Implement fitting a Bezier segment through three points and use this to allow dragging the curve anywhere.
1957 lines
49 KiB
C
1957 lines
49 KiB
C
#include "curve-editor.h"
|
|
|
|
#include <gtk/gtk.h>
|
|
|
|
#define DRAW_RADIUS 5
|
|
#define CLICK_RADIUS 8
|
|
|
|
/* {{{ Types and structures */
|
|
typedef enum
|
|
{
|
|
MOVE,
|
|
LINE,
|
|
CURVE
|
|
} Operation;
|
|
|
|
static const char *
|
|
op_to_string (Operation op)
|
|
{
|
|
switch (op)
|
|
{
|
|
case MOVE:
|
|
return "move";
|
|
case LINE:
|
|
return "line";
|
|
case CURVE:
|
|
return "curve";
|
|
default:
|
|
g_assert_not_reached ();
|
|
}
|
|
}
|
|
|
|
static Operation
|
|
op_from_string (const char *s)
|
|
{
|
|
if (strcmp (s, "move") == 0)
|
|
return MOVE;
|
|
else if (strcmp (s, "line") == 0)
|
|
return LINE;
|
|
else if (strcmp (s, "curve") == 0)
|
|
return CURVE;
|
|
else
|
|
g_assert_not_reached ();
|
|
}
|
|
|
|
typedef enum
|
|
{
|
|
CUSP,
|
|
SMOOTH,
|
|
SYMMETRIC,
|
|
AUTO
|
|
} PointType;
|
|
|
|
static const char *
|
|
point_type_to_string (PointType type)
|
|
{
|
|
switch (type)
|
|
{
|
|
case CUSP:
|
|
return "cusp";
|
|
case SMOOTH:
|
|
return "smooth";
|
|
case SYMMETRIC:
|
|
return "symmetric";
|
|
case AUTO:
|
|
return "auto";
|
|
default:
|
|
g_assert_not_reached ();
|
|
}
|
|
}
|
|
|
|
static PointType
|
|
point_type_from_string (const char *s)
|
|
{
|
|
if (strcmp (s, "cusp") == 0)
|
|
return CUSP;
|
|
else if (strcmp (s, "smooth") == 0)
|
|
return SMOOTH;
|
|
else if (strcmp (s, "symmetric") == 0)
|
|
return SYMMETRIC;
|
|
else if (strcmp (s, "auto") == 0)
|
|
return AUTO;
|
|
else
|
|
g_assert_not_reached ();
|
|
}
|
|
|
|
/* We don't store Bezier segments, but an array of points on
|
|
* the line. Each point comes with its two neighboring control
|
|
* points, so each Bezier segment contains p[1] and p[2] from
|
|
* one point, and p[0] and p[1] from the next.
|
|
*
|
|
* The control points are irrelevant for MOVE and LINE segments.
|
|
*/
|
|
typedef struct
|
|
{
|
|
/* 0 and 2 are control points, 1 is the point on the line */
|
|
graphene_point_t p[3];
|
|
PointType type;
|
|
gboolean edit;
|
|
int dragged;
|
|
int hovered;
|
|
/* refers to the segment following the point */
|
|
Operation op;
|
|
} PointData;
|
|
|
|
struct _CurveEditor
|
|
{
|
|
GtkWidget parent_instance;
|
|
PointData *points;
|
|
int n_points;
|
|
int dragged;
|
|
int context;
|
|
gboolean edit;
|
|
int molded;
|
|
|
|
GtkWidget *menu;
|
|
GActionMap *actions;
|
|
GskStroke *stroke;
|
|
GdkRGBA color;
|
|
};
|
|
|
|
struct _CurveEditorClass
|
|
{
|
|
GtkWidgetClass parent_class;
|
|
};
|
|
|
|
G_DEFINE_TYPE (CurveEditor, curve_editor, GTK_TYPE_WIDGET)
|
|
/* }}} */
|
|
/* {{{ Misc. geometry */
|
|
/* Set q to the projection of p onto the line through a and b */
|
|
static void
|
|
closest_point (const graphene_point_t *p,
|
|
const graphene_point_t *a,
|
|
const graphene_point_t *b,
|
|
graphene_point_t *q)
|
|
{
|
|
graphene_vec2_t n;
|
|
graphene_vec2_t ap;
|
|
float t;
|
|
|
|
graphene_vec2_init (&n, b->x - a->x, b->y - a->y);
|
|
graphene_vec2_init (&ap, p->x - a->x, p->y - a->y);
|
|
|
|
t = graphene_vec2_dot (&ap, &n) / graphene_vec2_dot (&n, &n);
|
|
|
|
q->x = a->x + t * (b->x - a->x);
|
|
q->y = a->y + t * (b->y - a->y);
|
|
}
|
|
|
|
/* Determine if p is on the line through a and b */
|
|
static gboolean
|
|
collinear (const graphene_point_t *p,
|
|
const graphene_point_t *a,
|
|
const graphene_point_t *b)
|
|
{
|
|
graphene_point_t q;
|
|
|
|
closest_point (p, a, b, &q);
|
|
|
|
return graphene_point_near (p, &q, 0.0001);
|
|
}
|
|
|
|
/* Set q to the point on the line through p and a that is
|
|
* at a distance of d from p, on the opposite side
|
|
*/
|
|
static void
|
|
opposite_point (const graphene_point_t *p,
|
|
const graphene_point_t *a,
|
|
float d,
|
|
graphene_point_t *q)
|
|
{
|
|
graphene_vec2_t ap;
|
|
float t;
|
|
|
|
graphene_vec2_init (&ap, p->x - a->x, p->y - a->y);
|
|
t = - sqrt (d * d / graphene_vec2_dot (&ap, &ap));
|
|
|
|
q->x = p->x + t * (a->x - p->x);
|
|
q->y = p->y + t * (a->y - p->y);
|
|
}
|
|
|
|
/* Set q to the point on the line through p and a that is
|
|
* at a distance of d from p, on the same side
|
|
*/
|
|
static void
|
|
scale_point (const graphene_point_t *p,
|
|
const graphene_point_t *a,
|
|
float d,
|
|
graphene_point_t *q)
|
|
{
|
|
graphene_vec2_t ap;
|
|
float t;
|
|
|
|
graphene_vec2_init (&ap, p->x - a->x, p->y - a->y);
|
|
t = sqrt (d * d / graphene_vec2_dot (&ap, &ap));
|
|
|
|
q->x = p->x + t * (a->x - p->x);
|
|
q->y = p->y + t * (a->y - p->y);
|
|
}
|
|
|
|
/* Set p to the intersection of the lines through a, b
|
|
* and c, d
|
|
*/
|
|
static void
|
|
line_intersection (const graphene_point_t *a,
|
|
const graphene_point_t *b,
|
|
const graphene_point_t *c,
|
|
const graphene_point_t *d,
|
|
graphene_point_t *p)
|
|
{
|
|
double a1 = b->y - a->y;
|
|
double b1 = a->x - b->x;
|
|
double c1 = a1*a->x + b1*a->y;
|
|
|
|
double a2 = d->y - c->y;
|
|
double b2 = c->x - d->x;
|
|
double c2 = a2*c->x+ b2*c->y;
|
|
|
|
double det = a1*b2 - a2*b1;
|
|
|
|
if (det == 0)
|
|
{
|
|
p->x = NAN;
|
|
p->y = NAN;
|
|
}
|
|
else
|
|
{
|
|
p->x = (b2*c1 - b1*c2) / det;
|
|
p->y = (a1*c2 - a2*c1) / det;
|
|
}
|
|
}
|
|
|
|
/* Given 3 points, determine the center of a circle that
|
|
* passes through all of them.
