Files
gtk/gsk/gskpath.c
Matthias Clasen f8aa3c0901 path: Fix serialization for circles
The svg A can not do a full circle, since it is
a two point parametrization - if the start and
end point are the same, it draws nothing.
So, use two arcs.
2020-11-24 18:18:15 -05:00

2568 lines
69 KiB
C

/*
* Copyright © 2020 Benjamin Otte
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library. If not, see <http://www.gnu.org/licenses/>.
*
* Authors: Benjamin Otte <otte@gnome.org>
*/
#include "config.h"
#include "gskpathprivate.h"
#include "gsksplineprivate.h"
/**
* SECTION:gskpath
* @Title: Path
* @Short_description: Lines and Curves
* @See_also: #GskRenderNode
*
* This section describes the #GskPath structure that is used to
* describe lines and curves that are more complex than simple rectangles.
*
* #GskPath is an immutable struct. After creation, you cannot change
* the types it represents. Instead, new #GskPath have to be created.
* The #GskPathBuilder structure is meant to help in this endeavor.
*/
typedef enum
{
GSK_PATH_FLAT,
GSK_PATH_CLOSED
} GskPathFlags;
typedef struct _GskContour GskContour;
typedef struct _GskContourClass GskContourClass;
struct _GskContour
{
const GskContourClass *klass;
};
struct _GskContourClass
{
gsize struct_size;
const char *type_name;
gsize (* get_size) (const GskContour *contour);
GskPathFlags (* get_flags) (const GskContour *contour);
void (* print) (const GskContour *contour,
GString *string);
gboolean (* get_bounds) (const GskContour *contour,
graphene_rect_t *bounds);
gboolean (* foreach) (const GskContour *contour,
float tolerance,
GskPathForeachFunc func,
gpointer user_data);
gpointer (* init_measure) (const GskContour *contour,
float tolerance,
float *out_length);
void (* free_measure) (const GskContour *contour,
gpointer measure_data);
void (* get_point) (const GskContour *contour,
gpointer measure_data,
float distance,
graphene_point_t *pos,
graphene_vec2_t *tangent);
void (* copy) (const GskContour *contour,
GskContour *dest);
void (* add_segment) (const GskContour *contour,
GskPathBuilder *builder,
gpointer measure_data,
float start,
float end);
};
struct _GskPath
{
/*< private >*/
guint ref_count;
GskPathFlags flags;
gsize n_contours;
GskContour *contours[];
/* followed by the contours data */
};
/**
* GskPath:
*
* A #GskPath struct is a reference counted struct
* and should be treated as opaque.
*/
G_DEFINE_BOXED_TYPE (GskPath, gsk_path,
gsk_path_ref,
gsk_path_unref)
static gsize
gsk_contour_get_size_default (const GskContour *contour)
{
return contour->klass->struct_size;
}
/* RECT CONTOUR */
typedef struct _GskRectContour GskRectContour;
struct _GskRectContour
{
GskContour contour;
float x;
float y;
float width;
float height;
};
static GskPathFlags
gsk_rect_contour_get_flags (const GskContour *contour)
{
return GSK_PATH_FLAT | GSK_PATH_CLOSED;
}
static void
gsk_rect_contour_print (const GskContour *contour,
GString *string)
{
const GskRectContour *self = (const GskRectContour *) contour;
g_string_append_printf (string, "M %g %g h %g v %g h %g z",
self->x, self->y,
self->width, self->height,
-self->width);
}
static gboolean
gsk_rect_contour_get_bounds (const GskContour *contour,
graphene_rect_t *rect)
{
const GskRectContour *self = (const GskRectContour *) contour;
graphene_rect_init (rect, self->x, self->y, self->width, self->height);
return TRUE;
}
static gboolean
gsk_rect_contour_foreach (const GskContour *contour,
float tolerance,
GskPathForeachFunc func,
gpointer user_data)
{
const GskRectContour *self = (const GskRectContour *) contour;
graphene_point_t pts[] = {
GRAPHENE_POINT_INIT (self->x, self->y),
GRAPHENE_POINT_INIT (self->x + self->width, self->y),
GRAPHENE_POINT_INIT (self->x + self->width, self->y + self->height),
GRAPHENE_POINT_INIT (self->x, self->y + self->height),
GRAPHENE_POINT_INIT (self->x, self->y)
};
return func (GSK_PATH_MOVE, &pts[0], 1, user_data)
&& func (GSK_PATH_LINE, &pts[0], 2, user_data)
&& func (GSK_PATH_LINE, &pts[1], 2, user_data)
&& func (GSK_PATH_LINE, &pts[2], 2, user_data)
&& func (GSK_PATH_CLOSE, &pts[3], 2, user_data);
}
static gpointer
gsk_rect_contour_init_measure (const GskContour *contour,
float tolerance,
float *out_length)
{
const GskRectContour *self = (const GskRectContour *) contour;
*out_length = 2 * ABS (self->width) + 2 * ABS (self->height);
return NULL;
}
static void
gsk_rect_contour_free_measure (const GskContour *contour,
gpointer data)
{
}
static void
gsk_rect_contour_get_point (const GskContour *contour,
gpointer measure_data,
float distance,
graphene_point_t *pos,
graphene_vec2_t *tangent)
{
const GskRectContour *self = (const GskRectContour *) contour;
if (distance < fabsf (self->width))
{
if (pos)
*pos = GRAPHENE_POINT_INIT (self->x + copysignf (distance, self->width), self->y);
if (tangent)
graphene_vec2_init (tangent, copysignf (1.0f, self->width), 0.0f);
return;
}
distance -= fabsf (self->width);
if (distance < fabsf (self->height))
{
if (pos)
*pos = GRAPHENE_POINT_INIT (self->x + self->width, self->y + copysignf (distance, self->height));
if (tangent)
graphene_vec2_init (tangent, 0.0f, copysignf (self->height, 1.0f));
return;
}
distance -= fabs (self->height);
if (distance < fabsf (self->width))
{
if (pos)
*pos = GRAPHENE_POINT_INIT (self->x + self->width - copysignf (distance, self->width), self->y + self->height);
if (tangent)
graphene_vec2_init (tangent, - copysignf (1.0f, self->width), 0.0f);
return;
}
distance -= fabsf (self->width);
if (pos)
*pos = GRAPHENE_POINT_INIT (self->x, self->y + self->height - copysignf (distance, self->height));
if (tangent)
graphene_vec2_init (tangent, 0.0f, - copysignf (self->height, 1.0f));
}
static void
gsk_rect_contour_copy (const GskContour *contour,
GskContour *dest)
{
const GskRectContour *self = (const GskRectContour *) contour;
GskRectContour *target = (GskRectContour *) dest;
*target = *self;
}
static void
gsk_rect_contour_add_segment (const GskContour *contour,
GskPathBuilder *builder,
gpointer measure_data,
float start,
float end)
{
const GskRectContour *self = (const GskRectContour *) contour;
float w = ABS (self->width);
float h = ABS (self->height);
if (start < w)
{
gsk_path_builder_move_to (builder, self->x + start * (w / self->width), self->y);
if (end <= w)
{
gsk_path_builder_line_to (builder, self->x + end * (w / self->width), self->y);
return;
}
gsk_path_builder_line_to (builder, self->x + self->width, self->y);
}
start -= w;
end -= w;
if (start < h)
{
if (start >= 0)
gsk_path_builder_move_to (builder, self->x + self->width, self->y + start * (h / self->height));
if (end <= h)
{
gsk_path_builder_line_to (builder, self->x + self->width, self->y + end * (h / self->height));
return;
}
gsk_path_builder_line_to (builder, self->x + self->width, self->y + self->height);
}
start -= h;
end -= h;
if (start < w)
{
if (start >= 0)
