Files
gtk/gsk/gskcontour.c
Matthias Clasen 2526481dce API: Add gsk_path_is_convex
Add a function to compute whether a path is convex.
2023-07-02 01:25:05 -04:00

1953 lines
61 KiB
C

/*
* Copyright © 2020 Benjamin Otte
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library. If not, see <http://www.gnu.org/licenses/>.
*
* Authors: Benjamin Otte <otte@gnome.org>
*/
#include "config.h"
#include "gskcontourprivate.h"
#include "gskcurveprivate.h"
#include "gskpathbuilder.h"
#include "gskpathprivate.h"
#include "gsksplineprivate.h"
#include "gskstrokeprivate.h"
#include "gskconvexityprivate.h"
typedef struct _GskContourClass GskContourClass;
struct _GskContour
{
const GskContourClass *klass;
};
struct _GskContourClass
{
gsize struct_size;
const char *type_name;
gsize (* get_size) (const GskContour *contour);
GskPathFlags (* get_flags) (const GskContour *contour);
void (* print) (const GskContour *contour,
GString *string);
gboolean (* get_bounds) (const GskContour *contour,
graphene_rect_t *bounds);
void (* get_start_end) (const GskContour *self,
graphene_point_t *start,
graphene_point_t *end);
gboolean (* foreach) (const GskContour *contour,
float tolerance,
GskPathForeachFunc func,
gpointer user_data);
gpointer (* init_measure) (const GskContour *contour,
float tolerance,
float *out_length);
void (* free_measure) (const GskContour *contour,
gpointer measure_data);
void (* get_point) (const GskContour *contour,
gpointer measure_data,
float distance,
graphene_point_t *pos,
graphene_vec2_t *tangent);
gboolean (* get_closest_point) (const GskContour *contour,
gpointer measure_data,
float tolerance,
const graphene_point_t *point,
float threshold,
float *out_offset,
graphene_point_t *out_pos,
float *out_distance,
graphene_vec2_t *out_tangent);
void (* copy) (const GskContour *contour,
GskContour *dest);
void (* add_segment) (const GskContour *contour,
GskPathBuilder *builder,
gpointer measure_data,
gboolean emit_move_to,
float start,
float end);
int (* get_winding) (const GskContour *contour,
gpointer measure_data,
const graphene_point_t *point);
gboolean (* get_stroke_bounds) (const GskContour *contour,
const GskStroke *stroke,
graphene_rect_t *bounds);
GskContour * (* reverse) (const GskContour *contour);
gboolean (* is_convex) (const GskContour *contour);
};
static gsize
gsk_contour_get_size_default (const GskContour *contour)
{
return contour->klass->struct_size;
}
static void
gsk_find_point_on_line (const graphene_point_t *a,
const graphene_point_t *b,
const graphene_point_t *p,
float *offset,
graphene_point_t *pos)
{
graphene_vec2_t n;
graphene_vec2_t ap;
float t;
graphene_vec2_init (&n, b->x - a->x, b->y - a->y);
graphene_vec2_init (&ap, p->x - a->x, p->y - a->y);
t = graphene_vec2_dot (&ap, &n) / graphene_vec2_dot (&n, &n);
if (t <= 0)
{
*pos = *a;
*offset = 0;
}
else if (t >= 1)
{
*pos = *b;
*offset = 1;
}
else
{
graphene_point_interpolate (a, b, t, pos);
*offset = t;
}
}
/* RECT CONTOUR */
typedef struct _GskRectContour GskRectContour;
struct _GskRectContour
{
GskContour contour;
float x;
float y;
float width;
float height;
};
static GskPathFlags
gsk_rect_contour_get_flags (const GskContour *contour)
{
return GSK_PATH_FLAT | GSK_PATH_CLOSED;
}
static void
_g_string_append_double (GString *string,
double d)
{
char buf[G_ASCII_DTOSTR_BUF_SIZE];
g_ascii_dtostr (buf, G_ASCII_DTOSTR_BUF_SIZE, d);
g_string_append (string, buf);
}
static void
_g_string_append_point (GString *string,
const graphene_point_t *pt)
{
_g_string_append_double (string, pt->x);
g_string_append_c (string, ' ');
_g_string_append_double (string, pt->y);
}
static void
gsk_rect_contour_print (const GskContour *contour,
GString *string)
{
const GskRectContour *self = (const GskRectContour *) contour;
g_string_append (string, "M ");
_g_string_append_point (string, &GRAPHENE_POINT_INIT (self->x, self->y));
g_string_append (string, " h ");
_g_string_append_double (string, self->width);
g_string_append (string, " v ");
_g_string_append_double (string, self->height);
g_string_append (string, " h ");
_g_string_append_double (string, - self->width);
g_string_append (string, " z");
}
static gboolean
gsk_rect_contour_get_bounds (const GskContour *contour,
graphene_rect_t *rect)
{
const GskRectContour *self = (const GskRectContour *) contour;
graphene_rect_init (rect, self->x, self->y, self->width, self->height);
return TRUE;
}
static void
gsk_rect_contour_get_start_end (const GskContour *contour,
graphene_point_t *start,
graphene_point_t *end)
{
const GskRectContour *self = (const GskRectContour *) contour;
if (start)
*start = GRAPHENE_POINT_INIT (self->x, self->y);
if (end)
*end = GRAPHENE_POINT_INIT (self->x, self->y);
}
static gboolean
gsk_rect_contour_foreach (const GskContour *contour,
float tolerance,
GskPathForeachFunc func,
gpointer user_data)
{
const GskRectContour *self = (const GskRectContour *) contour;
graphene_point_t pts[] = {
GRAPHENE_POINT_INIT (self->x, self->y),
GRAPHENE_POINT_INIT (self->x + self->width, self->y),
GRAPHENE_POINT_INIT (self->x + self->width, self->y + self->height),
GRAPHENE_POINT_INIT (self->x, self->y + self->height),
GRAPHENE_POINT_INIT (self->x, self->y)
};
return func (GSK_PATH_MOVE, &pts[0], 1, 0, user_data)
&& func (GSK_PATH_LINE, &pts[0], 2, 0, user_data)
&& func (GSK_PATH_LINE, &pts[1], 2, 0, user_data)
&& func (GSK_PATH_LINE, &pts[2], 2, 0, user_data)
&& func (GSK_PATH_CLOSE, &pts[3], 2, 0, user_data);
}
static gpointer
gsk_rect_contour_init_measure (const GskContour *contour,
float tolerance,
float *out_length)
{
const GskRectContour *self = (const GskRectContour *) contour;
*out_length = 2 * ABS (self->width) + 2 * ABS (self->height);
return NULL;
}
static void
gsk_rect_contour_free_measure (const GskContour *contour,
gpointer data)
{
}
static void
