imports) == NULL)
return FALSE;
while (im->im_name != NULL)
{
if (strcmp(im->im_name, name) == 0)
return TRUE;
++im;
}
return FALSE;
}
/*
* Create a new Unicode object and return the character size and buffer.
*/
static PyObject *sip_api_unicode_new(Py_ssize_t len, unsigned maxchar,
int *kind, void **data)
{
PyObject *obj;
if ((obj = PyUnicode_New(len, maxchar)) != NULL)
{
*kind = PyUnicode_KIND(obj);
*data = PyUnicode_DATA(obj);
}
return obj;
}
/*
* Update a new Unicode object with a new character.
*/
static void sip_api_unicode_write(int kind, void *data, int index,
unsigned value)
{
PyUnicode_WRITE(kind, data, index, value);
}
/*
* Get the address of the contents of a Unicode object, the character size and
* the length.
*/
static void *sip_api_unicode_data(PyObject *obj, int *char_size,
Py_ssize_t *len)
{
void *data;
/* Assume there will be an error. */
*char_size = -1;
if (PyUnicode_READY(obj) < 0)
return NULL;
*len = PyUnicode_GET_LENGTH(obj);
switch (PyUnicode_KIND(obj))
{
case PyUnicode_1BYTE_KIND:
*char_size = 1;
data = PyUnicode_1BYTE_DATA(obj);
break;
case PyUnicode_2BYTE_KIND:
*char_size = 2;
data = PyUnicode_2BYTE_DATA(obj);
break;
case PyUnicode_4BYTE_KIND:
*char_size = 4;
data = PyUnicode_4BYTE_DATA(obj);
break;
default:
data = NULL;
}
return data;
}
/*
* Get the buffer information supplied by an object that supports the buffer
* protocol.
*/
static int sip_api_get_buffer_info(PyObject *obj, sipBufferInfoDef *bi)
{
int rc;
Py_buffer *buffer;
if (!PyObject_CheckBuffer(obj))
return 0;
if (bi == NULL)
return 1;
if ((bi->bi_internal = sip_api_malloc(sizeof (Py_buffer))) == NULL)
return -1;
buffer = (Py_buffer *)bi->bi_internal;
if (PyObject_GetBuffer(obj, buffer, PyBUF_FORMAT) < 0)
return -1;
if (buffer->ndim == 1)
{
bi->bi_buf = buffer->buf;
bi->bi_obj = buffer->obj;
bi->bi_len = buffer->len;
bi->bi_format = buffer->format;
rc = 1;
}
else
{
PyErr_SetString(PyExc_TypeError, "a 1-dimensional buffer is required");
PyBuffer_Release(buffer);
rc = -1;
}
return rc;
}
/*
* Release the buffer information obtained from a previous call to
* sipGetBufferInfo().
*/
static void sip_api_release_buffer_info(sipBufferInfoDef *bi)
{
if (bi->bi_internal != NULL)
{
PyBuffer_Release((Py_buffer *)bi->bi_internal);
sip_api_free(bi->bi_internal);
bi->bi_internal = NULL;
}
}
/*
* Import all the required types from an imported module.
*/
static int importTypes(sipExportedModuleDef *client, sipImportedModuleDef *im,
sipExportedModuleDef *em)
{
const char *name;
int i, e;
/*
* Look for each required type in turn. Both tables are sorted so a single
* pass will find them all.
*/
for (i = e = 0; (name = im->im_imported_types[i].it_name) != NULL; ++i)
{
sipTypeDef *td = NULL;
do
{
sipTypeDef *e_td;
if (e >= em->em_nrtypes)
{
PyErr_Format(PyExc_RuntimeError,
"%s cannot import type '%s' from %s",
sipNameOfModule(client), name, sipNameOfModule(em));
return -1;
}
e_td = em->em_types[e++];
/* Ignore unresolved external types. */
if (e_td != NULL && strcmp(name, sipTypeName(e_td)) == 0)
td = e_td;
}
while (td == NULL);
im->im_imported_types[i].it_td = td;
}
return 0;
}
/*
* Import all the required virtual error handlers from an imported module.
*/
static int importErrorHandlers(sipExportedModuleDef *client,
sipImportedModuleDef *im, sipExportedModuleDef *em)
{
const char *name;
int i;
for (i = 0; (name = im->im_imported_veh[i].iveh_name) != NULL; ++i)
{
sipVirtErrorHandlerDef *veh = em->em_virterrorhandlers;
sipVirtErrorHandlerFunc handler = NULL;
if (veh != NULL)
{
while (veh->veh_name != NULL)
{
if (strcmp(veh->veh_name, name) == 0)
{
handler = veh->veh_handler;
break;
}
++veh;
}
}
if (handler == NULL)
{
PyErr_Format(PyExc_RuntimeError,
"%s cannot import virtual error handler '%s' from %s",
sipNameOfModule(client), name, sipNameOfModule(em));
return -1;
}
im->im_imported_veh[i].iveh_handler = handler;
}
return 0;
}
/*
* Import all the required exceptions from an imported module.
*/
static int importExceptions(sipExportedModuleDef *client,
sipImportedModuleDef *im, sipExportedModuleDef *em)
{
const char *name;
int i;
for (i = 0; (name = im->im_imported_exceptions[i].iexc_name) != NULL; ++i)
{
PyObject **exc = em->em_exceptions;
PyObject *exception = NULL;
if (exc != NULL)
{
while (*exc != NULL)
{
if (strcmp(((PyTypeObject *)(*exc))->tp_name, name) == 0)
{
exception = *exc;
break;
}
++exc;
}
}
if (exception == NULL)
{
PyErr_Format(PyExc_RuntimeError,
"%s cannot import exception '%s' from %s",
sipNameOfModule(client), name, sipNameOfModule(em));
return -1;
}
im->im_imported_exceptions[i].iexc_object = exception;
}
return 0;
}
/*
* Enable or disable the garbage collector. Return the previous state or -1 if
* there was an error.