gsk_path_builder_move_to (builder, self->x + (w - start) * (w / self->width), self->y + self->height);
if (end <= w)
{
gsk_path_builder_line_to (builder, self->x + (w - end) * (w / self->width), self->y + self->height);
return;
}
gsk_path_builder_line_to (builder, self->x, self->y + self->height);
}
start -= w;
end -= w;
if (start < h)
{
if (start >= 0)
gsk_path_builder_move_to (builder, self->x, self->y + (h - start) * (h / self->height));
if (end <= h)
{
gsk_path_builder_line_to (builder, self->x, self->y + (h - end) * (h / self->height));
return;
}
gsk_path_builder_line_to (builder, self->x, self->y);
}
}
static const GskContourClass GSK_RECT_CONTOUR_CLASS =
{
sizeof (GskRectContour),
"GskRectContour",
gsk_contour_get_size_default,
gsk_rect_contour_get_flags,
gsk_rect_contour_print,
gsk_rect_contour_get_bounds,
gsk_rect_contour_foreach,
gsk_rect_contour_init_measure,
gsk_rect_contour_free_measure,
gsk_rect_contour_get_point,
gsk_rect_contour_copy,
gsk_rect_contour_add_segment
};
static void
gsk_rect_contour_init (GskContour *contour,
float x,
float y,
float width,
float height)
{
GskRectContour *self = (GskRectContour *) contour;
self->contour.klass = &GSK_RECT_CONTOUR_CLASS;
self->x = x;
self->y = y;
self->width = width;
self->height = height;
}
/* CIRCLE CONTOUR */
#define DEG_TO_RAD(x) ((x) * (G_PI / 180.f))
typedef struct _GskCircleContour GskCircleContour;
struct _GskCircleContour
{
GskContour contour;
graphene_point_t center;
float radius;
float start_angle; /* in degrees */
float end_angle; /* start_angle +/- 360 */
};
static GskPathFlags
gsk_circle_contour_get_flags (const GskContour *contour)
{
const GskCircleContour *self = (const GskCircleContour *) contour;
/* XXX: should we explicitly close paths? */
if (fabs (self->start_angle - self->end_angle) >= 360)
return GSK_PATH_CLOSED;
else
return 0;
}
static void
gsk_circle_contour_print (const GskContour *contour,
GString *string)
{
const GskCircleContour *self = (const GskCircleContour *) contour;
double mid_angle = (self->end_angle - self->start_angle) / 2;
graphene_point_t start = GRAPHENE_POINT_INIT (self->center.x + cos (DEG_TO_RAD (self->start_angle)) * self->radius,
self->center.y + sin (DEG_TO_RAD (self->start_angle)) * self->radius);
graphene_point_t mid = GRAPHENE_POINT_INIT (self->center.x + cos (DEG_TO_RAD (mid_angle)) * self->radius,
self->center.y + sin (DEG_TO_RAD (mid_angle)) * self->radius);
graphene_point_t end = GRAPHENE_POINT_INIT (self->center.x + cos (DEG_TO_RAD (self->end_angle)) * self->radius,
self->center.y + sin (DEG_TO_RAD (self->end_angle)) * self->radius);
g_string_append_printf (string, "M %g %g ", start.x, start.y);
g_string_append_printf (string, "A %g %g 0 1 0 %g %g ",
self->radius, self->radius, mid.x, mid.y);
g_string_append_printf (string, "A %g %g 0 1 0 %g %g ",
self->radius, self->radius, end.x, end.y);
if (fabs (self->start_angle - self->end_angle) >= 360)
g_string_append (string, "Z");
}
static gboolean
gsk_circle_contour_get_bounds (const GskContour *contour,
graphene_rect_t *rect)
{
const GskCircleContour *self = (const GskCircleContour *) contour;
/* XXX: handle partial circles */
graphene_rect_init (rect,
self->center.x - self->radius,
self->center.y - self->radius,
2 * self->radius,
2 * self->radius);
return TRUE;
}
typedef struct
{
GskPathForeachFunc func;
gpointer user_data;
} ForeachWrapper;
static gboolean
gsk_circle_contour_curve (const graphene_point_t curve[4],
gpointer data)
{
ForeachWrapper *wrapper = data;
return wrapper->func (GSK_PATH_CURVE, curve, 4, wrapper->user_data);
}
static gboolean
gsk_circle_contour_foreach (const GskContour *contour,
float tolerance,
GskPathForeachFunc func,
gpointer user_data)
{
const GskCircleContour *self = (const GskCircleContour *) contour;
graphene_point_t start = GRAPHENE_POINT_INIT (self->center.x + cos (DEG_TO_RAD (self->start_angle)) * self->radius,
self->center.y + sin (DEG_TO_RAD (self->start_angle)) * self->radius);
if (!func (GSK_PATH_MOVE, &start, 1, user_data))
return FALSE;
if (!gsk_spline_decompose_arc (&self->center,
self->radius,
tolerance,
DEG_TO_RAD (self->start_angle),
DEG_TO_RAD (self->end_angle),
gsk_circle_contour_curve,
&(ForeachWrapper) { func, user_data }))
return FALSE;
if (fabs (self->start_angle - self->end_angle) >= 360)
{
if (!func (GSK_PATH_CLOSE, (graphene_point_t[2]) { start, start }, 2, user_data))
return FALSE;
}
return TRUE;
}
static gpointer
gsk_circle_contour_init_measure (const GskContour *contour,
float tolerance,
float *out_length)
{
const GskCircleContour *self = (const GskCircleContour *) contour;
*out_length = DEG_TO_RAD (fabs (self->start_angle - self->end_angle)) * self->radius;
return NULL;
}
static void
gsk_circle_contour_free_measure (const GskContour *contour,
gpointer data)
{
}
static void
gsk_circle_contour_get_point (const GskContour *contour,
gpointer measure_data,
float distance,
graphene_point_t *pos,
graphene_vec2_t *tangent)
{
g_warning ("FIXME");
}
static void
gsk_circle_contour_copy (const GskContour *contour,
GskContour *dest)
{
const GskCircleContour *self = (const GskCircleContour *) contour;
GskCircleContour *target = (GskCircleContour *) dest;
*target = *self;
}
static void
gsk_circle_contour_add_segment (const GskContour *contour,
GskPathBuilder *builder,
gpointer measure_data,
float start,
float end)
{
g_warning ("FIXME");
}
static const GskContourClass GSK_CIRCLE_CONTOUR_CLASS =
{
sizeof (GskCircleContour),
"GskCircleContour",
gsk_contour_get_size_default,
gsk_circle_contour_get_flags,
gsk_circle_contour_print,
gsk_circle_contour_get_bounds,
gsk_circle_contour_foreach,
gsk_circle_contour_init_measure,
gsk_circle_contour_free_measure,
gsk_circle_contour_get_point,
gsk_circle_contour_copy,
gsk_circle_contour_add_segment
};
static void
gsk_circle_contour_init (GskContour *contour,
const graphene_point_t *center,
float radius,
float start_angle,
float end_angle)
{
GskCircleContour *self = (GskCircleContour *) contour;
g_assert (fabs (start_angle - end_angle) <= 360);
self->contour.klass = &GSK_CIRCLE_CONTOUR_CLASS;
self->center = *center;
self->radius = radius;
self->start_angle = start_angle;
self->end_angle = end_angle;
}
/* STANDARD CONTOUR */
typedef struct _GskStandardOperation GskStandardOperation;
struct _GskStandardOperation {
GskPathOperation op;
gsize point; /* index into points array of the start point (last point of previous op) */
};
typedef struct _GskStandardContour GskStandardContour;
struct _GskStandardContour
{
GskContour contour;
GskPathFlags flags;
gsize n_ops;
gsize n_points;
graphene_point_t *points;
GskStandardOperation ops[];
};
static gsize
gsk_standard_contour_compute_size (gsize n_ops,
gsize n_points)
{
return sizeof (GskStandardContour)
+ sizeof (GskStandardOperation) * n_ops
+ sizeof (graphene_point_t) * n_points;
}
static gsize
gsk_standard_contour_get_size (const GskContour *contour)
{