gsk_rect_contour_get_point (const GskContour *contour,
gpointer measure_data,
float distance,
graphene_point_t *pos,
graphene_vec2_t *tangent)
{
const GskRectContour *self = (const GskRectContour *) contour;
if (distance < fabsf (self->width))
{
if (pos)
*pos = GRAPHENE_POINT_INIT (self->x + copysignf (distance, self->width), self->y);
if (tangent)
graphene_vec2_init (tangent, copysignf (1.0f, self->width), 0.0f);
return;
}
distance -= fabsf (self->width);
if (distance < fabsf (self->height))
{
if (pos)
*pos = GRAPHENE_POINT_INIT (self->x + self->width, self->y + copysignf (distance, self->height));
if (tangent)
graphene_vec2_init (tangent, 0.0f, copysignf (self->height, 1.0f));
return;
}
distance -= fabs (self->height);
if (distance < fabsf (self->width))
{
if (pos)
*pos = GRAPHENE_POINT_INIT (self->x + self->width - copysignf (distance, self->width), self->y + self->height);
if (tangent)
graphene_vec2_init (tangent, - copysignf (1.0f, self->width), 0.0f);
return;
}
distance -= fabsf (self->width);
if (pos)
*pos = GRAPHENE_POINT_INIT (self->x, self->y + self->height - copysignf (distance, self->height));
if (tangent)
graphene_vec2_init (tangent, 0.0f, - copysignf (self->height, 1.0f));
}
static gboolean
gsk_rect_contour_get_closest_point (const GskContour *contour,
gpointer measure_data,
float tolerance,
const graphene_point_t *point,
float threshold,
float *out_distance,
graphene_point_t *out_pos,
float *out_offset,
graphene_vec2_t *out_tangent)
{
const GskRectContour *self = (const GskRectContour *) contour;
graphene_point_t t, p;
float distance;
/* offset coords to be relative to rectangle */
t.x = point->x - self->x;
t.y = point->y - self->y;
if (self->width)
{
/* do unit square math */
t.x /= self->width;
/* move point onto the square */
t.x = CLAMP (t.x, 0.f, 1.f);
}
else
t.x = 0.f;
if (self->height)
{
t.y /= self->height;
t.y = CLAMP (t.y, 0.f, 1.f);
}
else
t.y = 0.f;
if (t.x > 0 && t.x < 1 && t.y > 0 && t.y < 1)
{
float diff = MIN (t.x, 1.f - t.x) * ABS (self->width) - MIN (t.y, 1.f - t.y) * ABS (self->height);
if (diff < 0.f)
t.x = ceilf (t.x - 0.5f); /* round 0.5 down */
else if (diff > 0.f)
t.y = roundf (t.y); /* round 0.5 up */
else
{
/* at least 2 points match, return the first one in the stroke */
if (t.y <= 1.f - t.y)
t.y = 0.f;
else if (1.f - t.x <= t.x)
t.x = 1.f;
else
t.y = 1.f;
}
}
p = GRAPHENE_POINT_INIT (self->x + t.x * self->width,
self->y + t.y * self->height);
distance = graphene_point_distance (point, &p, NULL, NULL);
if (distance > threshold)
return FALSE;
if (out_distance)
*out_distance = distance;
if (out_pos)
*out_pos = p;
if (out_offset)
*out_offset = (t.x == 0.0 && self->width > 0 ? 2 - t.y : t.y) * ABS (self->height) +
(t.y == 1.0 ? 2 - t.x : t.x) * ABS (self->width);
if (out_tangent)
{
if (t.y == 0 && t.x < 1)
graphene_vec2_init (out_tangent, copysignf(1.0, self->width), 0);
else if (t.x == 0)
graphene_vec2_init (out_tangent, 0, - copysignf(1.0, self->height));
else if (t.y == 1)
graphene_vec2_init (out_tangent, - copysignf(1.0, self->width), 0);
else if (t.x == 1)
graphene_vec2_init (out_tangent, 0, copysignf(1.0, self->height));
}
return TRUE;
}
static void
gsk_rect_contour_copy (const GskContour *contour,
GskContour *dest)
{
const GskRectContour *self = (const GskRectContour *) contour;
GskRectContour *target = (GskRectContour *) dest;
*target = *self;
}
static void
gsk_rect_contour_add_segment (const GskContour *contour,
GskPathBuilder *builder,
gpointer measure_data,
gboolean emit_move_to,
float start,
float end)
{
const GskRectContour *self = (const GskRectContour *) contour;
float w = ABS (self->width);
float h = ABS (self->height);
if (start < w)
{
if (emit_move_to)
gsk_path_builder_move_to (builder, self->x + start * (w / self->width), self->y);
if (end <= w)
{
gsk_path_builder_line_to (builder, self->x + end * (w / self->width), self->y);
return;
}
gsk_path_builder_line_to (builder, self->x + self->width, self->y);
}
start -= w;
end -= w;
if (start < h)
{
if (start >= 0 && emit_move_to)
gsk_path_builder_move_to (builder, self->x + self->width, self->y + start * (h / self->height));
if (end <= h)
{
gsk_path_builder_line_to (builder, self->x + self->width, self->y + end * (h / self->height));
return;
}
gsk_path_builder_line_to (builder, self->x + self->width, self->y + self->height);
}
start -= h;
end -= h;
if (start < w)
{
if (start >= 0 && emit_move_to)
gsk_path_builder_move_to (builder, self->x + (w - start) * (w / self->width), self->y + self->height);
if (end <= w)
{
gsk_path_builder_line_to (builder, self->x + (w - end) * (w / self->width), self->y + self->height);
return;
}
gsk_path_builder_line_to (builder, self->x, self->y + self->height);
}
start -= w;
end -= w;
if (start < h)
{
if (start >= 0 && emit_move_to)
gsk_path_builder_move_to (builder, self->x, self->y + (h - start) * (h / self->height));
if (end <= h)
{
gsk_path_builder_line_to (builder, self->x, self->y + (h - end) * (h / self->height));
return;
}
gsk_path_builder_line_to (builder, self->x, self->y);
}
}
static int
gsk_rect_contour_get_winding (const GskContour *contour,
gpointer measure_data,
const graphene_point_t *point)
{
const GskRectContour *self = (const GskRectContour *) contour;
graphene_rect_t rect;
graphene_rect_init (&rect, self->x, self->y, self->width, self->height);
if (graphene_rect_contains_point (&rect, point))
return -1;
return 0;
}
static gboolean
gsk_rect_contour_get_stroke_bounds (const GskContour *contour,
const GskStroke *stroke,
graphene_rect_t *bounds)
{
const GskRectContour *self = (const GskRectContour *) contour;
graphene_rect_init (bounds, self->x, self->y, self->width, self->height);
graphene_rect_inset (bounds, - stroke->line_width / 2, - stroke->line_width / 2);
return TRUE;
}
static GskContour *