|
|
*/
|
|
static void
|
|
circle_through_points (const graphene_point_t *a,
|
|
const graphene_point_t *b,
|
|
const graphene_point_t *c,
|
|
graphene_point_t *center)
|
|
{
|
|
graphene_point_t ab;
|
|
graphene_point_t ac;
|
|
graphene_point_t ab2;
|
|
graphene_point_t ac2;
|
|
|
|
ab.x = (a->x + b->x) / 2;
|
|
ab.y = (a->y + b->y) / 2;
|
|
ac.x = (a->x + c->x) / 2;
|
|
ac.y = (a->y + c->y) / 2;
|
|
|
|
ab2.x = ab.x + a->y - b->y;
|
|
ab2.y = ab.y + b->x - a->x;
|
|
ac2.x = ac.x + a->y - c->y;
|
|
ac2.y = ac.y + c->x - a->x;
|
|
|
|
line_intersection (&ab, &ab2, &ac, &ac2, center);
|
|
}
|
|
|
|
/* Set pp to the closest point to p on the line
|
|
* segment from a to b, set t to the position as
|
|
* a value between 0 and 1, and set d to the distance
|
|
* between pp and p
|
|
*/
|
|
static void
|
|
find_line_point (graphene_point_t *a,
|
|
graphene_point_t *b,
|
|
graphene_point_t *p,
|
|
double *t,
|
|
graphene_point_t *pp,
|
|
double *d)
|
|
{
|
|
graphene_vec2_t n;
|
|
graphene_vec2_t ap;
|
|
float tt;
|
|
|
|
graphene_vec2_init (&n, b->x - a->x, b->y - a->y);
|
|
graphene_vec2_init (&ap, p->x - a->x, p->y - a->y);
|
|
|
|
tt = graphene_vec2_dot (&ap, &n) / graphene_vec2_dot (&n, &n);
|
|
|
|
if (tt <= 0)
|
|
{
|
|
*pp = *a;
|
|
*t = 0;
|
|
}
|
|
else if (tt >= 1)
|
|
{
|
|
*pp = *b;
|
|
*t = 1;
|
|
}
|
|
else
|
|
{
|
|
pp->x = a->x + tt * (b->x - a->x);
|
|
pp->y = a->y + tt * (b->y - a->y);
|
|
*t = tt;
|
|
}
|
|
*d = graphene_point_distance (pp, p, NULL, NULL);
|
|
}
|
|
|
|
/* Return the cosine of the angle between b1 - a and b2 - a */
|
|
static double
|
|
three_point_angle (const graphene_point_t *a,
|
|
const graphene_point_t *b1,
|
|
const graphene_point_t *b2)
|
|
{
|
|
graphene_vec2_t u;
|
|
graphene_vec2_t v;
|
|
|
|
graphene_vec2_init (&u, b1->x - a->x, b1->y - a->y);
|
|
graphene_vec2_init (&v, b2->x - a->x, b2->y - a->y);
|
|
graphene_vec2_normalize (&u, &u);
|
|
graphene_vec2_normalize (&v, &v);
|
|
|
|
return graphene_vec2_dot (&u, &v);
|
|
}
|
|
/* }}} */
|
|
/* {{{ Misc. Bezier math */
|
|
static void
|
|
gsk_split_get_coefficients (graphene_point_t coeffs[4],
|
|
const graphene_point_t pts[4])
|
|
{
|
|
coeffs[0] = GRAPHENE_POINT_INIT (pts[3].x - 3.0f * pts[2].x + 3.0f * pts[1].x - pts[0].x,
|
|
pts[3].y - 3.0f * pts[2].y + 3.0f * pts[1].y - pts[0].y);
|
|
coeffs[1] = GRAPHENE_POINT_INIT (3.0f * pts[2].x - 6.0f * pts[1].x + 3.0f * pts[0].x,
|
|
3.0f * pts[2].y - 6.0f * pts[1].y + 3.0f * pts[0].y);
|
|
coeffs[2] = GRAPHENE_POINT_INIT (3.0f * pts[1].x - 3.0f * pts[0].x,
|
|
3.0f * pts[1].y - 3.0f * pts[0].y);
|
|
coeffs[3] = pts[0];
|
|
}
|
|
|
|
/* Compute a point on the Bezier curve with control points pts
|
|
* at position progress, and optionally the tangent at that point.
|
|
*/
|
|
static void
|
|
gsk_spline_get_point_cubic (const graphene_point_t pts[4],
|
|
float progress,
|
|
graphene_point_t *pos,
|
|
graphene_vec2_t *tangent)
|
|
{
|
|
graphene_point_t c[4];
|
|
|
|
gsk_split_get_coefficients (c, pts);
|
|
if (pos)
|
|
*pos = GRAPHENE_POINT_INIT (((c[0].x * progress + c[1].x) * progress +c[2].x) * progress + c[3].x,
|
|
((c[0].y * progress + c[1].y) * progress +c[2].y) * progress + c[3].y);
|
|
if (tangent)
|
|
{
|
|
graphene_vec2_init (tangent,
|
|
(3.0f * c[0].x * progress + 2.0f * c[1].x) * progress + c[2].x,
|
|
(3.0f * c[0].y * progress + 2.0f * c[1].y) * progress + c[2].y);
|
|
graphene_vec2_normalize (tangent, tangent);
|
|
}
|
|
}
|
|
|
|
/* Set pp to the closest point to p on the Bezier
|
|
* segment given by points, set t to the position as
|
|
* a value between 0 and 1, and set d to the distance
|
|
* between pp and p
|
|
*/
|
|
static void
|
|
find_curve_point (graphene_point_t *points,
|
|
graphene_point_t *p,
|
|
double *t,
|
|
graphene_point_t *pp,
|
|
double *d)
|
|
{
|
|
graphene_point_t q;
|
|
graphene_point_t best_p;
|
|
double best_d;
|
|
double best_t;
|
|
double dd;
|
|
double tt;
|
|
int i;
|
|
|
|
best_d = G_MAXDOUBLE;
|
|
best_t = 0;
|
|
|
|
for (i = 0; i < 20; i++)
|
|
{
|
|
tt = i / 20.0;
|
|
gsk_spline_get_point_cubic (points, tt, &q, NULL);
|
|
dd = graphene_point_distance (&q, p, NULL, NULL);
|
|
if (dd < best_d)
|
|
{
|
|
best_d = dd;
|
|
best_t = tt;
|
|
best_p = q;
|
|
}
|
|
}
|
|
|
|
/* TODO: bisect from here */
|
|
|
|
*t = best_t;
|
|
*pp = best_p;
|
|
*d = best_d;
|
|
}
|
|
|
|
/* Find the closest point to p on the path currently held
|
|
* by the CurveEditor, return the index of the segment
|
|
* in point, the position t as a value between 0 and 1,
|
|
* and the distance d to the curve.
|
|
*/
|
|
static void
|
|
find_closest_point (CurveEditor *self,
|
|
graphene_point_t *p,
|
|
int *point,
|
|
double *t,
|
|
double *d)
|
|
{
|
|
int i;
|
|
int best_i;
|
|
double best_d;
|
|
double best_t;
|
|
double tt;
|
|
double dd;
|
|
graphene_point_t pp;
|
|
|
|
best_i = -1;
|
|
best_d = G_MAXDOUBLE;
|
|
best_t = 0;
|
|
|
|
for (i = 0; i < self->n_points; i++)
|
|
{
|
|
PointData *pd = &self->points[i];
|
|
PointData *pd1 = &self->points[(i + 1) % self->n_points];
|
|
|
|
switch (pd->op)
|
|
{
|
|
case MOVE:
|
|
continue;
|
|
case LINE:
|
|
find_line_point (&pd->p[1], &pd1->p[1], p, &tt, &pp, &dd);
|
|
if (dd < best_d)
|
|
{
|
|
best_i = i;
|
|
best_d = dd;
|
|
best_t = tt;
|
|
}
|
|
break;
|
|
case CURVE:
|
|
{
|
|
graphene_point_t points[4];
|
|
|
|
points[0] = pd->p[1];
|
|
points[1] = pd->p[2];
|
|
points[2] = pd1->p[0];
|
|
points[3] = pd1->p[1];
|
|
|
|
find_curve_point (points, p, &tt, &pp, &dd);
|
|
if (dd < best_d)
|
|
{
|
|
best_i = i;
|
|
best_d = dd;
|
|
best_t = tt;
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
g_assert_not_reached ();
|
|
}
|
|
}
|
|
|
|
*point = best_i;
|
|
*t = best_t;
|
|
*d = best_d;
|
|
}
|
|
|
|
/* Given Bezier control points and a t value between 0 and 1,
|
|
* return new Bezier control points for two segments in left
|
|
* and right that are obtained by splitting the curve at the
|
|
* point for t.
|
|
*
|
|
* Note that the points in the right array are in returned in
|
|
* reverse order.