*/
static int sip_api_enable_gc(int enable)
{
static PyObject *enable_func = NULL, *disable_func, *isenabled_func;
PyObject *result;
int was_enabled;
/*
* This may be -ve in the highly unusual event that a previous call failed.
*/
if (enable < 0)
return -1;
/* Get the functions if we haven't already got them. */
if (enable_func == NULL)
{
PyObject *gc_module;
if ((gc_module = PyImport_ImportModule("gc")) == NULL)
return -1;
if ((enable_func = PyObject_GetAttrString(gc_module, "enable")) == NULL)
{
Py_DECREF(gc_module);
return -1;
}
if ((disable_func = PyObject_GetAttrString(gc_module, "disable")) == NULL)
{
Py_DECREF(enable_func);
Py_DECREF(gc_module);
return -1;
}
if ((isenabled_func = PyObject_GetAttrString(gc_module, "isenabled")) == NULL)
{
Py_DECREF(disable_func);
Py_DECREF(enable_func);
Py_DECREF(gc_module);
return -1;
}
Py_DECREF(gc_module);
}
/* Get the current state. */
if ((result = PyObject_Call(isenabled_func, empty_tuple, NULL)) == NULL)
return -1;
was_enabled = PyObject_IsTrue(result);
Py_DECREF(result);
if (was_enabled < 0)
return -1;
/* See if the state needs changing. */
if (!was_enabled != !enable)
{
/* Enable or disable as required. */
result = PyObject_Call((enable ? enable_func : disable_func),
empty_tuple, NULL);
Py_XDECREF(result);
if (result != Py_None)
return -1;
}
return was_enabled;
}
/*
* A thin wrapper around PyObject_Print() usually used when debugging with the
* limited API.
*/
static void sip_api_print_object(PyObject *o)
{
PyObject_Print(o, stdout, 0);
}
/*
* Register a handler for a particular event.
*/
static int sip_api_register_event_handler(sipEventType type,
const sipTypeDef *td, void *handler)
{
sipEventHandler *eh;
assert(sipTypeIsClass(td));
if ((eh = sip_api_malloc(sizeof (sipEventHandler))) == NULL)
return -1;
eh->ctd = (const sipClassTypeDef *)td;
eh->handler = handler;
eh->next = event_handlers[(int)type];
event_handlers[(int)type] = eh;
return 0;
}
/*
* Returns TRUE if a generated class type is a sub-class of a base generated
* class type.
*/
static int is_subtype(const sipClassTypeDef *ctd,
const sipClassTypeDef *base_ctd)
{
const sipEncodedTypeDef *sup;
/* Handle the trivial cases. */
if (ctd == base_ctd)
return TRUE;
if ((sup = ctd->ctd_supers) == NULL)
return FALSE;
/* Search the super-types. */
do
{
const sipClassTypeDef *sup_ctd = sipGetGeneratedClassType(sup, ctd);
if (is_subtype(sup_ctd, base_ctd))
return TRUE;
}
while (!sup++->sc_flag);
return FALSE;
}
/*
* Return an attribute of an imported module.
*/
static PyObject *import_module_attr(const char *module, const char *attr)
{
PyObject *mod_obj, *attr_obj;
if ((mod_obj = PyImport_ImportModule(module)) == NULL)
return NULL;
attr_obj = PyObject_GetAttrString(mod_obj, attr);
Py_DECREF(mod_obj);
return attr_obj;
}
/*
* Get the container for a generated type.
*/
static const sipContainerDef *get_container(const sipTypeDef *td)
{
if (sipTypeIsMapped(td))
return &((const sipMappedTypeDef *)td)->mtd_container;
return &((const sipClassTypeDef *)td)->ctd_container;
}
/*
* Get the __qualname__ of an object based on its enclosing scope.
*/
static PyObject *get_qualname(const sipTypeDef *td, PyObject *name)
{
PyTypeObject *scope_type;
/* Get the type that is the scope. */
scope_type = sipTypeAsPyTypeObject(td);
return PyUnicode_FromFormat("%U.%U",
((PyHeapTypeObject *)scope_type)->ht_qualname, name);
}
/*
* Implement PySlice_GetIndicesEx() (or its subsequent replacement).
*/
int sip_api_convert_from_slice_object(PyObject *slice, Py_ssize_t length,
Py_ssize_t *start, Py_ssize_t *stop, Py_ssize_t *step,
Py_ssize_t *slicelength)
{
#if PY_VERSION_HEX >= 0x03070000
if (PySlice_Unpack(slice, start, stop, step) < 0)
return -1;
*slicelength = PySlice_AdjustIndices(length, start, stop, *step);
return 0;
#else
return PySlice_GetIndicesEx(slice, length, start, stop, step, slicelength);
#endif
}
/*
* Call a visitor function for every wrapped object.
*/
static void sip_api_visit_wrappers(sipWrapperVisitorFunc visitor,
void *closure)
{
const sipHashEntry *he;
unsigned long i;
for (he = cppPyMap.hash_array, i = 0; i < cppPyMap.size; ++i, ++he)
{
if (he->key != NULL)
{
sipSimpleWrapper *sw;
for (sw = he->first; sw != NULL; sw = sw->next)
visitor(sw, closure);
}
}
}