gsk_rect_contour_reverse (const GskContour *contour)
{
const GskRectContour *self = (const GskRectContour *) contour;
return gsk_rect_contour_new (&GRAPHENE_RECT_INIT (self->x + self->width,
self->y,
- self->width,
self->height));
}
static gboolean
gsk_rect_contour_is_convex (const GskContour *contour)
{
return TRUE;
}
static const GskContourClass GSK_RECT_CONTOUR_CLASS =
{
sizeof (GskRectContour),
"GskRectContour",
gsk_contour_get_size_default,
gsk_rect_contour_get_flags,
gsk_rect_contour_print,
gsk_rect_contour_get_bounds,
gsk_rect_contour_get_start_end,
gsk_rect_contour_foreach,
gsk_rect_contour_init_measure,
gsk_rect_contour_free_measure,
gsk_rect_contour_get_point,
gsk_rect_contour_get_closest_point,
gsk_rect_contour_copy,
gsk_rect_contour_add_segment,
gsk_rect_contour_get_winding,
gsk_rect_contour_get_stroke_bounds,
gsk_rect_contour_reverse,
gsk_rect_contour_is_convex,
};
GskContour *
gsk_rect_contour_new (const graphene_rect_t *rect)
{
GskRectContour *self;
self = g_new0 (GskRectContour, 1);
self->contour.klass = &GSK_RECT_CONTOUR_CLASS;
self->x = rect->origin.x;
self->y = rect->origin.y;
self->width = rect->size.width;
self->height = rect->size.height;
return (GskContour *) self;
}
/* CIRCLE CONTOUR */
#define DEG_TO_RAD(x) ((x) * (G_PI / 180.f))
#define RAD_TO_DEG(x) ((x) / (G_PI / 180.f))
typedef struct _GskCircleContour GskCircleContour;
struct _GskCircleContour
{
GskContour contour;
graphene_point_t center;
float radius;
float start_angle; /* in degrees */
float end_angle; /* start_angle +/- 360 */
};
static GskPathFlags
gsk_circle_contour_get_flags (const GskContour *contour)
{
const GskCircleContour *self = (const GskCircleContour *) contour;
/* XXX: should we explicitly close paths? */
if (fabs (self->start_angle - self->end_angle) >= 360)
return GSK_PATH_CLOSED;
else
return 0;
}
#define GSK_CIRCLE_POINT_INIT(self, angle) \
GRAPHENE_POINT_INIT ((self)->center.x + cos (DEG_TO_RAD (angle)) * self->radius, \
(self)->center.y + sin (DEG_TO_RAD (angle)) * self->radius)
static void
gsk_circle_contour_print (const GskContour *contour,
GString *string)
{
const GskCircleContour *self = (const GskCircleContour *) contour;
float mid_angle = (self->end_angle - self->start_angle) / 2;
g_string_append (string, "M ");
_g_string_append_point (string, &GSK_CIRCLE_POINT_INIT (self, self->start_angle));
g_string_append (string, " A ");
_g_string_append_point (string, &GRAPHENE_POINT_INIT (self->radius, self->radius));
g_string_append_printf (string, " 0 0 %u ",
self->start_angle < self->end_angle ? 0 : 1);
_g_string_append_point (string, &GSK_CIRCLE_POINT_INIT (self, mid_angle));
g_string_append (string, " A ");
_g_string_append_point (string, &GRAPHENE_POINT_INIT (self->radius, self->radius));
g_string_append_printf (string, " 0 0 %u ",
self->start_angle < self->end_angle ? 0 : 1);
_g_string_append_point (string, &GSK_CIRCLE_POINT_INIT (self, self->end_angle));
if (fabs (self->start_angle - self->end_angle) >= 360)
g_string_append (string, " z");
}
static gboolean
gsk_circle_contour_get_bounds (const GskContour *contour,
graphene_rect_t *rect)
{
const GskCircleContour *self = (const GskCircleContour *) contour;
/* XXX: handle partial circles */
graphene_rect_init (rect,
self->center.x - self->radius,
self->center.y - self->radius,
2 * self->radius,
2 * self->radius);
return TRUE;
}
static void
gsk_circle_contour_get_start_end (const GskContour *contour,
graphene_point_t *start,
graphene_point_t *end)
{
const GskCircleContour *self = (const GskCircleContour *) contour;
if (start)
*start = GSK_CIRCLE_POINT_INIT (self, self->start_angle);
if (end)
*end = GSK_CIRCLE_POINT_INIT (self, self->end_angle);
}
typedef struct
{
GskPathForeachFunc func;
gpointer user_data;
} ForeachWrapper;
static gboolean
gsk_circle_contour_curve (const graphene_point_t curve[4],
gpointer data)
{
ForeachWrapper *wrapper = data;
return wrapper->func (GSK_PATH_CUBIC, curve, 4, 0, wrapper->user_data);
}
static gboolean
gsk_circle_contour_foreach (const GskContour *contour,
float tolerance,
GskPathForeachFunc func,
gpointer user_data)
{
const GskCircleContour *self = (const GskCircleContour *) contour;
graphene_point_t start = GSK_CIRCLE_POINT_INIT (self, self->start_angle);
if (!func (GSK_PATH_MOVE, &start, 1, 0, user_data))
return FALSE;
if (!gsk_spline_decompose_arc (&self->center,
self->radius,
tolerance,
DEG_TO_RAD (self->start_angle),
DEG_TO_RAD (self->end_angle),
gsk_circle_contour_curve,
&(ForeachWrapper) { func, user_data }))
return FALSE;
if (fabs (self->start_angle - self->end_angle) >= 360)
{
if (!func (GSK_PATH_CLOSE, (graphene_point_t[2]) { start, start }, 2, 0, user_data))
return FALSE;
}
return TRUE;
}
static gpointer
gsk_circle_contour_init_measure (const GskContour *contour,
float tolerance,
float *out_length)
{
const GskCircleContour *self = (const GskCircleContour *) contour;
*out_length = DEG_TO_RAD (fabs (self->start_angle - self->end_angle)) * self->radius;
return NULL;
}
static void
gsk_circle_contour_free_measure (const GskContour *contour,
gpointer data)
{
}
static void
gsk_circle_contour_get_point (const GskContour *contour,
gpointer measure_data,
float distance,
graphene_point_t *pos,
graphene_vec2_t *tangent)
{
const GskCircleContour *self = (const GskCircleContour *) contour;
float delta = self->end_angle - self->start_angle;
float length = self->radius * DEG_TO_RAD (delta);
float angle = self->start_angle + distance/length * delta;
graphene_point_t p;
p = GSK_CIRCLE_POINT_INIT (self, angle);
if (pos)
*pos = p;
if (tangent)
{
graphene_vec2_init (tangent,
p.y - self->center.y,
- p.x + self->center.x);
graphene_vec2_normalize (tangent, tangent);
}
}
static gboolean
gsk_circle_contour_get_closest_point (const GskContour *contour,
gpointer measure_data,
float tolerance,