|
|
*/
|
|
static void
|
|
split_bezier (graphene_point_t *points,
|
|
int length,
|
|
float t,
|
|
graphene_point_t *left,
|
|
int *left_pos,
|
|
graphene_point_t *right,
|
|
int *right_pos)
|
|
{
|
|
if (length == 1)
|
|
{
|
|
left[*left_pos] = points[0];
|
|
(*left_pos)++;
|
|
right[*right_pos] = points[0];
|
|
(*right_pos)++;
|
|
}
|
|
else
|
|
{
|
|
graphene_point_t *newpoints;
|
|
int i;
|
|
|
|
newpoints = g_alloca (sizeof (graphene_point_t) * (length - 1));
|
|
for (i = 0; i < length - 1; i++)
|
|
{
|
|
if (i == 0)
|
|
{
|
|
left[*left_pos] = points[i];
|
|
(*left_pos)++;
|
|
}
|
|
if (i == length - 2)
|
|
{
|
|
right[*right_pos] = points[i + 1];
|
|
(*right_pos)++;
|
|
}
|
|
graphene_point_interpolate (&points[i], &points[i+1], t, &newpoints[i]);
|
|
}
|
|
split_bezier (newpoints, length - 1, t, left, left_pos, right, right_pos);
|
|
}
|
|
}
|
|
|
|
static double
|
|
projection_ratio (double t)
|
|
{
|
|
double top, bottom;
|
|
|
|
if (t == 0 || t == 1)
|
|
return t;
|
|
|
|
top = pow (1 - t, 3),
|
|
bottom = pow (t, 3) + top;
|
|
|
|
return top / bottom;
|
|
}
|
|
|
|
static double
|
|
abc_ratio (double t)
|
|
{
|
|
double top, bottom;
|
|
|
|
if (t == 0 || t == 1)
|
|
return t;
|
|
|
|
bottom = pow (t, 3) + pow (1 - t, 3);
|
|
top = bottom - 1;
|
|
|
|
return fabs (top / bottom);
|
|
}
|
|
|
|
static void
|
|
find_control_points (double t,
|
|
const graphene_point_t *A,
|
|
const graphene_point_t *B,
|
|
const graphene_point_t *C,
|
|
const graphene_point_t *S,
|
|
const graphene_point_t *E,
|
|
graphene_point_t *C1,
|
|
graphene_point_t *C2)
|
|
{
|
|
double angle;
|
|
double dist;
|
|
double bc;
|
|
double de1;
|
|
double de2;
|
|
graphene_point_t c;
|
|
graphene_point_t t0, t1;
|
|
double tlength;
|
|
double dx, dy;
|
|
graphene_point_t e1, e2;
|
|
graphene_point_t v1, v2;
|
|
|
|
dist = graphene_point_distance (S, E, NULL, NULL);
|
|
angle = atan2 (E->y - S->y, E->x - S->x) - atan2 (B->y - S->y, B->x - S->x);
|
|
bc = (angle < 0 || angle > M_PI ? -1 : 1) * dist / 3;
|
|
de1 = t * bc;
|
|
de2 = (1 - t) * bc;
|
|
|
|
circle_through_points (S, B, E, &c);
|
|
|
|
t0.x = B->x - (B->y - c.y);
|
|
t0.y = B->y + (B->x - c.x);
|
|
t1.x = B->x + (B->y - c.y);
|
|
t1.y = B->y - (B->x - c.x);
|
|
|
|
tlength = graphene_point_distance (&t0, &t1, NULL, NULL);
|
|
dx = (t1.x - t0.x) / tlength;
|
|
dy = (t1.y - t0.y) / tlength;
|
|
|
|
e1.x = B->x + de1 * dx;
|
|
e1.y = B->y + de1 * dy;
|
|
e2.x = B->x - de2 * dx;
|
|
e2.y = B->y - de2 * dy;
|
|
|
|
v1.x = A->x + (e1.x - A->x) / (1 - t);
|
|
v1.y = A->y + (e1.y - A->y) / (1 - t);
|
|
|
|
v2.x = A->x + (e2.x - A->x) / t;
|
|
v2.y = A->y + (e2.y - A->y) / t;
|
|
|
|
C1->x = S->x + (v1.x - S->x) / t;
|
|
C1->y = S->y + (v1.y - S->y) / t;
|
|
|
|
C2->x = E->x + (v2.x - E->x) / (1 - t);
|
|
C2->y = E->y + (v2.y - E->y) / (1 - t);
|
|
}
|
|
|
|
/* Given points S, B, E, determine control
|
|
* points C1, C2 such that B lies on the
|
|
* Bezier segment given bY S, C1, C2, E.
|
|
*/
|
|
static void
|
|
bezier_through (const graphene_point_t *S,
|
|
const graphene_point_t *B,
|
|
const graphene_point_t *E,
|
|
graphene_point_t *C1,
|
|
graphene_point_t *C2)
|
|
{
|
|
double d1, d2, t;
|
|
double u, um, s;
|
|
graphene_point_t A, C;
|
|
|
|
d1 = graphene_point_distance (S, B, NULL, NULL);
|
|
d2 = graphene_point_distance (E, B, NULL, NULL);
|
|
t = d1 / (d1 + d2);
|
|
|
|
u = projection_ratio (t);
|
|
um = 1 - u;
|
|
|
|
C.x = u * S->x + um * E->x;
|
|
C.y = u * S->y + um * E->y;
|
|
|
|
s = abc_ratio (t);
|
|
|
|
A.x = B->x + (B->x - C.x) / s;
|
|
A.y = B->y + (B->y - C.y) / s;
|
|
|
|
find_control_points (t, &A, B, &C, S, E, C1, C2);
|
|
}
|
|
/* }}} */
|
|
/* {{{ Utilities */
|
|
static gboolean
|
|
point_is_visible (CurveEditor *self,
|
|
int point,
|
|
int point1)
|
|
{
|
|
g_assert (0 <= point && point < self->n_points);
|
|
|
|
if (!self->edit)
|
|
return FALSE;
|
|
|
|
switch (point1)
|
|
{
|
|
case 0:
|
|
if (!self->points[point].edit)
|
|
return FALSE;
|
|
else
|
|
return self->points[(point - 1 + self->n_points) % self->n_points].op == CURVE;
|
|
case 1: /* point on curve */
|
|
return TRUE;
|
|
case 2:
|
|
if (!self->points[point].edit)
|
|
return FALSE;
|
|
else
|
|
return self->points[point].op == CURVE;
|
|
default:
|
|
g_assert_not_reached ();
|
|
}
|
|
}
|
|
|
|
static void
|
|
maintain_smoothness (CurveEditor *self,
|
|
int point)
|
|
{
|
|
PointData *pd;
|
|
Operation op, op1;
|
|
graphene_point_t *p, *c, *c2, *p2;
|
|
float d;
|
|
|
|
pd = &self->points[point];
|
|
|
|
if (pd->type == CUSP)
|
|
return;
|
|
|
|
op = pd->op;
|
|
op1 = self->points[(point - 1 + self->n_points) % self->n_points].op;
|
|
|
|
p = &pd->p[1];
|
|
c = &pd->p[0];
|
|
c2 = &pd->p[2];
|
|
|
|
if (op == CURVE && op1 == CURVE)
|
|
{
|
|
d = graphene_point_distance (c, p, NULL, NULL);
|
|
opposite_point (p, c2, d, c);
|
|
}
|
|
else if (op == CURVE && op1 == LINE)
|
|
{
|
|
p2 = &self->points[(point - 1 + self->n_points) % self->n_points].p[1];
|
|
d = graphene_point_distance (c2, p, NULL, NULL);
|
|
opposite_point (p, p2, d, c2);
|
|
}
|
|
else if (op == LINE && op1 == CURVE)
|
|
{
|
|
p2 = &self->points[(point + 1) % self->n_points].p[1];
|
|
d = graphene_point_distance (c, p, NULL, NULL);
|
|
opposite_point (p, p2, d, c);
|
|
}
|
|
}
|
|
|
|
static void
|
|
maintain_symmetry (CurveEditor *self,
|
|
int point)
|
|
{
|
|
PointData *pd;
|
|
graphene_point_t *p, *c, *c2;
|
|
double l1, l2, l;
|
|
|
|
pd = &self->points[point];
|
|
|
|
if (pd->type != SYMMETRIC)
|
|
return;
|
|
|
|
c = &pd->p[0];
|
|
p = &pd->p[1];
|
|
c2 = &pd->p[2];
|
|
|
|
l1 = graphene_point_distance (p, c, NULL, NULL);
|
|
l2 = graphene_point_distance (p, c2, NULL, NULL);
|
|
|
|
if (l1 != l2)
|
|
{
|
|
l = (l1 + l2) / 2;
|
|
|
|
scale_point (p, c, l, c);
|
|
scale_point (p, c2, l, c2);
|
|
}
|
|
}
|
|
|
|
/* Make the line through the control points perpendicular
|
|
* to the line bisecting the angle between neighboring
|
|
* points, and make the lengths 1/3 of the distance to
|
|
* the corresponding neighboring points.
