Files
gtk/gsk/gskpath.c
2020-12-27 20:08:52 +01:00

1993 lines
58 KiB
C

/*
* Copyright © 2020 Benjamin Otte
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library. If not, see <http://www.gnu.org/licenses/>.
*
* Authors: Benjamin Otte <otte@gnome.org>
*/
#include "config.h"
#include "gskpathprivate.h"
#include "gskpathbuilder.h"
#include "gsksplineprivate.h"
/**
* SECTION:gskpath
* @Title: Path
* @Short_description: Lines and Curves
* @See_also: #GskRenderNode, #GskPathBuilder
*
* This section describes the #GskPath structure that is used to
* describe lines and curves that are more complex than simple rectangles.
*
* #GskPath is an immutable struct. After creation, you cannot change
* the types it represents. Instead, new #GskPath have to be created.
* The #GskPathBuilder structure is meant to help in this endeavor.
*/
struct _GskContour
{
const GskContourClass *klass;
};
struct _GskContourClass
{
gsize struct_size;
const char *type_name;
gsize (* get_size) (const GskContour *contour);
GskPathFlags (* get_flags) (const GskContour *contour);
void (* print) (const GskContour *contour,
GString *string);
gboolean (* get_bounds) (const GskContour *contour,
graphene_rect_t *bounds);
void (* get_start_end) (const GskContour *self,
graphene_point_t *start,
graphene_point_t *end);
gboolean (* foreach) (const GskContour *contour,
float tolerance,
GskPathForeachFunc func,
gpointer user_data);
gpointer (* init_measure) (const GskContour *contour,
float tolerance,
float *out_length);
void (* free_measure) (const GskContour *contour,
gpointer measure_data);
void (* get_point) (const GskContour *contour,
gpointer measure_data,
float distance,
graphene_point_t *pos,
graphene_vec2_t *tangent);
gboolean (* get_closest_point) (const GskContour *contour,
gpointer measure_data,
float tolerance,
const graphene_point_t *point,
float threshold,
float *out_offset,
graphene_point_t *out_pos,
float *out_distance,
graphene_vec2_t *out_tangent);
void (* copy) (const GskContour *contour,
GskContour *dest);
void (* add_segment) (const GskContour *contour,
GskPathBuilder *builder,
gpointer measure_data,
float start,
float end);
};
struct _GskPath
{
/*< private >*/
guint ref_count;
GskPathFlags flags;
gsize n_contours;
GskContour *contours[];
/* followed by the contours data */
};
/**
* GskPath:
*
* A #GskPath struct is a reference counted struct
* and should be treated as opaque.
*/
G_DEFINE_BOXED_TYPE (GskPath, gsk_path,
gsk_path_ref,
gsk_path_unref)
static gsize
gsk_contour_get_size_default (const GskContour *contour)
{
return contour->klass->struct_size;
}
static void
gsk_find_point_on_line (const graphene_point_t *a,
const graphene_point_t *b,
const graphene_point_t *p,
float *offset,
graphene_point_t *pos)
{
graphene_vec2_t n;
graphene_vec2_t ap;
float t;
graphene_vec2_init (&n, b->x - a->x, b->y - a->y);
graphene_vec2_init (&ap, p->x - a->x, p->y - a->y);
t = graphene_vec2_dot (&ap, &n) / graphene_vec2_dot (&n, &n);
if (t <= 0)
{
*pos = *a;
*offset = 0;
}
else if (t >= 1)
{
*pos = *b;
*offset = 1;
}
else
{
graphene_point_interpolate (a, b, t, pos);
*offset = t;
}
}
/* RECT CONTOUR */
typedef struct _GskRectContour GskRectContour;
struct _GskRectContour
{
GskContour contour;
float x;
float y;
float width;
float height;
};
static GskPathFlags
gsk_rect_contour_get_flags (const GskContour *contour)
{
return GSK_PATH_FLAT | GSK_PATH_CLOSED;
}
static void
_g_string_append_double (GString *string,
double d)
{
char buf[G_ASCII_DTOSTR_BUF_SIZE];
g_ascii_dtostr (buf, G_ASCII_DTOSTR_BUF_SIZE, d);