const graphene_point_t *point,
float threshold,
float *out_distance,
graphene_point_t *out_pos,
float *out_offset,
graphene_vec2_t *out_tangent)
{
const GskCircleContour *self = (const GskCircleContour *) contour;
float angle;
float closest_angle;
float offset;
graphene_point_t pos;
graphene_vec2_t tangent;
float distance;
if (graphene_point_distance (point, &self->center, NULL, NULL) > threshold + self->radius)
return FALSE;
angle = atan2f (point->y - self->center.y, point->x - self->center.x);
angle = RAD_TO_DEG (angle);
if (angle < 0)
angle += 360;
if ((self->start_angle <= angle && angle <= self->end_angle) ||
(self->end_angle <= angle && angle <= self->start_angle))
{
closest_angle = angle;
}
else
{
float d1, d2;
d1 = fabs (self->start_angle - angle);
d1 = MIN (d1, 360 - d1);
d2 = fabs (self->end_angle - angle);
d2 = MIN (d2, 360 - d2);
if (d1 < d2)
closest_angle = self->start_angle;
else
closest_angle = self->end_angle;
}
offset = self->radius * 2 * M_PI * (closest_angle - self->start_angle) / (self->end_angle - self->start_angle);
gsk_circle_contour_get_point (contour, NULL, offset, &pos, out_tangent ? &tangent : NULL);
distance = graphene_point_distance (&pos, point, NULL, NULL);
if (threshold < distance)
return FALSE;
if (out_offset)
*out_offset = offset;
if (out_pos)
*out_pos = pos;
if (out_distance)
*out_distance = distance;
if (out_tangent)
*out_tangent = tangent;
return TRUE;
}
static void
gsk_circle_contour_copy (const GskContour *contour,
GskContour *dest)
{
const GskCircleContour *self = (const GskCircleContour *) contour;
GskCircleContour *target = (GskCircleContour *) dest;
*target = *self;
}
static void
gsk_circle_contour_add_segment (const GskContour *contour,
GskPathBuilder *builder,
gpointer measure_data,
gboolean emit_move_to,
float start,
float end)
{
const GskCircleContour *self = (const GskCircleContour *) contour;
float delta = self->end_angle - self->start_angle;
float length = self->radius * DEG_TO_RAD (delta);
GskContour *segment;
if (!emit_move_to)
g_warning ("FIXME: somebody needs to decompose contours into segments differently");
segment = gsk_circle_contour_new (&self->center, self->radius,
self->start_angle + start/length * delta,
self->start_angle + end/length * delta);
gsk_path_builder_add_contour (builder, segment);
}
static int
gsk_circle_contour_get_winding (const GskContour *contour,
gpointer measure_data,
const graphene_point_t *point)
{
const GskCircleContour *self = (const GskCircleContour *) contour;
if (graphene_point_distance (point, &self->center, NULL, NULL) >= self->radius)
return 0;
if (fabs (self->start_angle - self->end_angle) >= 360)
{
return -1;
}
else
{
/* Check if the point and the midpoint are on the same side
* of the chord through start and end.
*/
double mid_angle = (self->end_angle - self->start_angle) / 2;
graphene_point_t start = GRAPHENE_POINT_INIT (self->center.x + cos (DEG_TO_RAD (self->start_angle)) * self->radius,
self->center.y + sin (DEG_TO_RAD (self->start_angle)) * self->radius);
graphene_point_t mid = GRAPHENE_POINT_INIT (self->center.x + cos (DEG_TO_RAD (mid_angle)) * self->radius,
self->center.y + sin (DEG_TO_RAD (mid_angle)) * self->radius);
graphene_point_t end = GRAPHENE_POINT_INIT (self->center.x + cos (DEG_TO_RAD (self->end_angle)) * self->radius,
self->center.y + sin (DEG_TO_RAD (self->end_angle)) * self->radius);
graphene_vec2_t n, m;
float a, b;
graphene_vec2_init (&n, start.y - end.y, end.x - start.x);
graphene_vec2_init (&m, mid.x, mid.y);
a = graphene_vec2_dot (&m, &n);
graphene_vec2_init (&m, point->x, point->y);
b = graphene_vec2_dot (&m, &n);
if ((a < 0) != (b < 0))
return -1;
}
return 0;
}
static gboolean
gsk_circle_contour_get_stroke_bounds (const GskContour *contour,
const GskStroke *stroke,
graphene_rect_t *bounds)
{
const GskCircleContour *self = (const GskCircleContour *) contour;
graphene_rect_init (bounds,
self->center.x - self->radius,
self->center.y - self->radius,
2 * self->radius,
2 * self->radius);
graphene_rect_inset (bounds, - stroke->line_width / 2, - stroke->line_width / 2);
return TRUE;
}
static GskContour *
gsk_circle_contour_reverse (const GskContour *contour)
{
const GskCircleContour *self = (const GskCircleContour *) contour;
return gsk_circle_contour_new (&self->center,
self->radius,
self->end_angle,
self->start_angle);
}
static gboolean
gsk_circle_contour_is_convex (const GskContour *contour)
{
return TRUE;
}
static const GskContourClass GSK_CIRCLE_CONTOUR_CLASS =
{
sizeof (GskCircleContour),
"GskCircleContour",
gsk_contour_get_size_default,
gsk_circle_contour_get_flags,
gsk_circle_contour_print,
gsk_circle_contour_get_bounds,
gsk_circle_contour_get_start_end,
gsk_circle_contour_foreach,
gsk_circle_contour_init_measure,
gsk_circle_contour_free_measure,
gsk_circle_contour_get_point,
gsk_circle_contour_get_closest_point,
gsk_circle_contour_copy,
gsk_circle_contour_add_segment,
gsk_circle_contour_get_winding,
gsk_circle_contour_get_stroke_bounds,
gsk_circle_contour_reverse,
gsk_circle_contour_is_convex,
};
GskContour *
gsk_circle_contour_new (const graphene_point_t *center,
float radius,
float start_angle,
float end_angle)
{
GskCircleContour *self;
self = g_new0 (GskCircleContour, 1);
self->contour.klass = &GSK_CIRCLE_CONTOUR_CLASS;
g_assert (fabs (start_angle - end_angle) <= 360);
self->contour.klass = &GSK_CIRCLE_CONTOUR_CLASS;
self->center = *center;
self->radius = radius;
self->start_angle = start_angle;
self->end_angle = end_angle;
return (GskContour *) self;
}
/* STANDARD CONTOUR */
typedef struct _GskStandardContour GskStandardContour;
struct _GskStandardContour
{
GskContour contour;
GskPathFlags flags;
GskConvexity convexity;
gsize n_ops;
gsize n_points;
graphene_point_t *points;
gskpathop ops[];
};
static gsize
gsk_standard_contour_compute_size (gsize n_ops,