|
|
*/
|
|
static void
|
|
update_automatic (CurveEditor *self,
|
|
int point)
|
|
{
|
|
PointData *pd, *pd1, *pd2;
|
|
double l1, l2;
|
|
graphene_point_t a;
|
|
|
|
pd = &self->points[point];
|
|
|
|
if (pd->type != AUTO)
|
|
return;
|
|
|
|
pd1 = &self->points[(point - 1 + self->n_points) % self->n_points];
|
|
pd2 = &self->points[(point + 1) % self->n_points];
|
|
|
|
l1 = graphene_point_distance (&pd->p[1], &pd1->p[1], NULL, NULL);
|
|
l2 = graphene_point_distance (&pd->p[1], &pd2->p[1], NULL, NULL);
|
|
|
|
a.x = pd2->p[1].x + (pd->p[1].x - pd1->p[1].x);
|
|
a.y = pd2->p[1].y + (pd->p[1].y - pd1->p[1].y);
|
|
|
|
scale_point (&pd->p[1], &a, l2/3, &pd->p[2]);
|
|
opposite_point (&pd->p[1], &a, l1/3, &pd->p[0]);
|
|
}
|
|
|
|
static void
|
|
maintain_automatic (CurveEditor *self,
|
|
int point)
|
|
{
|
|
update_automatic (self, point);
|
|
update_automatic (self, (point - 1 + self->n_points) % self->n_points);
|
|
update_automatic (self, (point + 1) % self->n_points);
|
|
}
|
|
|
|
/* Check if the points arount point currently satisfy
|
|
* smoothness conditions. Set PointData.type accordingly.
|
|
*/
|
|
static void
|
|
check_smoothness (CurveEditor *self,
|
|
int point)
|
|
{
|
|
Operation op, op1;
|
|
graphene_point_t *p1, *p2;
|
|
PointData *pd;
|
|
|
|
pd = &self->points[point];
|
|
op = pd->op;
|
|
op1 = self->points[(point - 1 + self->n_points) % self->n_points].op;
|
|
|
|
if (op == CURVE)
|
|
p2 = &pd->p[2];
|
|
else if (op == LINE)
|
|
p2 = &self->points[(point + 1) % self->n_points].p[1];
|
|
else
|
|
p2 = NULL;
|
|
|
|
if (op1 == CURVE)
|
|
p1 = &pd->p[0];
|
|
else if (op1 == LINE)
|
|
p1 = &self->points[(point - 1 + self->n_points) % self->n_points].p[1];
|
|
else
|
|
p1 = NULL;
|
|
|
|
if (!p1 || !p2 || !collinear (&pd->p[1], p1, p2))
|
|
pd->type = CUSP;
|
|
else
|
|
pd->type = SMOOTH;
|
|
}
|
|
|
|
static void
|
|
insert_point (CurveEditor *self,
|
|
int point,
|
|
double pos)
|
|
{
|
|
Operation op = self->points[point].op;
|
|
int i;
|
|
graphene_point_t points[4];
|
|
int point1, point2;
|
|
|
|
if (op == MOVE)
|
|
return;
|
|
|
|
point1 = (point + 1) % self->n_points;
|
|
points[0] = self->points[point].p[1];
|
|
points[1] = self->points[point].p[2];
|
|
points[2] = self->points[point1].p[0];
|
|
points[3] = self->points[point1].p[1];
|
|
|
|
self->points = g_realloc (self->points, sizeof (PointData) * (self->n_points + 1));
|
|
for (i = self->n_points; i > point; i--)
|
|
self->points[i] = self->points[i - 1];
|
|
|
|
self->n_points += 1;
|
|
|
|
point1 = (point + 1) % self->n_points;
|
|
point2 = (point + 2) % self->n_points;
|
|
|
|
self->points[point1].type = SMOOTH;
|
|
self->points[point1].hovered = -1;
|
|
|
|
if (op == LINE)
|
|
{
|
|
graphene_point_t p;
|
|
|
|
self->points[point1].op = LINE;
|
|
|
|
graphene_point_interpolate (&points[0], &points[3], pos, &p);
|
|
self->points[point1].p[1] = p;
|
|
}
|
|
else if (op == CURVE)
|
|
{
|
|
graphene_point_t left[4];
|
|
graphene_point_t right[4];
|
|
int left_pos = 0;
|
|
int right_pos = 0;
|
|
|
|
self->points[point1].op = CURVE;
|
|
|
|
split_bezier (points, 4, pos, left, &left_pos, right, &right_pos);
|
|
|
|
self->points[point].p[1] = left[0];
|
|
self->points[point].p[2] = left[1];
|
|
self->points[point1].p[0] = left[2];
|
|
self->points[point1].p[1] = left[3];
|
|
self->points[point1].p[2] = right[2];
|
|
self->points[point2].p[0] = right[1];
|
|
self->points[point2].p[1] = right[0];
|
|
}
|
|
else
|
|
g_assert_not_reached ();
|
|
|
|
maintain_automatic (self, self->context);
|
|
|
|
gtk_widget_queue_draw (GTK_WIDGET (self));
|
|
}
|
|
/* }}} */
|
|
/* {{{ GskPath helpers */
|
|
static void
|
|
curve_editor_add_path (CurveEditor *self,
|
|
GskPathBuilder *builder)
|
|
{
|
|
int i;
|
|
|
|
if (self->n_points > 0)
|
|
gsk_path_builder_move_to (builder, self->points[0].p[1].x, self->points[0].p[1].y);
|
|
|
|
for (i = 0; i < self->n_points; i++)
|
|
{
|
|
PointData *pd1, *pd;
|
|
|
|
pd1 = &self->points[i];
|
|
pd = &self->points[(i + 1) % self->n_points];
|
|
|
|
switch (pd1->op)
|
|
{
|
|
case MOVE:
|
|
gsk_path_builder_move_to (builder, pd->p[1].x, pd->p[1].y);
|
|
break;
|
|
|
|
case LINE:
|
|
gsk_path_builder_line_to (builder, pd->p[1].x, pd->p[1].y);
|
|
break;
|
|
|
|
case CURVE:
|
|
gsk_path_builder_curve_to (builder,
|
|
pd1->p[2].x, pd1->p[2].y,
|
|
pd->p[0].x, pd->p[0].y,
|
|
pd->p[1].x, pd->p[1].y);
|
|
break;
|
|
|
|
default:
|
|
g_assert_not_reached ();
|
|
}
|
|
}
|
|
}
|
|
|
|
typedef struct
|
|
{
|
|
int count;
|
|
graphene_point_t first;
|
|
graphene_point_t last;
|
|
gboolean has_close;
|
|
gboolean has_initial_move;
|
|
} CountSegmentData;
|
|
|
|
static gboolean
|
|
count_segments (GskPathOperation op,
|
|
const graphene_point_t *pts,
|
|
gsize n_pts,
|
|
gpointer data)
|
|
{
|
|
CountSegmentData *d = data;
|
|
|
|
if (d->count == 0)
|
|
{
|
|
d->first = pts[0];
|
|
if (op == GSK_PATH_MOVE)
|
|
d->has_initial_move = TRUE;
|
|
}
|
|
|
|
d->last = pts[n_pts - 1];
|
|
d->count++;
|
|
|
|
if (op == GSK_PATH_CLOSE)
|
|
d->has_close = TRUE;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
typedef struct
|
|
{
|
|
CurveEditor *editor;
|
|
int pos;
|
|
} CopySegmentData;
|
|
|
|
static gboolean
|
|
copy_segments (GskPathOperation op,
|
|
const graphene_point_t *pts,
|
|
gsize n_pts,
|
|
gpointer data)
|
|
{
|
|
CopySegmentData *d = data;
|
|
CurveEditor *self = d->editor;
|
|
|
|
switch (op)
|
|
{
|
|
case GSK_PATH_MOVE:
|
|
if (d->pos != 0)
|
|
{
|
|
d->editor->points[d->pos - 1].op = MOVE;
|
|
d->editor->points[d->pos % self->n_points].p[1] = pts[0];
|
|
d->pos++;
|
|
}
|
|
break;
|
|
case GSK_PATH_CLOSE:
|
|
break;
|
|
case GSK_PATH_LINE:
|
|
d->editor->points[d->pos - 1].op = LINE;
|
|
d->editor->points[d->pos % self->n_points].p[1] = pts[1];
|
|
break;
|
|
case GSK_PATH_CURVE:
|
|
if (d->pos == 0)
|
|
{
|
|
d->editor->points[d->pos].p[1] = pts[0];
|
|
d->pos++;
|
|
}
|
|
|
|
d->editor->points[d->pos - 1].op = CURVE;
|
|
|
|
d->editor->points[d->pos - 1].p[2] = pts[1];
|
|
d->editor->points[d->pos % self->n_points].p[0] = pts[2];