const GskStandardContour *self = (const GskStandardContour *) contour;
return gsk_standard_contour_compute_size (self->n_ops, self->n_points);
}
static gboolean
gsk_standard_contour_foreach (const GskContour *contour,
float tolerance,
GskPathForeachFunc func,
gpointer user_data)
{
const GskStandardContour *self = (const GskStandardContour *) contour;
gsize i;
const gsize n_points[] = {
[GSK_PATH_MOVE] = 1,
[GSK_PATH_CLOSE] = 2,
[GSK_PATH_LINE] = 2,
[GSK_PATH_CURVE] = 4
};
for (i = 0; i < self->n_ops; i ++)
{
if (!func (self->ops[i].op, &self->points[self->ops[i].point], n_points[self->ops[i].op], user_data))
return FALSE;
}
return TRUE;
}
static GskPathFlags
gsk_standard_contour_get_flags (const GskContour *contour)
{
const GskStandardContour *self = (const GskStandardContour *) contour;
return self->flags;
}
static void
gsk_standard_contour_print (const GskContour *contour,
GString *string)
{
const GskStandardContour *self = (const GskStandardContour *) contour;
gsize i;
for (i = 0; i < self->n_ops; i ++)
{
graphene_point_t *pt = &self->points[self->ops[i].point];
switch (self->ops[i].op)
{
case GSK_PATH_MOVE:
g_string_append_printf (string, "M %g %g", pt[0].x, pt[0].y);
break;
case GSK_PATH_CLOSE:
g_string_append (string, " Z");
break;
case GSK_PATH_LINE:
g_string_append_printf (string, " L %g %g", pt[1].x, pt[1].y);
break;
case GSK_PATH_CURVE:
g_string_append_printf (string, " C %g %g, %g %g, %g %g",
pt[1].x, pt[1].y,
pt[2].x, pt[2].y,
pt[3].x, pt[3].y);
break;
default:
g_assert_not_reached();
return;
}
}
}
static void
rect_add_point (graphene_rect_t *rect,
graphene_point_t *point)
{
if (point->x < rect->origin.x)
{
rect->size.width += rect->origin.x - point->x;
rect->origin.x = point->x;
}
else if (point->x > rect->origin.x + rect->size.width)
{
rect->size.width = point->x - rect->origin.x;
}
if (point->y < rect->origin.y)
{
rect->size.height += rect->origin.y - point->y;
rect->origin.y = point->y;
}
else if (point->y > rect->origin.y + rect->size.height)
{
rect->size.height = point->y - rect->origin.y;
}
}
static gboolean
gsk_standard_contour_get_bounds (const GskContour *contour,
graphene_rect_t *bounds)
{
const GskStandardContour *self = (const GskStandardContour *) contour;
gsize i;
if (self->n_points == 0)
return FALSE;
graphene_rect_init (bounds,
self->points[0].x, self->points[0].y,
0, 0);
for (i = 1; i < self->n_points; i ++)
{
rect_add_point (bounds, &self->points[i]);
}
return bounds->size.width > 0 && bounds->size.height > 0;
}
typedef struct
{
float start;
float end;
gsize op;
float op_start;
float op_end;
} GskStandardContourMeasure;
typedef struct
{
GArray *array;
GskStandardContourMeasure measure;
} LengthDecompose;
static void
gsk_standard_contour_measure_add_point (const graphene_point_t *from,
const graphene_point_t *to,
gpointer user_data)
{
LengthDecompose *decomp = user_data;
float seg_length;
seg_length = graphene_point_distance (from, to, NULL, NULL);
decomp->measure.end += seg_length;
g_array_append_val (decomp->array, decomp->measure);
decomp->measure.start += seg_length;
}
static gpointer
gsk_standard_contour_init_measure (const GskContour *contour,
float tolerance,
float *out_length)
{
const GskStandardContour *self = (const GskStandardContour *) contour;
gsize i;
float length, seg_length;
GArray *array;
array = g_array_new (FALSE, FALSE, sizeof (GskStandardContourMeasure));
length = 0;
for (i = 1; i < self->n_ops; i ++)
{
graphene_point_t *pt = &self->points[self->ops[i].point];
switch (self->ops[i].op)
{
case GSK_PATH_MOVE:
break;
case GSK_PATH_CLOSE:
case GSK_PATH_LINE:
seg_length = graphene_point_distance (&pt[0], &pt[1], NULL, NULL);
if (seg_length > 0)
{
g_array_append_vals (array,
&(GskStandardContourMeasure) {
length,
length + seg_length,
i,
length,
length + seg_length
}, 1);
length += seg_length;
}
break;
case GSK_PATH_CURVE:
{
LengthDecompose decomp = { array, { length, length, i, length, 0 } };
gsize j = array->len;
gsk_spline_decompose_cubic (pt, tolerance, gsk_standard_contour_measure_add_point, &decomp);
length = decomp.measure.start;
for (;j < array->len; j++)
g_array_index (array, GskStandardContourMeasure, j).op_end = length;
}
break;
default:
g_assert_not_reached();
return NULL;
}
}
*out_length = length;
return array;
}
static void
gsk_standard_contour_free_measure (const GskContour *contour,
gpointer data)
{
g_array_free (data, TRUE);
}
static int
gsk_standard_contour_find_measure (gconstpointer m,
gconstpointer l)
{
const GskStandardContourMeasure *measure = m;
float length = *(const float *) l;
if (measure->start > length)
return 1;
else if (measure->end <= length)
return -1;
else
return 0;
}
static void
gsk_standard_contour_get_point (const GskContour *contour,
gpointer measure_data,
float distance,
graphene_point_t *pos,
graphene_vec2_t *tangent)
{
GskStandardContour *self = (GskStandardContour *) contour;
GArray *array = measure_data;
guint index;
float progress;
GskStandardContourMeasure *measure;
const graphene_point_t *pts;
if (!g_array_binary_search (array, &distance, gsk_standard_contour_find_measure, &index))
index = array->len - 1;
measure = &g_array_index (array, GskStandardContourMeasure, index);
progress = (distance - measure->op_start) / (measure->op_end - measure->op_start);
g_assert (progress >= 0 && progress <= 1);
pts = &self->points[self->ops[measure->op].point];
switch (self->ops[measure->op].op)
{
case GSK_PATH_LINE:
case GSK_PATH_CLOSE:
if (pos)
graphene_point_interpolate (&pts[0], &pts[1], progress, pos);
if (tangent)
{
graphene_vec2_init (tangent, pts[1].x - pts[0].x, pts[1].y - pts[0].y);
graphene_vec2_normalize (tangent, tangent);
}
break;
case GSK_PATH_CURVE:
gsk_spline_get_point_cubic (pts, progress, pos, tangent);
break;
case GSK_PATH_MOVE:
default:
g_assert_not_reached ();
return;
}
}
static void
gsk_standard_contour_init (GskContour *contour,
GskPathFlags flags,
const GskStandardOperation *ops,
gsize n_ops,
const graphene_point_t *points,
gsize n_points);
static void
gsk_standard_contour_copy (const GskContour *contour,
GskContour *dest)
{
const GskStandardContour *self = (const GskStandardContour *) contour;
gsk_standard_contour_init (dest, self->flags, self->ops, self->n_ops, self->points, self->n_points);
}
static void
gsk_standard_contour_add_segment (const GskContour *contour,
GskPathBuilder *builder,
gpointer measure_data,
float start,
float end)
{
GskStandardContour *self = (GskStandardContour *) contour;
GArray *array = measure_data;
guint start_index, end_index;
float start_progress, end_progress;
GskStandardContourMeasure *start_measure, *end_measure;
gsize i;
if (start > 0)
{
if (!g_array_binary_search (array, (float[1]) { start }, gsk_standard_contour_find_measure, &start_index))
start_index = array->len - 1;
start_measure = &g_array_index (array, GskStandardContourMeasure, start_index);