gsize n_points)
{
return sizeof (GskStandardContour)
+ sizeof (gskpathop) * n_ops
+ sizeof (graphene_point_t) * n_points;
}
static gsize
gsk_standard_contour_get_size (const GskContour *contour)
{
const GskStandardContour *self = (const GskStandardContour *) contour;
return gsk_standard_contour_compute_size (self->n_ops, self->n_points);
}
static gboolean
gsk_standard_contour_foreach (const GskContour *contour,
float tolerance,
GskPathForeachFunc func,
gpointer user_data)
{
const GskStandardContour *self = (const GskStandardContour *) contour;
gsize i;
for (i = 0; i < self->n_ops; i ++)
{
if (!gsk_pathop_foreach (self->ops[i], func, user_data))
return FALSE;
}
return TRUE;
}
static GskPathFlags
gsk_standard_contour_get_flags (const GskContour *contour)
{
const GskStandardContour *self = (const GskStandardContour *) contour;
return self->flags;
}
static void
gsk_standard_contour_print (const GskContour *contour,
GString *string)
{
const GskStandardContour *self = (const GskStandardContour *) contour;
gsize i;
for (i = 0; i < self->n_ops; i ++)
{
const graphene_point_t *pt = gsk_pathop_points (self->ops[i]);
switch (gsk_pathop_op (self->ops[i]))
{
case GSK_PATH_MOVE:
g_string_append (string, "M ");
_g_string_append_point (string, &pt[0]);
break;
case GSK_PATH_CLOSE:
g_string_append (string, " Z");
break;
case GSK_PATH_LINE:
g_string_append (string, " L ");
_g_string_append_point (string, &pt[1]);
break;
case GSK_PATH_QUAD:
g_string_append (string, " Q ");
_g_string_append_point (string, &pt[1]);
g_string_append (string, ", ");
_g_string_append_point (string, &pt[2]);
break;
case GSK_PATH_CUBIC:
g_string_append (string, " C ");
_g_string_append_point (string, &pt[1]);
g_string_append (string, ", ");
_g_string_append_point (string, &pt[2]);
g_string_append (string, ", ");
_g_string_append_point (string, &pt[3]);
break;
case GSK_PATH_CONIC:
/* This is not valid SVG */
g_string_append (string, " O ");
_g_string_append_point (string, &pt[1]);
g_string_append (string, ", ");
_g_string_append_point (string, &pt[3]);
g_string_append (string, ", ");
_g_string_append_double (string, pt[2].x);
break;
default:
g_assert_not_reached();
return;
}
}
}
static void
rect_add_point (graphene_rect_t *rect,
const graphene_point_t *point)
{
if (point->x < rect->origin.x)
{
rect->size.width += rect->origin.x - point->x;
rect->origin.x = point->x;
}
else if (point->x > rect->origin.x + rect->size.width)
{
rect->size.width = point->x - rect->origin.x;
}
if (point->y < rect->origin.y)
{
rect->size.height += rect->origin.y - point->y;
rect->origin.y = point->y;
}
else if (point->y > rect->origin.y + rect->size.height)
{
rect->size.height = point->y - rect->origin.y;
}
}
static gboolean
gsk_standard_contour_get_bounds (const GskContour *contour,
graphene_rect_t *bounds)
{
const GskStandardContour *self = (const GskStandardContour *) contour;
gsize i;
if (self->n_points == 0)
return FALSE;
graphene_rect_init (bounds,
self->points[0].x, self->points[0].y,
0, 0);
for (i = 1; i < self->n_points; i ++)
{
rect_add_point (bounds, &self->points[i]);
}
return bounds->size.width > 0 && bounds->size.height > 0;
}
static void
gsk_standard_contour_get_start_end (const GskContour *contour,
graphene_point_t *start,
graphene_point_t *end)
{
const GskStandardContour *self = (const GskStandardContour *) contour;
if (start)
*start = self->points[0];
if (end)
*end = self->points[self->n_points - 1];
}
typedef struct
{
float start;
float end;
float start_progress;
float end_progress;
GskCurveLineReason reason;
graphene_point_t start_point;
graphene_point_t end_point;
gsize op;
} GskStandardContourMeasure;
typedef struct
{
GArray *array;
GskStandardContourMeasure measure;
} LengthDecompose;
static void
gsk_standard_contour_measure_get_point_at (GskStandardContourMeasure *measure,
float progress,
graphene_point_t *out_point)
{
graphene_point_interpolate (&measure->start_point,
&measure->end_point,
(progress - measure->start) / (measure->end - measure->start),
out_point);
}
static gboolean
gsk_standard_contour_measure_add_point (const graphene_point_t *from,
const graphene_point_t *to,
float from_progress,
float to_progress,
GskCurveLineReason reason,
gpointer user_data)
{
LengthDecompose *decomp = user_data;
float seg_length;
seg_length = graphene_point_distance (from, to, NULL, NULL);
if (seg_length == 0)
return TRUE;
decomp->measure.end += seg_length;
decomp->measure.start_progress = from_progress;
decomp->measure.end_progress = to_progress;
decomp->measure.start_point = *from;
decomp->measure.end_point = *to;
decomp->measure.reason = reason;
g_array_append_val (decomp->array, decomp->measure);
decomp->measure.start += seg_length;
return TRUE;
}
static gpointer
gsk_standard_contour_init_measure (const GskContour *contour,
float tolerance,
float *out_length)
{
const GskStandardContour *self = (const GskStandardContour *) contour;
gsize i;
float length;
GArray *array;
array = g_array_new (FALSE, FALSE, sizeof (GskStandardContourMeasure));
length = 0;
for (i = 1; i < self->n_ops; i ++)
{
GskCurve curve;
LengthDecompose decomp = { array, { length, length, 0, 0, GSK_CURVE_LINE_REASON_SHORT, { 0, 0 }, { 0, 0 }, i } };
gsk_curve_init (&curve, self->ops[i]);
gsk_curve_decompose (&curve, tolerance, gsk_standard_contour_measure_add_point, &decomp);
length = decomp.measure.start;
}
*out_length = length;
return array;
}
static void
gsk_standard_contour_free_measure (const GskContour *contour,
gpointer data)
{
g_array_free (data, TRUE);
}
static int
gsk_standard_contour_find_measure (gconstpointer m,
gconstpointer l)
{
const GskStandardContourMeasure *measure = m;
float length = *(const float *) l;
if (measure->start > length)
return 1;
else if (measure->end <= length)
return -1;
else
return 0;
}
static void