|
|
d->editor->points[d->pos % self->n_points].p[1] = pts[3];
|
|
d->pos++;
|
|
break;
|
|
default:
|
|
g_assert_not_reached ();
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
/* }}} */
|
|
/* {{{ Drag implementation */
|
|
static void
|
|
drag_begin (GtkGestureDrag *gesture,
|
|
double start_x,
|
|
double start_y,
|
|
CurveEditor *self)
|
|
{
|
|
int i, j;
|
|
graphene_point_t p = GRAPHENE_POINT_INIT (start_x, start_y);
|
|
int point;
|
|
double t;
|
|
double d;
|
|
|
|
if (!self->edit)
|
|
return;
|
|
|
|
for (i = 0; i < self->n_points; i++)
|
|
{
|
|
PointData *pd = &self->points[i];
|
|
|
|
for (j = 0; j < 3; j++)
|
|
{
|
|
if (graphene_point_distance (&pd->p[j], &p, NULL, NULL) < CLICK_RADIUS)
|
|
{
|
|
if (point_is_visible (self, i, j))
|
|
{
|
|
self->dragged = i;
|
|
pd->dragged = j;
|
|
gtk_widget_queue_draw (GTK_WIDGET (self));
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
find_closest_point (self, &p, &point, &t, &d);
|
|
|
|
if (d <= CLICK_RADIUS)
|
|
{
|
|
/* Can't bend a straight line */
|
|
self->points[point].op = CURVE;
|
|
self->molded = point;
|
|
return;
|
|
}
|
|
|
|
gtk_gesture_set_state (GTK_GESTURE (gesture), GTK_EVENT_SEQUENCE_DENIED);
|
|
}
|
|
|
|
static void
|
|
drag_control_point (CurveEditor *self,
|
|
double x,
|
|
double y)
|
|
{
|
|
double dx, dy;
|
|
graphene_point_t *c, *p, *d;
|
|
double l1, l2;
|
|
PointData *pd;
|
|
|
|
pd = &self->points[self->dragged];
|
|
d = &pd->p[pd->dragged];
|
|
|
|
/* before moving the point, record the distances to its neighbors, since
|
|
* we may want to preserve those
|
|
*/
|
|
l1 = graphene_point_distance (&pd->p[1], &pd->p[0], NULL, NULL);
|
|
l2 = graphene_point_distance (&pd->p[1], &pd->p[2], NULL, NULL);
|
|
|
|
dx = x - d->x;
|
|
dy = y - d->y;
|
|
|
|
if (pd->dragged == 1)
|
|
{
|
|
/* dragged point is on curve */
|
|
|
|
Operation op, op1, op11, op2;
|
|
PointData *pd1, *pd2;
|
|
|
|
/* first move the point itself */
|
|
d->x = x;
|
|
d->y = y;
|
|
|
|
/* adjust control points as needed */
|
|
pd1 = &self->points[((self->dragged - 1 + self->n_points) % self->n_points)];
|
|
pd2 = &self->points[((self->dragged + 1) % self->n_points)];
|
|
|
|
op = pd->op;
|
|
op1 = pd1->op;
|
|
op2 = pd2->op;
|
|
|
|
if (op1 == LINE)
|
|
{
|
|
/* the other endpoint of the line */
|
|
p = &pd1->p[1];
|
|
|
|
if (op == CURVE && pd->type != CUSP)
|
|
{
|
|
/* adjust the control point after the line segment */
|
|
opposite_point (d, p, l2, &pd->p[2]);
|
|
}
|
|
else
|
|
{
|
|
pd->p[2].x += dx;
|
|
pd->p[2].y += dy;
|
|
}
|
|
|
|
pd->p[0].x += dx;
|
|
pd->p[0].y += dy;
|
|
|
|
op11 = self->points[((self->dragged - 2 + self->n_points) % self->n_points)].op;
|
|
|
|
if (op11 == CURVE && pd1->type != CUSP)
|
|
{
|
|
double l;
|
|
|
|
/* adjust the control point before the line segment */
|
|
l = graphene_point_distance (&pd1->p[0], p, NULL, NULL);
|
|
opposite_point (p, d, l, &pd1->p[0]);
|
|
}
|
|
}
|
|
|
|
if (op == LINE)
|
|
{
|
|
/* the other endpoint of the line */
|
|
p = &pd2->p[1];
|
|
|
|
if (op1 == CURVE && pd->type != CUSP)
|
|
{
|
|
/* adjust the control point before the line segment */
|
|
opposite_point (d, p, l1, &pd->p[0]);
|
|
}
|
|
else
|
|
{
|
|
pd->p[0].x += dx;
|
|
pd->p[0].y += dy;
|
|
}
|
|
|
|
pd->p[2].x += dx;
|
|
pd->p[2].y += dy;
|
|
|
|
if (op2 == CURVE && pd2->type != CUSP)
|
|
{
|
|
double l;
|
|
|
|
/* adjust the control point after the line segment */
|
|
l = graphene_point_distance (&pd2->p[2], p, NULL, NULL);
|
|
opposite_point (p, d, l, &pd2->p[2]);
|
|
}
|
|
}
|
|
|
|
if (op1 != LINE && op != LINE)
|
|
{
|
|
pd->p[0].x += dx;
|
|
pd->p[0].y += dy;
|
|
pd->p[2].x += dx;
|
|
pd->p[2].y += dy;
|
|
}
|
|
|
|
maintain_automatic (self, self->dragged);
|
|
}
|
|
else
|
|
{
|
|
/* dragged point is a control point */
|
|
|
|
graphene_point_t *p1;
|
|
Operation op, op1;
|
|
|
|
if (pd->dragged == 0)
|
|
{
|
|
c = &pd->p[2];
|
|
p = &pd->p[1];
|
|
|
|
op = self->points[(self->dragged - 1 + self->n_points) % self->n_points].op;
|
|
op1 = self->points[self->dragged].op;
|
|
|
|
p1 = &self->points[(self->dragged + 1) % self->n_points].p[1];
|
|
}
|
|
else if (pd->dragged == 2)
|
|
{
|
|
c = &pd->p[0];
|
|
p = &pd->p[1];
|
|
|
|
op = self->points[self->dragged].op;
|
|
op1 = self->points[(self->dragged - 1 + self->n_points) % self->n_points].op;
|
|
p1 = &self->points[(self->dragged - 1 + self->n_points) % self->n_points].p[1];
|
|
}
|
|
else
|
|
g_assert_not_reached ();
|
|
|
|
if (op == CURVE && pd->type != CUSP)
|
|
{
|
|
if (op1 == CURVE)
|
|
{
|
|
double l;
|
|
|
|
/* first move the point itself */
|
|
d->x = x;
|
|
d->y = y;
|
|
|
|
/* then adjust the other control point */
|
|
if (pd->type == SYMMETRIC)
|
|
l = graphene_point_distance (d, p, NULL, NULL);
|
|
else
|
|
l = graphene_point_distance (c, p, NULL, NULL);
|
|
|
|
opposite_point (p, d, l, c);
|
|
}
|
|
else if (op1 == LINE)
|
|
{
|
|
graphene_point_t m = GRAPHENE_POINT_INIT (x, y);
|
|
closest_point (&m, p, p1, d);
|
|
}
|
|
else
|
|
{
|
|
d->x = x;
|
|
d->y = y;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
d->x = x;
|
|
d->y = y;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
drag_curve (CurveEditor *self,
|
|
double x,
|
|
double y)
|
|
{
|
|
PointData *pd, *pd1, *pd2, *pd3;
|
|
graphene_point_t *S, *E;
|
|
graphene_point_t B, C1, C2;
|
|
double l;
|
|
|
|
pd = &self->points[self->molded];
|
|
pd1 = &self->points[(self->molded + 1) % self->n_points];
|
|
pd2 = &self->points[(self->molded - 1 + self->n_points) % self->n_points];
|
|
pd3 = &self->points[(self->molded + 2) % self->n_points];
|
|
|
|
S = &pd->p[1];
|
|
B = GRAPHENE_POINT_INIT (x, y);
|
|
E = &pd1->p[1];
|
|
|
|
bezier_through (S, &B, E, &C1, &C2);
|
|
|
|
pd->p[2] = C1;
|
|
pd1->p[0] = C2;
|
|
|
|
/* When the neighboring segments are lines, we can't actually
|
|
* use C1 and C2 as-is, since we need control points to lie
|
|
* on the line. So we just use their distance. This makes our
|
|
* point B not quite match anymore, but we're overconstrained.