start_progress = (start - start_measure->op_start) / (start_measure->op_end - start_measure->op_start);
g_assert (start_progress >= 0 && start_progress <= 1);
}
else
{
start_measure = NULL;
start_progress = 0.0;
}
if (g_array_binary_search (array, (float[1]) { end }, gsk_standard_contour_find_measure, &end_index))
{
end_measure = &g_array_index (array, GskStandardContourMeasure, end_index);
end_progress = (end - end_measure->op_start) / (end_measure->op_end - end_measure->op_start);
g_assert (end_progress >= 0 && end_progress <= 1);
}
else
{
end_measure = NULL;
end_progress = 1.0;
}
/* Add the first partial operation,
* taking care that first and last operation might be identical */
if (start_measure)
{
switch (self->ops[start_measure->op].op)
{
case GSK_PATH_CLOSE:
case GSK_PATH_LINE:
{
graphene_point_t *pts = &self->points[self->ops[start_measure->op].point];
graphene_point_t point;
graphene_point_interpolate (&pts[0], &pts[1], start_progress, &point);
gsk_path_builder_move_to (builder, point.x, point.y);
if (end_measure && end_measure->op == start_measure->op)
{
graphene_point_interpolate (&pts[0], &pts[1], end_progress, &point);
gsk_path_builder_line_to (builder, point.x, point.y);
return;
}
gsk_path_builder_line_to (builder, pts[1].x, pts[1].y);
}
break;
case GSK_PATH_CURVE:
{
graphene_point_t *pts = &self->points[self->ops[start_measure->op].point];
graphene_point_t curve[4], discard[4];
gsk_spline_split_cubic (pts, discard, curve, start_progress);
if (end_measure && end_measure->op == start_measure->op)
{
graphene_point_t tiny[4];
gsk_spline_split_cubic (curve, tiny, discard, (end_progress - start_progress) / (1 - start_progress));
gsk_path_builder_move_to (builder, tiny[0].x, tiny[0].y);
gsk_path_builder_curve_to (builder, tiny[1].x, tiny[1].y, tiny[2].x, tiny[2].y, tiny[3].x, tiny[3].y);
return;
}
gsk_path_builder_move_to (builder, curve[0].x, curve[0].y);
gsk_path_builder_curve_to (builder, curve[1].x, curve[1].y, curve[2].x, curve[2].y, curve[3].x, curve[3].y);
}
break;
case GSK_PATH_MOVE:
default:
g_assert_not_reached();
return;
}
i = start_measure->op + 1;
}
else
i = 0;
for (; i < (end_measure ? end_measure->op : self->n_ops); i++)
{
graphene_point_t *pt = &self->points[self->ops[i].point];
switch (self->ops[i].op)
{
case GSK_PATH_MOVE:
gsk_path_builder_move_to (builder, pt[0].x, pt[0].y);
break;
case GSK_PATH_LINE:
case GSK_PATH_CLOSE:
gsk_path_builder_line_to (builder, pt[1].x, pt[1].y);
break;
case GSK_PATH_CURVE:
gsk_path_builder_curve_to (builder, pt[1].x, pt[1].y, pt[2].x, pt[2].y, pt[3].x, pt[3].y);
break;
default:
g_assert_not_reached();
return;
}
}
/* Add the last partial operation */
if (end_measure)
{
switch (self->ops[end_measure->op].op)
{
case GSK_PATH_CLOSE:
case GSK_PATH_LINE:
{
graphene_point_t *pts = &self->points[self->ops[end_measure->op].point];
graphene_point_t point;
graphene_point_interpolate (&pts[0], &pts[1], end_progress, &point);
gsk_path_builder_line_to (builder, point.x, point.y);
}
break;
case GSK_PATH_CURVE:
{
graphene_point_t *pts = &self->points[self->ops[end_measure->op].point];
graphene_point_t curve[4], discard[4];
gsk_spline_split_cubic (pts, curve, discard, end_progress);
gsk_path_builder_curve_to (builder, curve[1].x, curve[1].y, curve[2].x, curve[2].y, curve[3].x, curve[3].y);
}
break;
case GSK_PATH_MOVE:
default:
g_assert_not_reached();
return;
}
}
}
static const GskContourClass GSK_STANDARD_CONTOUR_CLASS =
{
sizeof (GskStandardContour),
"GskStandardContour",
gsk_standard_contour_get_size,
gsk_standard_contour_get_flags,
gsk_standard_contour_print,
gsk_standard_contour_get_bounds,
gsk_standard_contour_foreach,
gsk_standard_contour_init_measure,
gsk_standard_contour_free_measure,
gsk_standard_contour_get_point,
gsk_standard_contour_copy,
gsk_standard_contour_add_segment
};
/* You must ensure the contour has enough size allocated,
* see gsk_standard_contour_compute_size()
*/
static void
gsk_standard_contour_init (GskContour *contour,
GskPathFlags flags,
const GskStandardOperation *ops,
gsize n_ops,
const graphene_point_t *points,
gsize n_points)
{
GskStandardContour *self = (GskStandardContour *) contour;
self->contour.klass = &GSK_STANDARD_CONTOUR_CLASS;
self->flags = flags;
self->n_ops = n_ops;
memcpy (self->ops, ops, sizeof (GskStandardOperation) * n_ops);
self->n_points = n_points;
self->points = (graphene_point_t *) &self->ops[n_ops];
memcpy (self->points, points, sizeof (graphene_point_t) * n_points);
}
/* CONTOUR */
static gsize
gsk_contour_get_size (const GskContour *contour)
{
return contour->klass->get_size (contour);
}
static void
gsk_contour_copy (GskContour *dest,
const GskContour *src)
{
src->klass->copy (src, dest);
}
static GskContour *
gsk_contour_dup (const GskContour *src)
{
GskContour *copy;
copy = g_malloc0 (gsk_contour_get_size (src));
gsk_contour_copy (copy, src);
return copy;
}
static gboolean
gsk_contour_foreach (const GskContour *contour,
float tolerance,
GskPathForeachFunc func,
gpointer user_data)
{
return contour->klass->foreach (contour, tolerance, func, user_data);
}
gpointer
gsk_contour_init_measure (GskPath *path,
gsize i,
float tolerance,
float *out_length)
{
GskContour *self = path->contours[i];
return self->klass->init_measure (self, tolerance, out_length);
}
void
gsk_contour_free_measure (GskPath *path,
gsize i,
gpointer data)
{
GskContour *self = path->contours[i];
self->klass->free_measure (self, data);
}
void
gsk_contour_get_point (GskPath *path,
gsize i,
gpointer measure_data,
float distance,
graphene_point_t *pos,
graphene_vec2_t *tangent)
{
GskContour *self = path->contours[i];
self->klass->get_point (self, measure_data, distance, pos, tangent);
}
/* PATH */
static GskPath *
gsk_path_alloc (gsize extra_size)
{
GskPath *self;
self = g_malloc0 (sizeof (GskPath) + extra_size);
self->ref_count = 1;
self->n_contours = 0;
return self;
}
static GskPath *
gsk_path_alloc_one (const GskContourClass *klass)
{
GskPath *self;
self = gsk_path_alloc (sizeof (GskContour *) + klass->struct_size);
self->n_contours = 1;
self->contours[0] = (GskContour *) ((guchar *) self + sizeof (GskContour *) + sizeof (GskPath));
return self;
}
/**
* gsk_path_new_rect:
* @x: x coordinate of start point
* @y: y coordinate of start point
* @width: width of rectangle
* @height: height of rectangle
*
* Creates a path representing the given rectangle.
*
* If the width or height of the rectangle is negative, the start
* point will be on the right or bottom, respectively.
*
* Returns: a new #GskPath representing a rectangle
**/
GskPath *
gsk_path_new_rect (float x,
float y,
float width,
float height)
{
GskPath *self;
self = gsk_path_alloc_one (&GSK_RECT_CONTOUR_CLASS);
gsk_rect_contour_init (self->contours[0], x, y, width, height);
return self;
}
/**
* gsk_path_new_from_cairo:
* @path: a Cairo path
*
* This is a convenience function that constructs a #GskPath from a Cairo path.