gsk_standard_contour_get_point (const GskContour *contour,
gpointer measure_data,
float distance,
graphene_point_t *pos,
graphene_vec2_t *tangent)
{
GskStandardContour *self = (GskStandardContour *) contour;
GArray *array = measure_data;
guint index;
float progress;
GskStandardContourMeasure *measure;
GskCurve curve;
if (array->len == 0)
{
g_assert (distance == 0);
g_assert (gsk_pathop_op (self->ops[0]) == GSK_PATH_MOVE);
if (pos)
*pos = self->points[0];
if (tangent)
graphene_vec2_init (tangent, 1.f, 0.f);
return;
}
if (!g_array_binary_search (array, &distance, gsk_standard_contour_find_measure, &index))
index = array->len - 1;
measure = &g_array_index (array, GskStandardContourMeasure, index);
progress = (distance - measure->start) / (measure->end - measure->start);
progress = measure->start_progress + (measure->end_progress - measure->start_progress) * progress;
g_assert (progress >= 0 && progress <= 1);
gsk_curve_init (&curve, self->ops[measure->op]);
if (pos)
gsk_curve_get_point (&curve, progress, pos);
if (tangent)
gsk_curve_get_tangent (&curve, progress, tangent);
}
static gboolean
gsk_standard_contour_get_closest_point (const GskContour *contour,
gpointer measure_data,
float tolerance,
const graphene_point_t *point,
float threshold,
float *out_distance,
graphene_point_t *out_pos,
float *out_offset,
graphene_vec2_t *out_tangent)
{
GskStandardContour *self = (GskStandardContour *) contour;
GskStandardContourMeasure *measure;
float progress, dist;
GArray *array = measure_data;
graphene_point_t p, last_point;
gsize i;
gboolean result = FALSE;
g_assert (gsk_pathop_op (self->ops[0]) == GSK_PATH_MOVE);
last_point = self->points[0];
if (array->len == 0)
{
/* This is the special case for point-only */
dist = graphene_point_distance (&last_point, point, NULL, NULL);
if (dist > threshold)
return FALSE;
if (out_offset)
*out_offset = 0;
if (out_distance)
*out_distance = dist;
if (out_pos)
*out_pos = last_point;
if (out_tangent)
*out_tangent = *graphene_vec2_x_axis ();
return TRUE;
}
for (i = 0; i < array->len; i++)
{
measure = &g_array_index (array, GskStandardContourMeasure, i);
gsk_find_point_on_line (&last_point,
&measure->end_point,
point,
&progress,
&p);
last_point = measure->end_point;
dist = graphene_point_distance (point, &p, NULL, NULL);
/* add some wiggleroom for the accurate check below */
//g_print ("%zu: (%g-%g) dist %g\n", i, measure->start, measure->end, dist);
if (dist <= threshold + 1.0f)
{
GskCurve curve;
graphene_point_t p2;
float found_progress, test_progress, test_dist;
const float step = 1/1024.f;
gsk_curve_init (&curve, self->ops[measure->op]);
found_progress = measure->start_progress + (measure->end_progress - measure->start_progress) * progress;
gsk_curve_get_point (&curve, found_progress, &p);
dist = graphene_point_distance (point, &p, NULL, NULL);
//g_print ("!!! %zu: (%g-%g @ %g) dist %g\n", i, measure->start_progress, measure->end_progress, progress, dist);
/* The progress is non-uniform, so simple translation of progress doesn't work.
* Check if larger values inch closer towards minimal distance. */
while (progress + step < 1.0f) {
test_progress = measure->start_progress + (measure->end_progress - measure->start_progress) * (progress + step);
gsk_curve_get_point (&curve, test_progress, &p2);
test_dist = graphene_point_distance (point, &p2, NULL, NULL);
if (test_dist > dist)
break;
progress += step;
p = p2;
found_progress = test_progress;
dist = test_dist;
}
/* Also check smaller ones */
while (progress - step > 0.0f) {
test_progress = measure->start_progress + (measure->end_progress - measure->start_progress) * (progress - step);
gsk_curve_get_point (&curve, test_progress, &p2);
test_dist = graphene_point_distance (point, &p2, NULL, NULL);
if (test_dist > dist)
break;
progress -= step;
p = p2;
found_progress = test_progress;
dist = test_dist;
}
//g_print ("!!! %zu: (%g-%g @ %g) dist %g\n", i, measure->start_progress, measure->end_progress, progress, dist);
/* double check that the point actually is closer */
if (dist <= threshold)
{
if (out_distance)
*out_distance = dist;
if (out_pos)
*out_pos = p;
if (out_offset)
*out_offset = measure->start + (measure->end - measure->start) * progress;
if (out_tangent)
gsk_curve_get_tangent (&curve, found_progress, out_tangent);
result = TRUE;
if (tolerance >= dist)
return TRUE;
threshold = dist - tolerance;
}
}
}
return result;
}
static void
gsk_standard_contour_init (GskContour *contour,
GskPathFlags flags,
const graphene_point_t *points,
gsize n_points,
const gskpathop *ops,
gsize n_ops,
ptrdiff_t offset);
static void
gsk_standard_contour_copy (const GskContour *contour,
GskContour *dest)
{
const GskStandardContour *self = (const GskStandardContour *) contour;
gsk_standard_contour_init (dest, self->flags, self->points, self->n_points, self->ops, self->n_ops, 0);
}
static void
gsk_standard_contour_add_segment (const GskContour *contour,
GskPathBuilder *builder,
gpointer measure_data,
gboolean emit_move_to,
float start,
float end)
{
GskStandardContour *self = (GskStandardContour *) contour;
GArray *array = measure_data;
guint start_index, end_index;
float start_progress, end_progress;
GskStandardContourMeasure *start_measure, *end_measure;
gsize i;
if (start > 0)
{
if (!g_array_binary_search (array, (float[1]) { start }, gsk_standard_contour_find_measure, &start_index))
start_index = array->len - 1;
start_measure = &g_array_index (array, GskStandardContourMeasure, start_index);
start_progress = (start - start_measure->start) / (start_measure->end - start_measure->start);
start_progress = start_measure->start_progress + (start_measure->end_progress - start_measure->start_progress) * start_progress;
g_assert (start_progress >= 0 && start_progress <= 1);
}
else
{
start_measure = NULL;