|
|
*/
|
|
if (pd2->op == LINE)
|
|
{
|
|
l = graphene_point_distance (&pd->p[1], &pd->p[2], NULL, NULL);
|
|
if (three_point_angle (&pd->p[1], &pd2->p[1], &B) > 0)
|
|
scale_point (&pd->p[1], &pd2->p[1], l, &pd->p[2]);
|
|
else
|
|
opposite_point (&pd->p[1], &pd2->p[1], l, &pd->p[2]);
|
|
}
|
|
|
|
if (pd1->op == LINE)
|
|
{
|
|
l = graphene_point_distance (&pd1->p[1], &pd1->p[0], NULL, NULL);
|
|
if (three_point_angle (&pd1->p[1], &pd3->p[1], &B) > 0)
|
|
scale_point (&pd1->p[1], &pd3->p[1], l, &pd1->p[0]);
|
|
else
|
|
opposite_point (&pd1->p[1], &pd3->p[1], l, &pd1->p[0]);
|
|
}
|
|
|
|
/* Maintain smoothness and symmetry */
|
|
if (pd->type != CUSP)
|
|
{
|
|
if (pd->type == SYMMETRIC)
|
|
l = graphene_point_distance (&pd->p[1], &pd->p[2], NULL, NULL);
|
|
else
|
|
l = graphene_point_distance (&pd->p[1], &pd->p[0], NULL, NULL);
|
|
opposite_point (&pd->p[1], &pd->p[2], l, &pd->p[0]);
|
|
}
|
|
|
|
if (pd1->type != CUSP)
|
|
{
|
|
if (pd1->type == SYMMETRIC)
|
|
l = graphene_point_distance (&pd1->p[1], &pd1->p[0], NULL, NULL);
|
|
else
|
|
l = graphene_point_distance (&pd1->p[1], &pd1->p[2], NULL, NULL);
|
|
opposite_point (&pd1->p[1], &pd1->p[0], l, &pd1->p[2]);
|
|
}
|
|
}
|
|
|
|
static void
|
|
drag_update (GtkGestureDrag *gesture,
|
|
double offset_x,
|
|
double offset_y,
|
|
CurveEditor *self)
|
|
{
|
|
double x, y;
|
|
|
|
gtk_gesture_drag_get_start_point (gesture, &x, &y);
|
|
|
|
x += offset_x;
|
|
y += offset_y;
|
|
|
|
if (self->dragged != -1)
|
|
{
|
|
gtk_gesture_set_state (GTK_GESTURE (gesture), GTK_EVENT_SEQUENCE_CLAIMED);
|
|
drag_control_point (self, x, y);
|
|
gtk_widget_queue_draw (GTK_WIDGET (self));
|
|
}
|
|
else if (self->molded != -1)
|
|
{
|
|
gtk_gesture_set_state (GTK_GESTURE (gesture), GTK_EVENT_SEQUENCE_CLAIMED);
|
|
drag_curve (self, x, y);
|
|
gtk_widget_queue_draw (GTK_WIDGET (self));
|
|
}
|
|
}
|
|
|
|
static void
|
|
drag_end (GtkGestureDrag *gesture,
|
|
double offset_x,
|
|
double offset_y,
|
|
CurveEditor *self)
|
|
{
|
|
drag_update (gesture, offset_x, offset_y, self);
|
|
self->dragged = -1;
|
|
self->molded = -1;
|
|
}
|
|
/* }}} */
|
|
/* {{{ Action callbacks */
|
|
static void
|
|
set_point_type (GSimpleAction *action,
|
|
GVariant *value,
|
|
gpointer data)
|
|
{
|
|
CurveEditor *self = CURVE_EDITOR (data);
|
|
|
|
self->points[self->context].type = point_type_from_string (g_variant_get_string (value, NULL));
|
|
|
|
maintain_smoothness (self, self->context);
|
|
maintain_symmetry (self, self->context);
|
|
maintain_automatic (self, self->context);
|
|
|
|
gtk_widget_queue_draw (GTK_WIDGET (self));
|
|
}
|
|
|
|
static void
|
|
set_operation (GSimpleAction *action,
|
|
GVariant *value,
|
|
gpointer data)
|
|
{
|
|
CurveEditor *self = CURVE_EDITOR (data);
|
|
|
|
self->points[self->context].op = op_from_string (g_variant_get_string (value, NULL));
|
|
|
|
maintain_smoothness (self, self->context);
|
|
maintain_smoothness (self, (self->context + 1) % self->n_points);
|
|
maintain_symmetry (self, self->context);
|
|
maintain_symmetry (self, (self->context + 1) % self->n_points);
|
|
|
|
gtk_widget_queue_draw (GTK_WIDGET (self));
|
|
}
|
|
|
|
static void
|
|
remove_point (GSimpleAction *action,
|
|
GVariant *value,
|
|
gpointer data)
|
|
{
|
|
CurveEditor *self = CURVE_EDITOR (data);
|
|
int i;
|
|
|
|
for (i = self->context; i + 1 < self->n_points; i++)
|
|
self->points[i] = self->points[i + 1];
|
|
|
|
self->points = g_realloc (self->points, sizeof (PointData) * (self->n_points - 1));
|
|
|
|
self->n_points -= 1;
|
|
|
|
maintain_smoothness (self, self->context);
|
|
maintain_automatic (self, self->context);
|
|
|
|
gtk_widget_queue_draw (GTK_WIDGET (self));
|
|
}
|
|
/* }}} */
|
|
/* {{{ Event handlers */
|
|
static void
|
|
pressed (GtkGestureClick *gesture,
|
|
int n_press,
|
|
double x,
|
|
double y,
|
|
CurveEditor *self)
|
|
{
|
|
graphene_point_t m = GRAPHENE_POINT_INIT (x, y);
|
|
int i;
|
|
int button = gtk_gesture_single_get_current_button (GTK_GESTURE_SINGLE (gesture));
|
|
|
|
if (!self->edit)
|
|
return;
|
|
|
|
if (button == GDK_BUTTON_SECONDARY)
|
|
{
|
|
for (i = 0; i < self->n_points; i++)
|
|
{
|
|
PointData *pd = &self->points[i];
|
|
|
|
if (graphene_point_distance (&pd->p[1], &m, NULL, NULL) < CLICK_RADIUS)
|
|
{
|
|
GAction *action;
|
|
|
|
self->context = i;
|
|
|
|
action = g_action_map_lookup_action (self->actions, "type");
|
|
g_simple_action_set_state (G_SIMPLE_ACTION (action), g_variant_new_string (point_type_to_string (pd->type)));
|
|
|
|
action = g_action_map_lookup_action (self->actions, "operation");
|
|
g_simple_action_set_state (G_SIMPLE_ACTION (action), g_variant_new_string (op_to_string (pd->op)));
|
|
|
|
gtk_popover_set_pointing_to (GTK_POPOVER (self->menu),
|
|
&(const GdkRectangle){ x, y, 1, 1 });
|
|
gtk_popover_popup (GTK_POPOVER (self->menu));
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
released (GtkGestureClick *gesture,
|
|
int n_press,
|
|
double x,
|
|
double y,
|
|
CurveEditor *self)
|
|
{
|
|
graphene_point_t m = GRAPHENE_POINT_INIT (x, y);
|
|
int button = gtk_gesture_single_get_current_button (GTK_GESTURE_SINGLE (gesture));
|
|
int i;
|
|
|
|
if (!self->edit)
|
|
return;
|
|
|
|
for (i = 0; i < self->n_points; i++)
|
|
{
|
|
PointData *pd = &self->points[i];
|
|
|
|
if (graphene_point_distance (&pd->p[1], &m, NULL, NULL) < CLICK_RADIUS)
|
|
{
|
|
if (button == GDK_BUTTON_PRIMARY)
|
|
{
|
|
pd->edit = !pd->edit;
|
|
gtk_widget_queue_draw (GTK_WIDGET (self));
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (button == GDK_BUTTON_PRIMARY)
|
|
{
|
|
int point;
|
|
double t;
|
|
double d;
|
|
|
|
find_closest_point (self, &m, &point, &t, &d);
|
|
|
|
if (d <= CLICK_RADIUS)
|
|
insert_point (self, point, t);
|
|
}
|
|
}
|
|
|
|
static void
|
|
motion (GtkEventControllerMotion *controller,
|
|
double x,
|
|
double y,
|
|
CurveEditor *self)
|
|
{
|
|
graphene_point_t m = GRAPHENE_POINT_INIT (x, y);
|
|
int i, j;
|
|
gboolean changed = FALSE;
|
|
|
|
if (self->edit)
|
|
{
|
|
for (i = 0; i < self->n_points; i++)
|
|
{
|
|
PointData *pd = &self->points[i];
|
|
int hovered = -1;
|
|
|
|
for (j = 0; j < 3; j++)