*
* You can use cairo_copy_path() to access the path from a Cairo context.
*
* Returns: a new #GskPath
**/
GskPath *
gsk_path_new_from_cairo (const cairo_path_t *path)
{
GskPathBuilder *builder;
gsize i;
g_return_val_if_fail (path != NULL, NULL);
builder = gsk_path_builder_new ();
for (i = 0; i < path->num_data; i += path->data[i].header.length)
{
const cairo_path_data_t *data = &path->data[i];
switch (data->header.type)
{
case CAIRO_PATH_MOVE_TO:
gsk_path_builder_move_to (builder, data[1].point.x, data[1].point.y);
break;
case CAIRO_PATH_LINE_TO:
gsk_path_builder_line_to (builder, data[1].point.x, data[1].point.y);
break;
case CAIRO_PATH_CURVE_TO:
gsk_path_builder_curve_to (builder,
data[1].point.x, data[1].point.y,
data[2].point.x, data[2].point.y,
data[3].point.x, data[3].point.y);
break;
case CAIRO_PATH_CLOSE_PATH:
gsk_path_builder_close (builder);
break;
default:
g_assert_not_reached ();
break;
}
}
return gsk_path_builder_free_to_path (builder);
}
/**
* gsk_path_ref:
* @self: a #GskPath
*
* Increases the reference count of a #GskPath by one.
*
* Returns: the passed in #GskPath.
**/
GskPath *
gsk_path_ref (GskPath *self)
{
g_return_val_if_fail (self != NULL, NULL);
self->ref_count++;
return self;
}
/**
* gsk_path_unref:
* @self: a #GskPath
*
* Decreases the reference count of a #GskPath by one.
* If the resulting reference count is zero, frees the path.
**/
void
gsk_path_unref (GskPath *self)
{
g_return_if_fail (self != NULL);
g_return_if_fail (self->ref_count > 0);
self->ref_count--;
if (self->ref_count > 0)
return;
g_free (self);
}
/**
* gsk_path_print:
* @self: a #GskPath
* @string: The string to print into
*
* Converts @self into a human-readable string representation suitable
* for printing.
*
* The string is compatible with SVG paths.
**/
void
gsk_path_print (GskPath *self,
GString *string)
{
gsize i;
g_return_if_fail (self != NULL);
g_return_if_fail (string != NULL);
for (i = 0; i < self->n_contours; i++)
{
if (i > 0)
g_string_append_c (string, ' ');
self->contours[i]->klass->print (self->contours[i], string);
}
}
/**
* gsk_path_to_string:
* @self: a #GskPath
*
* Converts the path into a string that is suitable for
* printing. You can use this function in a debugger to get a quick overview
* of the path.
*
* This is a wrapper around gsk_path_print(), see that function
* for details.
*
* Returns: A new string for @self
**/
char *
gsk_path_to_string (GskPath *self)
{
GString *string;
g_return_val_if_fail (self != NULL, NULL);
string = g_string_new ("");
gsk_path_print (self, string);
return g_string_free (string, FALSE);
}
static gboolean
gsk_path_to_cairo_add_op (GskPathOperation op,
const graphene_point_t *pts,
gsize n_pts,
gpointer cr)
{
switch (op)
{
case GSK_PATH_MOVE:
cairo_move_to (cr, pts[0].x, pts[0].y);
break;
case GSK_PATH_CLOSE:
cairo_close_path (cr);
break;
case GSK_PATH_LINE:
cairo_line_to (cr, pts[1].x, pts[1].y);
break;
case GSK_PATH_CURVE:
cairo_curve_to (cr, pts[1].x, pts[1].y, pts[2].x, pts[2].y, pts[3].x, pts[3].y);
break;
default:
g_assert_not_reached ();
return FALSE;
}
return TRUE;
}
/**
* gsk_path_to_cairo:
* @self: a #GskPath
* @cr: a cairo context
*
* Appends the given @path to the given cairo context for drawing
* with Cairo.
*
* This may cause some suboptimal conversions to be performed as Cairo
* may not perform all features of #GskPath.
*
* This function does not clear the existing Cairo path. Call
* cairo_new_path() if you want this.
**/
void
gsk_path_to_cairo (GskPath *self,
cairo_t *cr)
{
g_return_if_fail (self != NULL);
g_return_if_fail (cr != NULL);
gsk_path_foreach_with_tolerance (self,
cairo_get_tolerance (cr),
gsk_path_to_cairo_add_op,
cr);
}
/*
* gsk_path_get_n_contours:
* @path: a #GskPath
*
* Gets the nnumber of contours @path is composed out of.
*
* Returns: the number of contours in @path
**/
gsize
gsk_path_get_n_contours (GskPath *path)
{
return path->n_contours;
}
/**
* gsk_path_is_empty:
* @path: a #GskPath
*
* Checks if the path is empty, ie contains no lines or curves.
*
* Returns: %TRUE if the path is empty
**/
gboolean
gsk_path_is_empty (GskPath *path)
{
g_return_val_if_fail (path != NULL, FALSE);
return path->n_contours == 0;
}
/**
* gsk_path_get_bounds:
* @self: a #GskPath
* @bounds: (out) (caller-allocates): the bounds of the given path
*
* Computes the bounds of the given path.
*
* The returned bounds may be larger than necessary, because this
* function aims to be fast, not accurate. The bounds are guaranteed
* to contain the path.
*
* If the path is empty, %FALSE is returned and @bounds are set to
* graphene_rect_zero().
*
* Returns: %TRUE if the path has bounds, %FALSE if the path is known
* to be empty and have no bounds.
**/
gboolean
gsk_path_get_bounds (GskPath *self,
graphene_rect_t *bounds)
{
gsize i;
g_return_val_if_fail (self != NULL, FALSE);
g_return_val_if_fail (bounds != NULL, FALSE);
for (i = 0; i < self->n_contours; i++)
{
if (self->contours[i]->klass->get_bounds (self->contours[i], bounds))
break;
}
if (i >= self->n_contours)
{
graphene_rect_init_from_rect (bounds, graphene_rect_zero ());
return FALSE;
}
for (i++; i < self->n_contours; i++)
{
graphene_rect_t tmp;
if (self->contours[i]->klass->get_bounds (self->contours[i], &tmp))
graphene_rect_union (bounds, &tmp, bounds);
}
return TRUE;
}
/**
* gsk_path_foreach:
* @self: a #GskPath
* @func: (scope call) (closure user_data): the function to call for operations
* @user_data: (nullable): user data passed to @func
*
* Calls @func for every operation of the path. Note that this only approximates
* @self, because paths can contain optimizations for various specialized contours.
*
* Returns: %FALSE if @func returned %FALSE, %TRUE otherwise.
**/
gboolean
gsk_path_foreach (GskPath *self,
GskPathForeachFunc func,
gpointer user_data)
{
g_return_val_if_fail (self != NULL, FALSE);
g_return_val_if_fail (func, FALSE);
return gsk_path_foreach_with_tolerance (self, GSK_PATH_TOLERANCE_DEFAULT, func, user_data);
}
gboolean
gsk_path_foreach_with_tolerance (GskPath *self,
double tolerance,
GskPathForeachFunc func,
gpointer user_data)
{
gsize i;
for (i = 0; i < self->n_contours; i++)
{
if (!gsk_contour_foreach (self->contours[i], tolerance, func, user_data))
return FALSE;
}
return TRUE;
}
/* BUILDER */
/**
* GskPathBuilder:
*
* A #GskPathBuilder struct is an opaque struct. It is meant to
* not be kept around and only be used to create new #GskPath
* objects.