start_progress = 0.0;
}
if (g_array_binary_search (array, (float[1]) { end }, gsk_standard_contour_find_measure, &end_index))
{
end_measure = &g_array_index (array, GskStandardContourMeasure, end_index);
end_progress = (end - end_measure->start) / (end_measure->end - end_measure->start);
end_progress = end_measure->start_progress + (end_measure->end_progress - end_measure->start_progress) * end_progress;
g_assert (end_progress >= 0 && end_progress <= 1);
}
else
{
end_measure = NULL;
end_progress = 1.0;
}
/* Add the first partial operation,
* taking care that first and last operation might be identical */
if (start_measure)
{
GskCurve curve, cut;
const graphene_point_t *start_point;
gsk_curve_init (&curve, self->ops[start_measure->op]);
if (start_measure->reason == GSK_CURVE_LINE_REASON_STRAIGHT)
{
graphene_point_t p;
gsk_standard_contour_measure_get_point_at (start_measure, start, &p);
if (emit_move_to)
gsk_path_builder_move_to (builder, p.x, p.y);
if (end_measure == start_measure)
{
gsk_standard_contour_measure_get_point_at (end_measure, end, &p);
gsk_path_builder_line_to (builder, p.x, p.y);
return;
}
else
{
gsk_path_builder_line_to (builder,
start_measure->end_point.x,
start_measure->end_point.y);
start_index++;
if (start_index >= array->len)
return;
start_measure++;
start_progress = start_measure->start_progress;
emit_move_to = FALSE;
gsk_curve_init (&curve, self->ops[start_measure->op]);
}
}
if (end_measure && end_measure->op == start_measure->op)
{
if (end_measure->reason == GSK_CURVE_LINE_REASON_SHORT)
{
gsk_curve_segment (&curve, start_progress, end_progress, &cut);
if (emit_move_to)
{
start_point = gsk_curve_get_start_point (&cut);
gsk_path_builder_move_to (builder, start_point->x, start_point->y);
}
gsk_curve_builder_to (&cut, builder);
}
else
{
graphene_point_t p;
gsk_curve_segment (&curve, start_progress, end_measure->start_progress, &cut);
if (emit_move_to)
{
start_point = gsk_curve_get_start_point (&cut);
gsk_path_builder_move_to (builder, start_point->x, start_point->y);
}
gsk_curve_builder_to (&cut, builder);
gsk_standard_contour_measure_get_point_at (end_measure, end, &p);
gsk_path_builder_line_to (builder, p.x, p.y);
}
return;
}
gsk_curve_split (&curve, start_progress, NULL, &cut);
start_point = gsk_curve_get_start_point (&cut);
if (emit_move_to)
gsk_path_builder_move_to (builder, start_point->x, start_point->y);
gsk_curve_builder_to (&cut, builder);
i = start_measure->op + 1;
}
else
i = emit_move_to ? 0 : 1;
for (; i < (end_measure ? end_measure->op : self->n_ops - 1); i++)
{
gsk_path_builder_pathop_to (builder, self->ops[i]);
}
/* Add the last partial operation */
if (end_measure)
{
GskCurve curve, cut;
gsk_curve_init (&curve, self->ops[end_measure->op]);
if (end_measure->reason == GSK_CURVE_LINE_REASON_SHORT)
{
gsk_curve_split (&curve, end_progress, &cut, NULL);
gsk_curve_builder_to (&cut, builder);
}
else
{
graphene_point_t p;
gsk_curve_split (&curve, end_measure->start_progress, &cut, NULL);
gsk_curve_builder_to (&cut, builder);
gsk_standard_contour_measure_get_point_at (end_measure, end, &p);
gsk_path_builder_line_to (builder, p.x, p.y);
}
}
else if (i == self->n_ops - 1)
{
gskpathop op = self->ops[i];
if (gsk_pathop_op (op) == GSK_PATH_CLOSE)
gsk_path_builder_pathop_to (builder, gsk_pathop_encode (GSK_PATH_LINE, gsk_pathop_points (op)));
else
gsk_path_builder_pathop_to (builder, op);
}
}
static inline int
line_get_crossing (const graphene_point_t *p,
const graphene_point_t *p1,
const graphene_point_t *p2)
{
if (p1->y <= p->y)
{
if (p2->y > p->y)
{
if ((p2->x - p1->x) * (p->y - p1->y) - (p->x - p1->x) * (p2->y - p1->y) > 0)
return 1;
}
}
else if (p2->y <= p->y)
{
if ((p2->x - p1->x) * (p->y - p1->y) - (p->x - p1->x) * (p2->y - p1->y) < 0)
return -1;
}
return 0;
}
static int
gsk_standard_contour_get_winding (const GskContour *contour,
gpointer measure_data,
const graphene_point_t *point)
{
GskStandardContour *self = (GskStandardContour *) contour;
GArray *array = measure_data;
graphene_point_t last_point;
int winding;
int i;
if (array->len == 0)
return 0;
winding = 0;
last_point = self->points[0];
for (i = 0; i < array->len; i++)
{
GskStandardContourMeasure *measure;
measure = &g_array_index (array, GskStandardContourMeasure, i);
winding += line_get_crossing (point, &last_point, &measure->end_point);
last_point = measure->end_point;
}
winding += line_get_crossing (point, &last_point, &self->points[0]);
return winding;
}
static gboolean
add_stroke_bounds (GskPathOperation op,
const graphene_point_t *pts,
gsize n_pts,
float weight,
gpointer user_data)
{
struct {
graphene_rect_t *bounds;
float lw;
float mw;
} *data = user_data;
graphene_rect_t bounds;
for (int i = 1; i < n_pts - 1; i++)
{
graphene_rect_init (&bounds, pts[i].x - data->lw/2, pts[i].y - data->lw/2, data->lw, data->lw);
graphene_rect_union (&bounds, data->bounds, data->bounds);
}
graphene_rect_init (&bounds, pts[n_pts - 1].x - data->mw/2, pts[n_pts - 1].y - data->mw/2, data->mw, data->mw);
graphene_rect_union (&bounds, data->bounds, data->bounds);
return TRUE;
}
static gboolean
gsk_standard_contour_get_stroke_bounds (const GskContour *contour,
const GskStroke *stroke,
graphene_rect_t *bounds)
{
GskStandardContour *self = (GskStandardContour *) contour;
struct {
graphene_rect_t *bounds;
float lw;
float mw;
} data;
data.bounds = bounds;
data.lw = stroke->line_width;
data.mw = MAX (stroke->miter_limit, 1.f) * stroke->line_width;
graphene_rect_init (bounds, self->points[0].x - data.mw/2, self->points[0].y - data.mw/2, data.mw, data.mw);
gsk_standard_contour_foreach (contour, GSK_PATH_TOLERANCE_DEFAULT, add_stroke_bounds, &data);
return TRUE;
}
static gboolean
add_reverse (GskPathOperation op,
const graphene_point_t *pts,
gsize n_pts,
float weight,
gpointer user_data)
{