|
|
{
|
|
if (!point_is_visible (self, i, j))
|
|
continue;
|
|
|
|
if (graphene_point_distance (&pd->p[j], &m, NULL, NULL) < CLICK_RADIUS)
|
|
{
|
|
hovered = j;
|
|
break;
|
|
}
|
|
}
|
|
if (pd->hovered != hovered)
|
|
{
|
|
pd->hovered = hovered;
|
|
changed = TRUE;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (changed)
|
|
gtk_widget_queue_draw (GTK_WIDGET (self));
|
|
}
|
|
|
|
static void
|
|
leave (GtkEventController *controller,
|
|
CurveEditor *self)
|
|
{
|
|
int i;
|
|
gboolean changed = FALSE;
|
|
|
|
for (i = 0; i < self->n_points; i++)
|
|
{
|
|
PointData *pd = &self->points[i];
|
|
if (pd->hovered != -1)
|
|
{
|
|
pd->hovered = -1;
|
|
changed = TRUE;
|
|
}
|
|
}
|
|
|
|
if (changed)
|
|
gtk_widget_queue_draw (GTK_WIDGET (self));
|
|
}
|
|
/* }}} */
|
|
/* {{{ Snapshot */
|
|
static void
|
|
curve_editor_snapshot (GtkWidget *widget,
|
|
GtkSnapshot *snapshot)
|
|
{
|
|
CurveEditor *self = (CurveEditor *)widget;
|
|
GskPathBuilder *builder;
|
|
GskPath *path;
|
|
GskStroke *stroke;
|
|
int i, j, k;
|
|
float width;
|
|
float height;
|
|
|
|
if (self->n_points == 0)
|
|
return;
|
|
|
|
width = gtk_widget_get_width (widget);
|
|
height = gtk_widget_get_width (widget);
|
|
|
|
/* Add the curve itself */
|
|
|
|
builder = gsk_path_builder_new ();
|
|
|
|
curve_editor_add_path (self, builder);
|
|
|
|
path = gsk_path_builder_free_to_path (builder);
|
|
gtk_snapshot_push_stroke (snapshot, path, self->stroke);
|
|
gsk_path_unref (path);
|
|
|
|
gtk_snapshot_append_color (snapshot,
|
|
&self->color,
|
|
&GRAPHENE_RECT_INIT (0, 0, width, height ));
|
|
|
|
gtk_snapshot_pop (snapshot);
|
|
|
|
if (self->edit)
|
|
{
|
|
/* Add the skeleton */
|
|
|
|
builder = gsk_path_builder_new ();
|
|
|
|
for (i = 0; i < self->n_points; i++)
|
|
{
|
|
PointData *pd = &self->points[i];
|
|
gboolean need_move = TRUE;
|
|
if (point_is_visible (self, i, 0))
|
|
{
|
|
gsk_path_builder_move_to (builder, pd->p[0].x, pd->p[0].y);
|
|
gsk_path_builder_line_to (builder, pd->p[1].x, pd->p[1].y);
|
|
need_move = FALSE;
|
|
}
|
|
if (point_is_visible (self, i, 2))
|
|
{
|
|
if (need_move)
|
|
gsk_path_builder_move_to (builder, pd->p[1].x, pd->p[1].y);
|
|
gsk_path_builder_line_to (builder, pd->p[2].x, pd->p[2].y);
|
|
}
|
|
}
|
|
|
|
path = gsk_path_builder_free_to_path (builder);
|
|
stroke = gsk_stroke_new (1);
|
|
gtk_snapshot_push_stroke (snapshot, path, stroke);
|
|
gsk_stroke_free (stroke);
|
|
gsk_path_unref (path);
|
|
|
|
gtk_snapshot_append_color (snapshot,
|
|
&(GdkRGBA){ 0, 0, 0, 1 },
|
|
&GRAPHENE_RECT_INIT (0, 0, width, height ));
|
|
|
|
gtk_snapshot_pop (snapshot);
|
|
|
|
/* Draw the circles, in several passes, one for each color */
|
|
|
|
const char *colors[] = {
|
|
"white", /* hovered */
|
|
"red", /* smooth curve points */
|
|
"green", /* sharp curve points */
|
|
"blue" /* control points */
|
|
};
|
|
GdkRGBA color;
|
|
|
|
for (k = 0; k < 4; k++)
|
|
{
|
|
builder = gsk_path_builder_new ();
|
|
|
|
for (i = 0; i < self->n_points; i++)
|
|
{
|
|
PointData *pd = &self->points[i];
|
|
|
|
for (j = 0; j < 3; j++)
|
|
{
|
|
switch (k)
|
|
{
|
|
case 0:
|
|
if (j != pd->hovered)
|
|
continue;
|
|
break;
|
|
|
|
case 1:
|
|
if (j == pd->hovered)
|
|
continue;
|
|
|
|
if (!(j == 1 && pd->type != CUSP))
|
|
continue;
|
|
break;
|
|
|
|
case 2:
|
|
if (j == pd->hovered)
|
|
continue;
|
|
|
|
if (!(j == 1 && pd->type == CUSP))
|
|
continue;
|
|
break;
|
|
|
|
case 3:
|
|
if (j == pd->hovered)
|
|
continue;
|
|
|
|
if (j == 1)
|
|
continue;
|
|
|
|
if (!point_is_visible (self, i, j))
|
|
continue;
|
|
break;
|
|
|
|
default:
|
|
g_assert_not_reached ();
|
|
}
|
|
|
|
gsk_path_builder_add_circle (builder, &pd->p[j], DRAW_RADIUS);
|
|
}
|
|
}
|
|
|
|
path = gsk_path_builder_free_to_path (builder);
|
|
|
|
gtk_snapshot_push_fill (snapshot, path, GSK_FILL_RULE_WINDING);
|
|
gdk_rgba_parse (&color, colors[k]);
|
|
gtk_snapshot_append_color (snapshot,
|
|
&color,
|
|
&GRAPHENE_RECT_INIT (0, 0, width, height));
|
|
gtk_snapshot_pop (snapshot);
|
|
|
|
stroke = gsk_stroke_new (1.0);
|
|
gtk_snapshot_push_stroke (snapshot, path, stroke);
|
|
gsk_stroke_free (stroke);
|
|
|
|
gtk_snapshot_append_color (snapshot,
|
|
&(GdkRGBA){ 0, 0, 0, 1 },
|
|
&GRAPHENE_RECT_INIT (0, 0, width, height));
|
|
gtk_snapshot_pop (snapshot);
|
|
|
|
gsk_path_unref (path);
|
|
}
|
|
}
|
|
}
|
|
/* }}} */
|
|
/* {{{ GtkWidget boilerplate */
|
|
static void
|
|
curve_editor_measure (GtkWidget *widget,
|
|
GtkOrientation orientation,
|
|
int for_size,
|
|
int *minimum_size,
|
|
int *natural_size,
|
|
int *minimum_baseline,
|
|
int *natural_baseline)
|
|
{
|
|
*minimum_size = 100;
|
|
*natural_size = 200;
|
|
}
|
|
|
|
static void
|
|
curve_editor_size_allocate (GtkWidget *widget,
|
|
int width,
|
|
int height,
|
|
int baseline)
|
|
{
|
|
CurveEditor *self = CURVE_EDITOR (widget);
|
|
|
|
gtk_native_check_resize (GTK_NATIVE (self->menu));
|
|
}
|
|
/* }}} */
|
|
/* {{{ GObject boilerplate */
|
|
static void
|
|
curve_editor_dispose (GObject *object)
|
|
{
|
|
CurveEditor *self = CURVE_EDITOR (object);
|
|
|
|
g_clear_pointer (&self->points, g_free);
|
|
g_clear_pointer (&self->menu, gtk_widget_unparent);
|
|
g_clear_object (&self->actions);
|
|
|
|
G_OBJECT_CLASS (curve_editor_parent_class)->dispose (object);
|
|
}
|
|
|
|
static void
|
|
curve_editor_class_init (CurveEditorClass *class)
|
|
{
|
|
GObjectClass *object_class = G_OBJECT_CLASS (class);
|
|
GtkWidgetClass *widget_class = GTK_WIDGET_CLASS (class);
|
|
|
|
object_class->dispose = curve_editor_dispose;
|
|
|
|
widget_class->snapshot = curve_editor_snapshot;
|
|
widget_class->measure = curve_editor_measure;
|
|
widget_class->size_allocate = curve_editor_size_allocate;
|
|
}
|
|
/* }}} */
|
|
/* {{{ Setup */
|
|
static void
|
|
curve_editor_init (CurveEditor *self)
|
|
{
|
|
GtkEventController *controller;
|
|
GMenu *menu;
|
|
GMenu *section;
|
|
GMenuItem *item;
|
|
GSimpleAction *action;
|
|
|
|
self->dragged = -1;
|
|
self->molded = -1;
|
|
self->edit = FALSE;
|
|
self->stroke = gsk_stroke_new (1.0);
|
|
self->color = (GdkRGBA){ 0, 0, 0, 1 };
|
|
|
|