g_string_append (string, buf);
}
static void
_g_string_append_point (GString *string,
const graphene_point_t *pt)
{
_g_string_append_double (string, pt->x);
g_string_append_c (string, ' ');
_g_string_append_double (string, pt->y);
}
static void
gsk_rect_contour_print (const GskContour *contour,
GString *string)
{
const GskRectContour *self = (const GskRectContour *) contour;
g_string_append (string, "M ");
_g_string_append_point (string, &GRAPHENE_POINT_INIT (self->x, self->y));
g_string_append (string, " h ");
_g_string_append_double (string, self->width);
g_string_append (string, " v ");
_g_string_append_double (string, self->height);
g_string_append (string, " h ");
_g_string_append_double (string, - self->width);
g_string_append (string, " z");
}
static gboolean
gsk_rect_contour_get_bounds (const GskContour *contour,
graphene_rect_t *rect)
{
const GskRectContour *self = (const GskRectContour *) contour;
graphene_rect_init (rect, self->x, self->y, self->width, self->height);
return TRUE;
}
static void
gsk_rect_contour_get_start_end (const GskContour *contour,
graphene_point_t *start,
graphene_point_t *end)
{
const GskRectContour *self = (const GskRectContour *) contour;
if (start)
*start = GRAPHENE_POINT_INIT (self->x, self->y);
if (end)
*end = GRAPHENE_POINT_INIT (self->x, self->y);
}
static gboolean
gsk_rect_contour_foreach (const GskContour *contour,
float tolerance,
GskPathForeachFunc func,
gpointer user_data)
{
const GskRectContour *self = (const GskRectContour *) contour;
graphene_point_t pts[] = {
GRAPHENE_POINT_INIT (self->x, self->y),
GRAPHENE_POINT_INIT (self->x + self->width, self->y),
GRAPHENE_POINT_INIT (self->x + self->width, self->y + self->height),
GRAPHENE_POINT_INIT (self->x, self->y + self->height),
GRAPHENE_POINT_INIT (self->x, self->y)
};
return func (GSK_PATH_MOVE, &pts[0], 1, user_data)
&& func (GSK_PATH_LINE, &pts[0], 2, user_data)
&& func (GSK_PATH_LINE, &pts[1], 2, user_data)
&& func (GSK_PATH_LINE, &pts[2], 2, user_data)
&& func (GSK_PATH_CLOSE, &pts[3], 2, user_data);
}
static gpointer
gsk_rect_contour_init_measure (const GskContour *contour,
float tolerance,
float *out_length)
{
const GskRectContour *self = (const GskRectContour *) contour;
*out_length = 2 * ABS (self->width) + 2 * ABS (self->height);
return NULL;
}
static void
gsk_rect_contour_free_measure (const GskContour *contour,
gpointer data)
{
}
static void
gsk_rect_contour_get_point (const GskContour *contour,
gpointer measure_data,
float distance,
graphene_point_t *pos,
graphene_vec2_t *tangent)
{
const GskRectContour *self = (const GskRectContour *) contour;
if (distance < fabsf (self->width))
{
if (pos)
*pos = GRAPHENE_POINT_INIT (self->x + copysignf (distance, self->width), self->y);
if (tangent)
graphene_vec2_init (tangent, copysignf (1.0f, self->width), 0.0f);
return;
}
distance -= fabsf (self->width);
if (distance < fabsf (self->height))
{
if (pos)
*pos = GRAPHENE_POINT_INIT (self->x + self->width, self->y + copysignf (distance, self->height));
if (tangent)
graphene_vec2_init (tangent, 0.0f, copysignf (self->height, 1.0f));
return;
}
distance -= fabs (self->height);
if (distance < fabsf (self->width))
{
if (pos)
*pos = GRAPHENE_POINT_INIT (self->x + self->width - copysignf (distance, self->width), self->y + self->height);
if (tangent)
graphene_vec2_init (tangent, - copysignf (1.0f, self->width), 0.0f);
return;
}
distance -= fabsf (self->width);
if (pos)
*pos = GRAPHENE_POINT_INIT (self->x, self->y + self->height - copysignf (distance, self->height));