GskPathBuilder *builder = user_data;
GskCurve c, r;
if (op == GSK_PATH_MOVE)
return TRUE;
if (op == GSK_PATH_CLOSE)
op = GSK_PATH_LINE;
gsk_curve_init_foreach (&c, op, pts, n_pts, weight);
gsk_curve_reverse (&c, &r);
gsk_curve_builder_to (&r, builder);
return TRUE;
}
static GskContour *
gsk_standard_contour_reverse (const GskContour *contour)
{
const GskStandardContour *self = (const GskStandardContour *) contour;
GskPathBuilder *builder;
GskPath *path;
GskContour *res;
builder = gsk_path_builder_new ();
gsk_path_builder_move_to (builder, self->points[self->n_points - 1].x,
self->points[self->n_points - 1].y);
for (int i = self->n_ops - 1; i >= 0; i--)
gsk_pathop_foreach (self->ops[i], add_reverse, builder);
if (self->flags & GSK_PATH_CLOSED)
gsk_path_builder_close (builder);
path = gsk_path_builder_free_to_path (builder);
g_assert (gsk_path_get_n_contours (path) == 1);
res = gsk_contour_dup (gsk_path_get_contour (path, 0));
gsk_path_unref (path);
return res;
}
static gboolean
gsk_standard_contour_is_convex (const GskContour *contour)
{
GskStandardContour *self = (GskStandardContour *) contour;
if (self->convexity == GSK_CONVEXITY_UNKNOWN)
self->convexity = gsk_contour_compute_convexity (contour);
return self->convexity == GSK_CONVEXITY_CONVEX;
}
static const GskContourClass GSK_STANDARD_CONTOUR_CLASS =
{
sizeof (GskStandardContour),
"GskStandardContour",
gsk_standard_contour_get_size,
gsk_standard_contour_get_flags,
gsk_standard_contour_print,
gsk_standard_contour_get_bounds,
gsk_standard_contour_get_start_end,
gsk_standard_contour_foreach,
gsk_standard_contour_init_measure,
gsk_standard_contour_free_measure,
gsk_standard_contour_get_point,
gsk_standard_contour_get_closest_point,
gsk_standard_contour_copy,
gsk_standard_contour_add_segment,
gsk_standard_contour_get_winding,
gsk_standard_contour_get_stroke_bounds,
gsk_standard_contour_reverse,
gsk_standard_contour_is_convex,
};
/* You must ensure the contour has enough size allocated,
* see gsk_standard_contour_compute_size()
*/
static void
gsk_standard_contour_init (GskContour *contour,
GskPathFlags flags,
const graphene_point_t *points,
gsize n_points,
const gskpathop *ops,
gsize n_ops,
gssize offset)
{
GskStandardContour *self = (GskStandardContour *) contour;
gsize i;
self->contour.klass = &GSK_STANDARD_CONTOUR_CLASS;
self->flags = flags;
self->convexity = GSK_CONVEXITY_UNKNOWN;
self->n_ops = n_ops;
self->n_points = n_points;
self->points = (graphene_point_t *) &self->ops[n_ops];
memcpy (self->points, points, sizeof (graphene_point_t) * n_points);
offset += self->points - points;
for (i = 0; i < n_ops; i++)
{
self->ops[i] = gsk_pathop_encode (gsk_pathop_op (ops[i]),
gsk_pathop_points (ops[i]) + offset);
}
}
GskContour *
gsk_standard_contour_new (GskPathFlags flags,
const graphene_point_t *points,
gsize n_points,
const gskpathop *ops,
gsize n_ops,
gssize offset)
{
GskContour *contour;
contour = g_malloc0 (gsk_standard_contour_compute_size (n_ops, n_points));
gsk_standard_contour_init (contour, flags, points, n_points, ops, n_ops, offset);
return contour;
}
/* CONTOUR */
gsize
gsk_contour_get_size (const GskContour *self)
{
return self->klass->get_size (self);
}
GskPathFlags
gsk_contour_get_flags (const GskContour *self)
{
return self->klass->get_flags (self);
}
void
gsk_contour_print (const GskContour *self,
GString *string)
{
self->klass->print (self, string);
}
gboolean
gsk_contour_get_bounds (const GskContour *self,
graphene_rect_t *bounds)
{
return self->klass->get_bounds (self, bounds);
}
gboolean
gsk_contour_foreach (const GskContour *self,
float tolerance,
GskPathForeachFunc func,
gpointer user_data)
{
return self->klass->foreach (self, tolerance, func, user_data);
}
gpointer
gsk_contour_init_measure (const GskContour *self,
float tolerance,
float *out_length)
{
return self->klass->init_measure (self, tolerance, out_length);
}
void
gsk_contour_free_measure (const GskContour *self,
gpointer data)
{
self->klass->free_measure (self, data);
}
void
gsk_contour_get_start_end (const GskContour *self,
graphene_point_t *start,
graphene_point_t *end)
{
self->klass->get_start_end (self, start, end);
}
void
gsk_contour_get_point (const GskContour *self,
gpointer measure_data,
float distance,
graphene_point_t *pos,
graphene_vec2_t *tangent)
{
self->klass->get_point (self, measure_data, distance, pos, tangent);
}
gboolean
gsk_contour_get_closest_point (const GskContour *self,
gpointer measure_data,
float tolerance,
const graphene_point_t *point,
float threshold,
float *out_distance,
graphene_point_t *out_pos,
float *out_offset,
graphene_vec2_t *out_tangent)
{
return self->klass->get_closest_point (self,
measure_data,
tolerance,
point,
threshold,
out_distance,
out_pos,
out_offset,
out_tangent);
}
void
gsk_contour_add_segment (const GskContour *self,
GskPathBuilder *builder,
gpointer measure_data,
gboolean emit_move_to,
float start,
float end)
{
self->klass->add_segment (self, builder, measure_data, emit_move_to, start, end);
}
int
gsk_contour_get_winding (const GskContour *self,
gpointer measure_data,
const graphene_point_t *point)
{
return self->klass->get_winding (self, measure_data, point);
}
gboolean
gsk_contour_get_stroke_bounds (const GskContour *self,
const GskStroke *stroke,
graphene_rect_t *bounds)
{
return self->klass->get_stroke_bounds (self, stroke, bounds);
}
void
gsk_contour_copy (GskContour *dest,
const GskContour *src)
{
src->klass->copy (src, dest);
}
GskContour *
gsk_contour_dup (const GskContour *src)
{
GskContour *copy;
copy = g_malloc0 (gsk_contour_get_size (src));
gsk_contour_copy (copy, src);
return copy;
}
GskContour *
gsk_contour_reverse (const GskContour *src)
{
return src->klass->reverse (src);
}
gboolean
gsk_contour_is_convex (const GskContour *contour)
{
return contour->klass->is_convex (contour);
}