controller = GTK_EVENT_CONTROLLER (gtk_gesture_drag_new ());
|
|
gtk_gesture_single_set_button (GTK_GESTURE_SINGLE (controller), GDK_BUTTON_PRIMARY);
|
|
g_signal_connect (controller, "drag-begin", G_CALLBACK (drag_begin), self);
|
|
g_signal_connect (controller, "drag-update", G_CALLBACK (drag_update), self);
|
|
g_signal_connect (controller, "drag-end", G_CALLBACK (drag_end), self);
|
|
gtk_widget_add_controller (GTK_WIDGET (self), controller);
|
|
|
|
controller = GTK_EVENT_CONTROLLER (gtk_gesture_click_new ());
|
|
gtk_gesture_single_set_button (GTK_GESTURE_SINGLE (controller), 0);
|
|
g_signal_connect (controller, "pressed", G_CALLBACK (pressed), self);
|
|
g_signal_connect (controller, "released", G_CALLBACK (released), self);
|
|
gtk_widget_add_controller (GTK_WIDGET (self), controller);
|
|
|
|
controller = gtk_event_controller_motion_new ();
|
|
g_signal_connect (controller, "motion", G_CALLBACK (motion), self);
|
|
g_signal_connect (controller, "leave", G_CALLBACK (leave), self);
|
|
gtk_widget_add_controller (GTK_WIDGET (self), controller);
|
|
|
|
self->points = NULL;
|
|
self->n_points = 0;
|
|
|
|
self->actions = G_ACTION_MAP (g_simple_action_group_new ());
|
|
|
|
action = g_simple_action_new_stateful ("type", G_VARIANT_TYPE_STRING, g_variant_new_string ("smooth"));
|
|
g_signal_connect (action, "change-state", G_CALLBACK (set_point_type), self);
|
|
g_action_map_add_action (G_ACTION_MAP (self->actions), G_ACTION (action));
|
|
gtk_widget_insert_action_group (GTK_WIDGET (self), "point", G_ACTION_GROUP (self->actions));
|
|
|
|
action = g_simple_action_new_stateful ("operation", G_VARIANT_TYPE_STRING, g_variant_new_string ("curve"));
|
|
g_signal_connect (action, "change-state", G_CALLBACK (set_operation), self);
|
|
g_action_map_add_action (G_ACTION_MAP (self->actions), G_ACTION (action));
|
|
|
|
action = g_simple_action_new ("remove", NULL);
|
|
g_signal_connect (action, "activate", G_CALLBACK (remove_point), self);
|
|
g_action_map_add_action (G_ACTION_MAP (self->actions), G_ACTION (action));
|
|
|
|
gtk_widget_insert_action_group (GTK_WIDGET (self), "point", G_ACTION_GROUP (self->actions));
|
|
|
|
menu = g_menu_new ();
|
|
|
|
section = g_menu_new ();
|
|
|
|
item = g_menu_item_new ("Cusp", "point.type::cusp");
|
|
g_menu_append_item (section, item);
|
|
g_object_unref (item);
|
|
|
|
item = g_menu_item_new ("Smooth", "point.type::smooth");
|
|
g_menu_append_item (section, item);
|
|
g_object_unref (item);
|
|
|
|
item = g_menu_item_new ("Symmetric", "point.type::symmetric");
|
|
g_menu_append_item (section, item);
|
|
g_object_unref (item);
|
|
|
|
item = g_menu_item_new ("Automatic", "point.type::auto");
|
|
g_menu_append_item (section, item);
|
|
g_object_unref (item);
|
|
|
|
|
|
g_menu_append_section (menu, NULL, G_MENU_MODEL (section));
|
|
g_object_unref (section);
|
|
|
|
section = g_menu_new ();
|
|
|
|
item = g_menu_item_new ("Move", "point.operation::move");
|
|
g_menu_append_item (section, item);
|
|
g_object_unref (item);
|
|
|
|
item = g_menu_item_new ("Line", "point.operation::line");
|
|
g_menu_append_item (section, item);
|
|
g_object_unref (item);
|
|
|
|
item = g_menu_item_new ("Curve", "point.operation::curve");
|
|
g_menu_append_item (section, item);
|
|
g_object_unref (item);
|
|
|
|
g_menu_append_section (menu, NULL, G_MENU_MODEL (section));
|
|
g_object_unref (section);
|
|
|
|
section = g_menu_new ();
|
|
|
|
item = g_menu_item_new ("Remove", "point.remove");
|
|
g_menu_append_item (section, item);
|
|
g_object_unref (item);
|
|
|
|
g_menu_append_section (menu, NULL, G_MENU_MODEL (section));
|
|
g_object_unref (section);
|
|
|
|
self->menu = gtk_popover_menu_new_from_model (G_MENU_MODEL (menu));
|
|
g_object_unref (menu);
|
|
|
|
gtk_widget_set_parent (self->menu, GTK_WIDGET (self));
|
|
}
|
|
|
|
/* }}} */
|
|
/* {{{ API */
|
|
GtkWidget *
|
|
curve_editor_new (void)
|
|
{
|
|
return g_object_new (curve_editor_get_type (), NULL);
|
|
}
|
|
|
|
void
|
|
curve_editor_set_edit (CurveEditor *self,
|
|
gboolean edit)
|
|
{
|
|
int i;
|
|
|
|
self->edit = edit;
|
|
if (!self->edit)
|
|
{
|
|
for (i = 0; i < self->n_points; i++)
|
|
{
|
|
self->points[i].edit = FALSE;
|
|
self->points[i].hovered = -1;
|
|
}
|
|
}
|
|
|
|
gtk_widget_queue_draw (GTK_WIDGET (self));
|
|
}
|
|
|
|
void
|
|
curve_editor_set_path (CurveEditor *self,
|
|
GskPath *path)
|
|
{
|
|
CountSegmentData data;
|
|
CopySegmentData data2;
|
|
int i;
|
|
|
|
g_clear_pointer (&self->points, g_free);
|
|
self->n_points = 0;
|
|
|
|
data.count = 0;
|
|
data.has_close = FALSE;
|
|
gsk_path_foreach (path, count_segments, &data);
|
|
|
|
if (data.has_initial_move)
|
|
data.count--;
|
|
|
|
if (!graphene_point_near (&data.first, &data.last, 0.0001) && !data.has_close)
|
|
data.count++;
|
|
|
|
self->n_points = data.count;
|
|
self->points = g_new0 (PointData, self->n_points);
|
|
for (i = 0; i < self->n_points; i++)
|
|
{
|
|
self->points[i].type = CUSP;
|
|
self->points[i].hovered = -1;
|
|
}
|
|
|
|
data2.editor = self;
|
|
data2.pos = 0;
|
|
gsk_path_foreach (path, copy_segments, &data2);
|
|
|
|
for (i = 0; i < self->n_points; i++)
|
|
check_smoothness (self, i);
|
|
|
|
gtk_widget_queue_draw (GTK_WIDGET (self));
|
|
}
|
|
|
|
GskPath *
|
|
curve_editor_get_path (CurveEditor *self)
|
|
{
|
|
GskPathBuilder *builder;
|
|
|
|
builder = gsk_path_builder_new ();
|
|
|
|
curve_editor_add_path (self, builder);
|
|
|
|
return gsk_path_builder_free_to_path (builder);
|
|
}
|
|
|
|
void
|
|
curve_editor_set_stroke (CurveEditor *self,
|
|
GskStroke *stroke)
|
|
{
|
|
gsk_stroke_free (self->stroke);
|
|
self->stroke = gsk_stroke_copy (stroke);
|
|
|
|
gtk_widget_queue_draw (GTK_WIDGET (self));
|
|
}
|
|
|
|
const GskStroke *
|
|
curve_editor_get_stroke (CurveEditor *self)
|
|
{
|
|
return self->stroke;
|
|
}
|
|
|
|
void
|
|
curve_editor_set_color (CurveEditor *self,
|
|
GdkRGBA *color)
|
|
{
|
|
self->color = *color;
|
|
|
|
gtk_widget_queue_draw (GTK_WIDGET (self));
|
|
}
|
|
|
|
const GdkRGBA *
|
|
curve_editor_get_color (CurveEditor *self)
|
|
{
|
|
return &self->color;
|
|
}
|
|
/* }}} */
|
|
/* vim:set foldmethod=marker expandtab: */
|