if (tangent)
graphene_vec2_init (tangent, 0.0f, - copysignf (self->height, 1.0f));
}
static gboolean
gsk_rect_contour_get_closest_point (const GskContour *contour,
gpointer measure_data,
float tolerance,
const graphene_point_t *point,
float threshold,
float *out_distance,
graphene_point_t *out_pos,
float *out_offset,
graphene_vec2_t *out_tangent)
{
const GskRectContour *self = (const GskRectContour *) contour;
graphene_point_t t, p;
float distance;
/* offset coords to be relative to rectangle */
t.x = point->x - self->x;
t.y = point->y - self->y;
if (self->width)
{
/* do unit square math */
t.x /= self->width;
/* move point onto the square */
t.x = CLAMP (t.x, 0.f, 1.f);
}
else
t.x = 0.f;
if (self->height)
{
t.y /= self->height;
t.y = CLAMP (t.y, 0.f, 1.f);
}
else
t.y = 0.f;
if (t.x > 0 && t.x < 1 && t.y > 0 && t.y < 1)
{
float diff = MIN (t.x, 1.f - t.x) * ABS (self->width) - MIN (t.y, 1.f - t.y) * ABS (self->height);
if (diff < 0.f)
t.x = ceilf (t.x - 0.5f); /* round 0.5 down */
else if (diff > 0.f)
t.y = roundf (t.y); /* round 0.5 up */
else
{
/* at least 2 points match, return the first one in the stroke */
if (t.y <= 1.f - t.y)
t.y = 0.f;
else if (1.f - t.x <= t.x)
t.x = 1.f;
else
t.y = 1.f;
}
}
p = GRAPHENE_POINT_INIT (self->x + t.x * self->width,
self->y + t.y * self->height);
distance = graphene_point_distance (point, &p, NULL, NULL);
if (distance > threshold)
return FALSE;
if (out_distance)
*out_distance = distance;
if (out_pos)
*out_pos = p;
if (out_offset)
*out_offset = (t.x == 0.0 && self->width > 0 ? 2 - t.y : t.y) * ABS (self->height) +
(t.y == 1.0 ? 2 - t.x : t.x) * ABS (self->width);
if (out_tangent)
{
if (t.y == 0 && t.x < 1)
graphene_vec2_init (out_tangent, copysignf(1.0, self->width), 0);
else if (t.x == 0)
graphene_vec2_init (out_tangent, 0, - copysignf(1.0, self->height));
else if (t.y == 1)
graphene_vec2_init (out_tangent, - copysignf(1.0, self->width), 0);
else if (t.x == 1)
graphene_vec2_init (out_tangent, 0, copysignf(1.0, self->height));
}
return TRUE;
}
static void
gsk_rect_contour_copy (const GskContour *contour,
GskContour *dest)
{
const GskRectContour *self = (const GskRectContour *) contour;
GskRectContour *target = (GskRectContour *) dest;
*target = *self;
}
static void
gsk_rect_contour_add_segment (const GskContour *contour,
GskPathBuilder *builder,
gpointer measure_data,
float start,
float end)
{
const GskRectContour *self = (const GskRectContour *) contour;
float w = ABS (self->width);
float h = ABS (self->height);
if (start < w)
{
gsk_path_builder_move_to (builder, self->x + start * (w / self->width), self->y);
if (end <= w)
{
gsk_path_builder_line_to (builder, self->x + end * (w / self->width), self->y);
return;
}
gsk_path_builder_line_to (builder, self->x + self->width, self->y);
}
start -= w;
end -= w;
if (start < h)
{
if (start >= 0)
gsk_path_builder_move_to (builder, self->x + self->width, self->y + start * (h / self->height));
if (end <= h)
{
gsk_path_builder_line_to (builder, self->x + self->width, self->y + end * (h / self->height));
return;
}
gsk_path_builder_line_to (builder, self->x + self->width, self->y + self->height);
}
start -= h;
end -= h;
if (start < w)
{
if (start >= 0)
gsk_path_builder_move_to (builder, self->x + (w - start) * (w / self->width), self->y + self->height);
if (end <= w)
{
gsk_path_builder_line_to (builder, self->x + (w - end) * (w / self->width), self->y + self->height);
return;
}
gsk_path_builder_line_to (builder, self->x, self->y + self->height);
}