*/
struct _GskPathBuilder
{
int ref_count;
GSList *contours; /* (reverse) list of already recorded contours */
GskPathFlags flags; /* flags for the current path */
GArray *ops; /* operations for current contour - size == 0 means no current contour */
GArray *points; /* points for the operations */
};
G_DEFINE_BOXED_TYPE (GskPathBuilder,
gsk_path_builder,
gsk_path_builder_ref,
gsk_path_builder_unref)
void
gsk_path_builder_add_contour (GskPathBuilder *builder,
GskPath *path,
gsize i)
{
GskContour *copy;
copy = gsk_contour_dup (path->contours[i]);
builder->contours = g_slist_prepend (builder->contours, copy);
}
void
gsk_path_builder_add_contour_segment (GskPathBuilder *builder,
GskPath *path,
gsize i,
gpointer measure_data,
float start,
float end)
{
const GskContour *self = path->contours[i];
self->klass->add_segment (self, builder, measure_data, start, end);
}
/**
* gsk_path_builder_new:
*
* Create a new #GskPathBuilder object. The resulting builder
* would create an empty #GskPath. Use addition functions to add
* types to it.
*
* Returns: a new #GskPathBuilder
**/
GskPathBuilder *
gsk_path_builder_new (void)
{
GskPathBuilder *builder;
builder = g_slice_new0 (GskPathBuilder);
builder->ref_count = 1;
builder->ops = g_array_new (FALSE, FALSE, sizeof (GskStandardOperation));
builder->points = g_array_new (FALSE, FALSE, sizeof (graphene_point_t));
return builder;
}
/**
* gsk_path_builder_ref:
* @builder: a #GskPathBuilder
*
* Acquires a reference on the given @builder.
*
* This function is intended primarily for bindings. #GskPathBuilder objects
* should not be kept around.
*
* Returns: (transfer none): the given #GskPathBuilder with
* its reference count increased
*/
GskPathBuilder *
gsk_path_builder_ref (GskPathBuilder *builder)
{
g_return_val_if_fail (builder != NULL, NULL);
g_return_val_if_fail (builder->ref_count > 0, NULL);
builder->ref_count += 1;
return builder;
}
static void
gsk_path_builder_append_current (GskPathBuilder *builder,
GskPathOperation op,
gsize n_points,
const graphene_point_t *points)
{
g_assert (builder->ops->len > 0);
g_assert (builder->points->len > 0);
g_assert (n_points > 0);
g_array_append_vals (builder->ops, &(GskStandardOperation) { op, builder->points->len - 1 }, 1);
g_array_append_vals (builder->points, points, n_points);
}
static void
gsk_path_builder_end_current (GskPathBuilder *builder)
{
GskContour *contour;
if (builder->ops->len == 0)
return;
contour = g_malloc0 (gsk_standard_contour_compute_size (builder->ops->len, builder->points->len));
gsk_standard_contour_init (contour,
0,
(GskStandardOperation *) builder->ops->data,
builder->ops->len,
(graphene_point_t *) builder->points->data,
builder->points->len);
builder->contours = g_slist_prepend (builder->contours, contour);
g_array_set_size (builder->ops, 0);
g_array_set_size (builder->points, 0);
}
static void
gsk_path_builder_clear (GskPathBuilder *builder)
{
gsk_path_builder_end_current (builder);
g_slist_free_full (builder->contours, g_free);
builder->contours = NULL;
}
/**
* gsk_path_builder_unref:
* @builder: a #GskPathBuilder
*
* Releases a reference on the given @builder.
*/
void
gsk_path_builder_unref (GskPathBuilder *builder)
{
g_return_if_fail (builder != NULL);
g_return_if_fail (builder->ref_count > 0);
builder->ref_count -= 1;
if (builder->ref_count > 0)
return;
gsk_path_builder_clear (builder);
g_array_unref (builder->ops);
g_array_unref (builder->points);
g_slice_free (GskPathBuilder, builder);
}
/**
* gsk_path_builder_free_to_path: (skip)
* @builder: a #GskPathBuilder
*
* Creates a new #GskPath from the current state of the
* given @builder, and frees the @builder instance.
*
* Returns: (transfer full): the newly created #GskPath
* with all the contours added to @builder
*/
GskPath *
gsk_path_builder_free_to_path (GskPathBuilder *builder)
{
GskPath *res;
g_return_val_if_fail (builder != NULL, NULL);
res = gsk_path_builder_to_path (builder);
gsk_path_builder_unref (builder);
return res;
}
/**
* gsk_path_builder_to_path:
* @builder: a #GskPathBuilder
*
* Creates a new #GskPath from the given @builder.
*
* The given #GskPathBuilder is reset once this function returns;
* you cannot call this function multiple times on the same @builder instance.
*
* This function is intended primarily for bindings. C code should use
* gsk_path_builder_free_to_path().
*
* Returns: (transfer full): the newly created #GskPath
* with all the contours added to @builder
*/
GskPath *
gsk_path_builder_to_path (GskPathBuilder *builder)
{
GskPath *path;
GSList *l;
gsize size;
gsize n_contours;
guint8 *contour_data;
GskPathFlags flags;
g_return_val_if_fail (builder != NULL, NULL);
gsk_path_builder_end_current (builder);
builder->contours = g_slist_reverse (builder->contours);
flags = GSK_PATH_CLOSED | GSK_PATH_FLAT;
size = 0;
n_contours = 0;
for (l = builder->contours; l; l = l->next)
{
GskContour *contour = l->data;
n_contours++;
size += sizeof (GskContour *);
size += gsk_contour_get_size (contour);
flags &= contour->klass->get_flags (contour);
}
path = gsk_path_alloc (size);
path->flags = flags;
path->n_contours = n_contours;
contour_data = (guint8 *) &path->contours[n_contours];
n_contours = 0;
for (l = builder->contours; l; l = l->next)
{
GskContour *contour = l->data;
path->contours[n_contours] = (GskContour *) contour_data;
gsk_contour_copy ((GskContour *) contour_data, contour);
size = gsk_contour_get_size (contour);
contour_data += size;
n_contours++;
}
gsk_path_builder_clear (builder);
return path;
}
/**
* gsk_path_builder_add_path:
* @builder: a #GskPathBuilder
* @path: (transfer none): the path to append
*
* Appends all of @path to @builder.
**/
void
gsk_path_builder_add_path (GskPathBuilder *builder,
GskPath *path)
{
gsize i;
g_return_if_fail (builder != NULL);
g_return_if_fail (path != NULL);
for (i = 0; i < path->n_contours; i++)
{
gsk_path_builder_add_contour (builder, path, i);
}
}
static GskContour *
gsk_path_builder_add_contour_by_klass (GskPathBuilder *builder,
const GskContourClass *klass)
{
GskContour *contour;
gsk_path_builder_end_current (builder);
contour = g_malloc0 (klass->struct_size);
builder->contours = g_slist_prepend (builder->contours, contour);
return contour;
}
void
gsk_path_builder_add_rect (GskPathBuilder *builder,
float x,
float y,
float width,
float height)
{
GskContour *contour;
g_return_if_fail (builder != NULL);
g_return_if_fail (width != 0);
g_return_if_fail (height != 0);
contour = gsk_path_builder_add_contour_by_klass (builder, &GSK_RECT_CONTOUR_CLASS);
gsk_rect_contour_init (contour, x, y, width, height);
}
/**
* gsk_path_builder_add_circle:
* @builder: a #GskPathBuilder
* @center: the center of the circle
* @radius: the radius of the circle
*
* Adds a circle with the @center and @radius.