start -= w;
end -= w;
if (start < h)
{
if (start >= 0)
gsk_path_builder_move_to (builder, self->x, self->y + (h - start) * (h / self->height));
if (end <= h)
{
gsk_path_builder_line_to (builder, self->x, self->y + (h - end) * (h / self->height));
return;
}
gsk_path_builder_line_to (builder, self->x, self->y);
}
}
static const GskContourClass GSK_RECT_CONTOUR_CLASS =
{
sizeof (GskRectContour),
"GskRectContour",
gsk_contour_get_size_default,
gsk_rect_contour_get_flags,
gsk_rect_contour_print,
gsk_rect_contour_get_bounds,
gsk_rect_contour_get_start_end,
gsk_rect_contour_foreach,
gsk_rect_contour_init_measure,
gsk_rect_contour_free_measure,
gsk_rect_contour_get_point,
gsk_rect_contour_get_closest_point,
gsk_rect_contour_copy,
gsk_rect_contour_add_segment
};
GskContour *
gsk_rect_contour_new (const graphene_rect_t *rect)
{
GskRectContour *self;
self = g_new0 (GskRectContour, 1);
self->contour.klass = &GSK_RECT_CONTOUR_CLASS;
self->x = rect->origin.x;
self->y = rect->origin.y;
self->width = rect->size.width;
self->height = rect->size.height;
return (GskContour *) self;
}
/* CIRCLE CONTOUR */
#define DEG_TO_RAD(x) ((x) * (G_PI / 180.f))
#define RAD_TO_DEG(x) ((x) / (G_PI / 180.f))
typedef struct _GskCircleContour GskCircleContour;
struct _GskCircleContour
{
GskContour contour;
graphene_point_t center;
float radius;
float start_angle; /* in degrees */
float end_angle; /* start_angle +/- 360 */
};
static GskPathFlags
gsk_circle_contour_get_flags (const GskContour *contour)
{
const GskCircleContour *self = (const GskCircleContour *) contour;
/* XXX: should we explicitly close paths? */
if (fabs (self->start_angle - self->end_angle) >= 360)
return GSK_PATH_CLOSED;
else
return 0;
}
#define GSK_CIRCLE_POINT_INIT(self, angle) \
GRAPHENE_POINT_INIT ((self)->center.x + cos (DEG_TO_RAD (angle)) * self->radius, \
(self)->center.y + sin (DEG_TO_RAD (angle)) * self->radius)
static void
gsk_circle_contour_print (const GskContour *contour,
GString *string)
{
const GskCircleContour *self = (const GskCircleContour *) contour;
g_string_append (string, "M ");
_g_string_append_point (string, &GSK_CIRCLE_POINT_INIT (self, self->start_angle));
g_string_append (string, " A ");
_g_string_append_point (string, &GRAPHENE_POINT_INIT (self->radius, self->radius));
g_string_append_printf (string, " 0 %u %u ",
fabs (self->start_angle - self->end_angle) > 180 ? 1 : 0,
self->start_angle < self->end_angle ? 0 : 1);
_g_string_append_point (string, &GSK_CIRCLE_POINT_INIT (self, self->end_angle));
if (fabs (self->start_angle - self->end_angle >= 360))
g_string_append (string, " z");
}
static gboolean
gsk_circle_contour_get_bounds (const GskContour *contour,
graphene_rect_t *rect)
{
const GskCircleContour *self = (const GskCircleContour *) contour;
/* XXX: handle partial circles */
graphene_rect_init (rect,
self->center.x - self->radius,
self->center.y - self->radius,
2 * self->radius,
2 * self->radius);
return TRUE;
}
static void
gsk_circle_contour_get_start_end (const GskContour *contour,
graphene_point_t *start,
graphene_point_t *end)
{
const GskCircleContour *self = (const GskCircleContour *) contour;
if (start)
*start = GSK_CIRCLE_POINT_INIT (self, self->start_angle);
if (end)
*end = GSK_CIRCLE_POINT_INIT (self, self->end_angle);
}
typedef struct
{
GskPathForeachFunc func;
gpointer user_data;
} ForeachWrapper;
static gboolean
gsk_circle_contour_curve (const graphene_point_t curve[4],
gpointer data)
{
ForeachWrapper *wrapper = data;
return wrapper->func (GSK_PATH_CURVE, curve, 4, wrapper->user_data);
}
static gboolean
gsk_circle_contour_foreach (const GskContour *contour,
float tolerance,
GskPathForeachFunc func,
gpointer user_data)
{
const GskCircleContour *self = (const GskCircleContour *) contour;
graphene_point_t start = GSK_CIRCLE_POINT_INIT (self, self->start_angle);
if (!func (GSK_PATH_MOVE, &start, 1, user_data))
return FALSE;
if (!gsk_spline_decompose_arc (&self->center,
self->radius,
tolerance,
DEG_TO_RAD (self->start_angle),
DEG_TO_RAD (self->end_angle),
gsk_circle_contour_curve,
&(ForeachWrapper) { func, user_data }))
return FALSE;
if (fabs (self->start_angle - self->end_angle) >= 360)
{
if (!func (GSK_PATH_CLOSE, (graphene_point_t[2]) { start, start }, 2, user_data))
return FALSE;
}
return TRUE;
}
static gpointer
gsk_circle_contour_init_measure (const GskContour *contour,
float tolerance,
float *out_length)
{
const GskCircleContour *self = (const GskCircleContour *) contour;
*out_length = DEG_TO_RAD (fabs (self->start_angle - self->end_angle)) * self->radius;
return NULL;
}
static void
gsk_circle_contour_free_measure (const GskContour *contour,
gpointer data)
{
}
static void
gsk_circle_contour_get_point (const GskContour *contour,
gpointer measure_data,
float distance,
graphene_point_t *pos,
graphene_vec2_t *tangent)
{
const GskCircleContour *self = (const GskCircleContour *) contour;
float delta = self->end_angle - self->start_angle;
float length = self->radius * DEG_TO_RAD (delta);
float angle = self->start_angle + distance/length * delta;
graphene_point_t p;
p = GSK_CIRCLE_POINT_INIT (self, angle);
if (pos)
*pos = p;
if (tangent)
{
graphene_vec2_init (tangent,
p.y - self->center.y,
- p.x + self->center.x);
graphene_vec2_normalize (tangent, tangent);
}
}
static gboolean
gsk_circle_contour_get_closest_point (const GskContour *contour,
gpointer measure_data,
float tolerance,
const graphene_point_t *point,
float threshold,
float *out_distance,
graphene_point_t *out_pos,
float *out_offset,
graphene_vec2_t *out_tangent)
{
const GskCircleContour *self = (const GskCircleContour *) contour;
float angle;
float closest_angle;
float offset;
graphene_point_t pos;
graphene_vec2_t tangent;
float distance;
if (graphene_point_distance (point, &self->center, NULL, NULL) > threshold + self->radius)
return FALSE;
angle = atan2f (point->y - self->center.y, point->x - self->center.x);
angle = RAD_TO_DEG (angle);
if (angle < 0)
angle += 360;
if ((self->start_angle <= angle && angle <= self->end_angle) ||
(self->end_angle <= angle && angle <= self->start_angle))
{
closest_angle = angle;
}
else
{
float d1, d2;
d1 = fabs (self->start_angle - angle);
d1 = MIN (d1, 360 - d1);
d2 = fabs (self->end_angle - angle);
d2 = MIN (d2, 360 - d2);
if (d1 < d2)
closest_angle = self->start_angle;
else
closest_angle = self->end_angle;
}
offset = self->radius * 2 * M_PI * (closest_angle - self->start_angle) / (self->end_angle - self->start_angle);
gsk_circle_contour_get_point (contour, NULL, offset, &pos, out_tangent ? &tangent : NULL);
distance = graphene_point_distance (&pos, point, NULL, NULL);
if (threshold < distance)
return FALSE;
if (out_offset)
*out_offset = offset;
if (out_pos)
*out_pos = pos;
if (out_distance)
*out_distance = distance;
if (out_tangent)
*out_tangent = tangent;
return TRUE;
}
static void
gsk_circle_contour_copy (const GskContour *contour,
GskContour *dest)
{
const GskCircleContour *self = (const GskCircleContour *) contour;
GskCircleContour *target = (GskCircleContour *) dest;
*target = *self;
}
static void