**/
void
gsk_path_builder_add_circle (GskPathBuilder *builder,
const graphene_point_t *center,
float radius)
{
GskContour *contour;
g_return_if_fail (builder != NULL);
g_return_if_fail (center != NULL);
g_return_if_fail (radius > 0);
contour = gsk_path_builder_add_contour_by_klass (builder, &GSK_CIRCLE_CONTOUR_CLASS);
gsk_circle_contour_init (contour, center, radius, 0, 360);
}
void
gsk_path_builder_move_to (GskPathBuilder *builder,
float x,
float y)
{
g_return_if_fail (builder != NULL);
gsk_path_builder_end_current (builder);
builder->flags = GSK_PATH_FLAT;
g_array_append_vals (builder->ops, &(GskStandardOperation) { GSK_PATH_MOVE, 0 }, 1);
g_array_append_val (builder->points, GRAPHENE_POINT_INIT(x, y));
}
void
gsk_path_builder_line_to (GskPathBuilder *builder,
float x,
float y)
{
g_return_if_fail (builder != NULL);
if (builder->ops->len == 0)
{
gsk_path_builder_move_to (builder, x, y);
return;
}
/* skip the line if it goes to the same point */
if (graphene_point_equal (&g_array_index (builder->points, graphene_point_t, builder->points->len - 1),
&GRAPHENE_POINT_INIT (x, y)))
return;
gsk_path_builder_append_current (builder,
GSK_PATH_LINE,
1, (graphene_point_t[1]) {
GRAPHENE_POINT_INIT (x, y)
});
}
void
gsk_path_builder_curve_to (GskPathBuilder *builder,
float x1,
float y1,
float x2,
float y2,
float x3,
float y3)
{
g_return_if_fail (builder != NULL);
if (builder->ops->len == 0)
gsk_path_builder_move_to (builder, x1, y1);
builder->flags ^= ~GSK_PATH_FLAT;
gsk_path_builder_append_current (builder,
GSK_PATH_CURVE,
3, (graphene_point_t[3]) {
GRAPHENE_POINT_INIT (x1, y1),
GRAPHENE_POINT_INIT (x2, y2),
GRAPHENE_POINT_INIT (x3, y3)
});
}
void
gsk_path_builder_close (GskPathBuilder *builder)
{
g_return_if_fail (builder != NULL);
if (builder->ops->len == 0)
return;
builder->flags |= GSK_PATH_CLOSED;
gsk_path_builder_append_current (builder,
GSK_PATH_CLOSE,
1, (graphene_point_t[1]) {
g_array_index (builder->points, graphene_point_t, 0)
});
gsk_path_builder_end_current (builder);
}
static void
arc_segment (GskPathBuilder *builder,
double cx,
double cy,
double rx,
double ry,
double sin_phi,
double cos_phi,
double sin_th0,
double cos_th0,
double sin_th1,
double cos_th1,
double t)
{
double x1, y1, x2, y2, x3, y3;
x1 = rx * (cos_th0 - t * sin_th0);
y1 = ry * (sin_th0 + t * cos_th0);
x3 = rx * cos_th1;
y3 = ry * sin_th1;
x2 = x3 + rx * (t * sin_th1);
y2 = y3 + ry * (-t * cos_th1);
gsk_path_builder_curve_to (builder,
cx + cos_phi * x1 - sin_phi * y1,
cy + sin_phi * x1 + cos_phi * y1,
cx + cos_phi * x2 - sin_phi * y2,
cy + sin_phi * x2 + cos_phi * y2,
cx + cos_phi * x3 - sin_phi * y3,
cy + sin_phi * x3 + cos_phi * y3);
}
static void
gsk_path_builder_arc_to (GskPathBuilder *builder,
float rx,
float ry,
float x_axis_rotation,
gboolean large_arc,
gboolean positive_sweep,
float x,
float y)
{
graphene_point_t *current;
double x1, y1, x2, y2;
double phi, sin_phi, cos_phi;
double mid_x, mid_y;
double lambda;
double d;
double k;
double x1_, y1_;
double cx_, cy_;
double cx, cy;
double ux, uy, u_len;
double cos_theta1, theta1;
double vx, vy, v_len;
double dp_uv;
double cos_delta_theta, delta_theta;
int i, n_segs;
double d_theta, theta;
double sin_th0, cos_th0;
double sin_th1, cos_th1;
double th_half;
double t;
current = &g_array_index (builder->points, graphene_point_t, builder->points->len - 1);
x1 = current->x;
y1 = current->y;
x2 = x;
y2 = y;
phi = x_axis_rotation * M_PI / 180.0;
sincos (phi, &sin_phi, &cos_phi);
rx = fabs (rx);
ry = fabs (ry);
mid_x = (x1 - x2) / 2;
mid_y = (y1 - y2) / 2;
x1_ = cos_phi * mid_x + sin_phi * mid_y;
y1_ = - sin_phi * mid_x + cos_phi * mid_y;
lambda = (x1_ / rx) * (x1_ / rx) + (y1_ / ry) * (y1_ / ry);
if (lambda > 1)
{
lambda = sqrt (lambda);
rx *= lambda;
ry *= lambda;
}
d = (rx * y1_) * (rx * y1_) + (ry * x1_) * (ry * x1_);
if (d == 0)
return;
k = sqrt (fabs ((rx * ry) * (rx * ry) / d - 1.0));
if (positive_sweep == large_arc)
k = -k;
cx_ = k * rx * y1_ / ry;
cy_ = -k * ry * x1_ / rx;
cx = cos_phi * cx_ - sin_phi * cy_ + (x1 + x2) / 2;
cy = sin_phi * cx_ + cos_phi * cy_ + (y1 + y2) / 2;
ux = (x1_ - cx_) / rx;
uy = (y1_ - cy_) / ry;
u_len = sqrt (ux * ux + uy * uy);
if (u_len == 0)
return;
cos_theta1 = CLAMP (ux / u_len, -1, 1);
theta1 = acos (cos_theta1);
if (uy < 0)
theta1 = - theta1;
vx = (- x1_ - cx_) / rx;
vy = (- y1_ - cy_) / ry;
v_len = sqrt (vx * vx + vy * vy);
if (v_len == 0)
return;
dp_uv = ux * vx + uy * vy;
cos_delta_theta = CLAMP (dp_uv / (u_len * v_len), -1, 1);
delta_theta = acos (cos_delta_theta);
if (ux * vy - uy * vx < 0)
delta_theta = - delta_theta;
if (positive_sweep && delta_theta < 0)
delta_theta += 2 * M_PI;
else if (!positive_sweep && delta_theta > 0)
delta_theta -= 2 * M_PI;
n_segs = ceil (fabs (delta_theta / (M_PI_2 + 0.001)));
d_theta = delta_theta / n_segs;
theta = theta1;
sincos (theta1, &sin_th1, &cos_th1);
th_half = d_theta / 2;
t = (8.0 / 3.0) * sin (th_half / 2) * sin (th_half / 2) / sin (th_half);
for (i = 0; i < n_segs; i++)
{
theta = theta1;
theta1 = theta + d_theta;
sin_th0 = sin_th1;
cos_th0 = cos_th1;
sincos (theta1, &sin_th1, &cos_th1);
arc_segment (builder,
cx, cy, rx, ry,
sin_phi, cos_phi,
sin_th0, cos_th0,
sin_th1, cos_th1,
t);
}
}
static void
skip_whitespace (const char **p)
{
while (g_ascii_isspace (**p))
(*p)++;
}
static void
skip_optional_comma (const char **p)
{
skip_whitespace (p);
if (**p == ',')
(*p)++;
}
static gboolean
parse_number (const char **p,
double *c)
{
char *e;
*c = g_ascii_strtod (*p, &e);
if (e == *p)
return FALSE;
*p = e;
skip_optional_comma (p);
return TRUE;
}
static gboolean
parse_coordinate (const char **p,
double *c)
{
return parse_number (p, c);
}
static gboolean
parse_coordinate_pair (const char **p,
double *x,
double *y)