gsk_circle_contour_add_segment (const GskContour *contour,
GskPathBuilder *builder,
gpointer measure_data,
float start,
float end)
{
const GskCircleContour *self = (const GskCircleContour *) contour;
float delta = self->end_angle - self->start_angle;
float length = self->radius * DEG_TO_RAD (delta);
GskContour *segment;
segment = gsk_circle_contour_new (&self->center, self->radius,
self->start_angle + start/length * delta,
self->start_angle + end/length * delta);
gsk_path_builder_add_contour (builder, segment);
}
static const GskContourClass GSK_CIRCLE_CONTOUR_CLASS =
{
sizeof (GskCircleContour),
"GskCircleContour",
gsk_contour_get_size_default,
gsk_circle_contour_get_flags,
gsk_circle_contour_print,
gsk_circle_contour_get_bounds,
gsk_circle_contour_get_start_end,
gsk_circle_contour_foreach,
gsk_circle_contour_init_measure,
gsk_circle_contour_free_measure,
gsk_circle_contour_get_point,
gsk_circle_contour_get_closest_point,
gsk_circle_contour_copy,
gsk_circle_contour_add_segment
};
GskContour *
gsk_circle_contour_new (const graphene_point_t *center,
float radius,
float start_angle,
float end_angle)
{
GskCircleContour *self;
self = g_new0 (GskCircleContour, 1);
self->contour.klass = &GSK_CIRCLE_CONTOUR_CLASS;
g_assert (fabs (start_angle - end_angle) <= 360);
self->contour.klass = &GSK_CIRCLE_CONTOUR_CLASS;
self->center = *center;
self->radius = radius;
self->start_angle = start_angle;
self->end_angle = end_angle;
return (GskContour *) self;
}
/* STANDARD CONTOUR */
typedef struct _GskStandardContour GskStandardContour;
struct _GskStandardContour
{
GskContour contour;
GskPathFlags flags;
gsize n_ops;
gsize n_points;
graphene_point_t *points;
GskStandardOperation ops[];
};
static gsize
gsk_standard_contour_compute_size (gsize n_ops,
gsize n_points)
{
return sizeof (GskStandardContour)
+ sizeof (GskStandardOperation) * n_ops
+ sizeof (graphene_point_t) * n_points;
}
static gsize
gsk_standard_contour_get_size (const GskContour *contour)
{
const GskStandardContour *self = (const GskStandardContour *) contour;
return gsk_standard_contour_compute_size (self->n_ops, self->n_points);
}
static gboolean
gsk_standard_contour_foreach (const GskContour *contour,
float tolerance,
GskPathForeachFunc func,
gpointer user_data)
{
const GskStandardContour *self = (const GskStandardContour *) contour;
gsize i;
const gsize n_points[] = {
[GSK_PATH_MOVE] = 1,
[GSK_PATH_CLOSE] = 2,
[GSK_PATH_LINE] = 2,
[GSK_PATH_CURVE] = 4
};
for (i = 0; i < self->n_ops; i ++)
{
if (!func (self->ops[i].op, &self->points[self->ops[i].point], n_points[self->ops[i].op], user_data))
return FALSE;
}
return TRUE;
}
static GskPathFlags
gsk_standard_contour_get_flags (const GskContour *contour)
{
const GskStandardContour *self = (const GskStandardContour *) contour;
return self->flags;
}
static void
gsk_standard_contour_print (const GskContour *contour,
GString *string)
{
const GskStandardContour *self = (const GskStandardContour *) contour;
gsize i;
for (i = 0; i < self->n_ops; i ++)
{
graphene_point_t *pt = &self->points[self->ops[i].point];
switch (self->ops[i].op)
{
case GSK_PATH_MOVE:
g_string_append (string, "M ");
_g_string_append_point (string, &pt[0]);
break;
case GSK_PATH_CLOSE:
g_string_append (string, " Z");
break;
case GSK_PATH_LINE:
g_string_append (string, " L ");
_g_string_append_point (string, &pt[1]);
break;
case GSK_PATH_CURVE:
g_string_append (string, " C ");
_g_string_append_point (string, &pt[1]);
g_string_append (string, ", ");
_g_string_append_point (string, &pt[2]);
g_string_append (string, ", ");