{
double xx, yy;
const char *o = *p;
if (!parse_coordinate (p, &xx))
{
*p = o;
return FALSE;
}
if (!parse_coordinate (p, &yy))
{
*p = o;
return FALSE;
}
*x = xx;
*y = yy;
return TRUE;
}
static gboolean
parse_nonnegative_number (const char **p,
double *x)
{
const char *o = *p;
double n;
if (!parse_number (p, &n))
return FALSE;
if (n < 0)
{
*p = o;
return FALSE;
}
*x = n;
return TRUE;
}
static gboolean
parse_flag (const char **p,
gboolean *f)
{
skip_whitespace (p);
if (strchr ("01", **p))
{
*f = **p == '1';
(*p)++;
skip_optional_comma (p);
return TRUE;
}
return FALSE;
}
static gboolean
parse_command (const char **p,
char *cmd)
{
char *s;
const char *allowed;
if (*cmd == 'X')
allowed = "mM";
else
allowed = "mMhHvVzZlLcCsStTqQaA";
skip_whitespace (p);
s = strchr (allowed, **p);
if (s)
{
*cmd = *s;
(*p)++;
return TRUE;
}
return FALSE;
}
GskPath *
gsk_path_from_string (const char *s)
{
GskPathBuilder *builder;
double x, y;
double prev_x1, prev_y1;
double path_x, path_y;
const char *p;
char cmd;
char prev_cmd;
gboolean after_comma;
gboolean repeat;
builder = gsk_path_builder_new ();
cmd = 'X';
path_x = path_y = 0;
x = y = 0;
prev_x1 = prev_y1 = 0;
after_comma = FALSE;
p = s;
while (*p)
{
prev_cmd = cmd;
repeat = !parse_command (&p, &cmd);
if (after_comma && !repeat)
goto error;
switch (cmd)
{
case 'X':
goto error;
case 'Z':
case 'z':
if (repeat)
goto error;
else
{
gsk_path_builder_line_to (builder, path_x, path_y);
gsk_path_builder_close (builder);
x = path_x;
y = path_y;
}
break;
case 'M':
case 'm':
{
double x1, y1;
if (parse_coordinate_pair (&p, &x1, &y1))
{
if (cmd == 'm')
{
x1 += x;
y1 += y;
}
if (repeat)
gsk_path_builder_line_to (builder, x1, y1);
else
{
gsk_path_builder_move_to (builder, x1, y1);
if (strchr ("zZX", prev_cmd))
{
path_x = x1;
path_y = y1;
}
}
x = x1;
y = y1;
}
else
goto error;
}
break;
case 'L':
case 'l':
{
double x1, y1;
if (parse_coordinate_pair (&p, &x1, &y1))
{
if (cmd == 'l')
{
x1 += x;
y1 += y;
}
if (strchr ("zZ", prev_cmd))
{
gsk_path_builder_move_to (builder, x, y);
path_x = x;
path_y = y;
}
gsk_path_builder_line_to (builder, x1, y1);
x = x1;
y = y1;
}
else
goto error;
}
break;
case 'H':
case 'h':
{
double x1;
if (parse_coordinate (&p, &x1))
{
if (cmd == 'h')
x1 += x;
if (strchr ("zZ", prev_cmd))
{
gsk_path_builder_move_to (builder, x, y);
path_x = x;
path_y = y;
}
gsk_path_builder_line_to (builder, x1, y);
x = x1;
}
else
goto error;
}
break;
case 'V':
case 'v':
{
double y1;
if (parse_coordinate (&p, &y1))
{
if (cmd == 'v')
y1 += y;
if (strchr ("zZ", prev_cmd))
{
gsk_path_builder_move_to (builder, x, y);
path_x = x;
path_y = y;
}
gsk_path_builder_line_to (builder, x, y1);
y = y1;
}
else
goto error;
}
break;
case 'C':
case 'c':
{
double x0, y0, x1, y1, x2, y2;
if (parse_coordinate_pair (&p, &x0, &y0) &&
parse_coordinate_pair (&p, &x1, &y1) &&
parse_coordinate_pair (&p, &x2, &y2))
{
if (cmd == 'c')
{
x0 += x;
y0 += y;
x1 += x;
y1 += y;
x2 += x;
y2 += y;
}
if (strchr ("zZ", prev_cmd))
{
gsk_path_builder_move_to (builder, x, y);
path_x = x;
path_y = y;
}
gsk_path_builder_curve_to (builder, x0, y0, x1, y1, x2, y2);
prev_x1 = x1;
prev_y1 = y1;
x = x2;
y = y2;
}
else
goto error;
}
break;
case 'S':
case 's':
{
double x0, y0, x1, y1, x2, y2;
if (parse_coordinate_pair (&p, &x1, &y1) &&
parse_coordinate_pair (&p, &x2, &y2))
{
if (cmd == 's')
{
x1 += x;
y1 += y;
x2 += x;
y2 += y;
}
if (strchr ("CcSs", prev_cmd))
{
x0 = 2 * x - prev_x1;
y0 = 2 * y - prev_y1;
}
else
{
x0 = x;
y0 = y;
}
if (strchr ("zZ", prev_cmd))
{
gsk_path_builder_move_to (builder, x, y);
path_x = x;
path_y = y;
}
gsk_path_builder_curve_to (builder, x0, y0, x1, y1, x2, y2);
prev_x1 = x1;
prev_y1 = y1;
x = x2;
y = y2;
}
else
goto error;
}
break;
case 'Q':
case 'q':
{
double x1, y1, x2, y2, xx1, yy1, xx2, yy2;
if (parse_coordinate_pair (&p, &x1, &y1) &&
parse_coordinate_pair (&p, &x2, &y2))
{
if (cmd == 'q')
{
x1 += x;
y1 += y;
x2 += x;
y2 += y;
}
xx1 = (x + 2.0 * x1) / 3.0;
yy1 = (y + 2.0 * y1) / 3.0;
xx2 = (x2 + 2.0 * x1) / 3.0;
yy2 = (y2 + 2.0 * y1) / 3.0;
if (strchr ("zZ", prev_cmd))
{
gsk_path_builder_move_to (builder, x, y);
path_x = x;
path_y = y;
}
gsk_path_builder_curve_to (builder, xx1, yy1, xx2, yy2, x2, y2);
prev_x1 = x1;
prev_y1 = y1;
x = x2;
y = y2;
}
else
goto error;
}
break;
case 'T':
case 't':
{
double x1, y1, x2, y2, xx1, yy1, xx2, yy2;
if (parse_coordinate_pair (&p, &x2, &y2))
{
if (cmd == 't')
{
x2 += x;
y2 += y;
}
if (strchr ("QqTt", prev_cmd))
{
x1 = 2 * x - prev_x1;
y1 = 2 * y - prev_y1;
}
else
{
x1 = x;
y1 = y;
}
xx1 = (x + 2.0 * x1) / 3.0;
yy1 = (y + 2.0 * y1) / 3.0;
xx2 = (x2 + 2.0 * x1) / 3.0;
yy2 = (y2 + 2.0 * y1) / 3.0;
if (strchr ("zZ", prev_cmd))
{
gsk_path_builder_move_to (builder, x, y);
path_x = x;
path_y = y;
}
gsk_path_builder_curve_to (builder, xx1, yy1, xx2, yy2, x2, y2);
prev_x1 = x1;
prev_y1 = y1;
x = x2;
y = y2;
}
else
goto error;
}
break;
case 'A':
case 'a':
{
double rx, ry;
double x_axis_rotation;
int large_arc, sweep;
double x1, y1;
if (parse_nonnegative_number (&p, &rx) &&
parse_nonnegative_number (&p, &ry) &&
parse_number (&p, &x_axis_rotation) &&
parse_flag (&p, &large_arc) &&
parse_flag (&p, &sweep) &&
parse_coordinate_pair (&p, &x1, &y1))
{
if (cmd == 'a')
{
x1 += x;
y1 += y;
}
if (strchr ("zZ", prev_cmd))
{
gsk_path_builder_move_to (builder, x, y);
path_x = x;
path_y = y;
}
gsk_path_builder_arc_to (builder,
rx, ry, x_axis_rotation,
large_arc, sweep,
x1, y1);
x = x1;
y = y1;
}
else
goto error;
}
break;
default:
goto error;
}
after_comma = (p > s) && p[-1] == ',';
}
if (after_comma)
goto error;
return gsk_path_builder_free_to_path (builder);
error:
g_warning ("Can't parse string '%s' as GskPath, error at %ld", s, p - s);
gsk_path_builder_unref (builder);
return NULL;
}