_g_string_append_point (string, &pt[3]);
break;
default:
g_assert_not_reached();
return;
}
}
}
static void
rect_add_point (graphene_rect_t *rect,
const graphene_point_t *point)
{
if (point->x < rect->origin.x)
{
rect->size.width += rect->origin.x - point->x;
rect->origin.x = point->x;
}
else if (point->x > rect->origin.x + rect->size.width)
{
rect->size.width = point->x - rect->origin.x;
}
if (point->y < rect->origin.y)
{
rect->size.height += rect->origin.y - point->y;
rect->origin.y = point->y;
}
else if (point->y > rect->origin.y + rect->size.height)
{
rect->size.height = point->y - rect->origin.y;
}
}
static gboolean
gsk_standard_contour_get_bounds (const GskContour *contour,
graphene_rect_t *bounds)
{
const GskStandardContour *self = (const GskStandardContour *) contour;
gsize i;
if (self->n_points == 0)
return FALSE;
graphene_rect_init (bounds,
self->points[0].x, self->points[0].y,
0, 0);
for (i = 1; i < self->n_points; i ++)
{
rect_add_point (bounds, &self->points[i]);
}
return bounds->size.width > 0 && bounds->size.height > 0;
}
static void
gsk_standard_contour_get_start_end (const GskContour *contour,
graphene_point_t *start,
graphene_point_t *end)
{
const GskStandardContour *self = (const GskStandardContour *) contour;
if (start)
*start = self->points[0];
if (end)
*end = self->points[self->n_points - 1];
}
typedef struct
{
float start;
float end;
float start_progress;
float end_progress;
graphene_point_t end_point;
gsize op;
} GskStandardContourMeasure;
typedef struct
{
GArray *array;
GskStandardContourMeasure measure;
} LengthDecompose;
static void
gsk_standard_contour_measure_add_point (const graphene_point_t *from,
const graphene_point_t *to,
float from_progress,
float to_progress,
gpointer user_data)
{
LengthDecompose *decomp = user_data;
float seg_length;
seg_length = graphene_point_distance (from, to, NULL, NULL);
decomp->measure.end += seg_length;
decomp->measure.start_progress = from_progress;
decomp->measure.end_progress = to_progress;
decomp->measure.end_point = *to;
g_array_append_val (decomp->array, decomp->measure);
decomp->measure.start += seg_length;
}
static gpointer
gsk_standard_contour_init_measure (const GskContour *contour,
float tolerance,
float *out_length)
{
const GskStandardContour *self = (const GskStandardContour *) contour;
gsize i;
float length, seg_length;
GArray *array;
array = g_array_new (FALSE, FALSE, sizeof (GskStandardContourMeasure));
length = 0;
for (i = 1; i < self->n_ops; i ++)
{
graphene_point_t *pt = &self->points[self->ops[i].point];
switch (self->ops[i].op)
{
case GSK_PATH_MOVE:
break;
case GSK_PATH_CLOSE:
case GSK_PATH_LINE:
seg_length = graphene_point_distance (&pt[0], &pt[1], NULL, NULL);
if (seg_length > 0)
{
g_array_append_vals (array,
&(GskStandardContourMeasure) {
length,
length + seg_length,
0, 1,
pt[1],
i,
}, 1);
length += seg_length;
}
break;
case GSK_PATH_CURVE:
{
LengthDecompose decomp = { array, { length, length, 0, 0, pt[0], i } };
gsk_spline_decompose_cubic (pt, tolerance, gsk_standard_contour_measure_add_point, &decomp);
length = decomp.measure.start;
}
break;
default:
g_assert_not_reached();
return NULL;
}
}
*out_length = length;
return array;
}
static void
gsk_standard_contour_free_measure (const GskContour *contour,
gpointer data)
{
g_array_free (data, TRUE);
}
static int
gsk_standard_contour_find_measure (gconstpointer m,
gconstpointer l)
{
const GskStandardContourMeasure *measure = m;
float length = *(const float *) l;
if (measure->start > length)
return 1;
else if (measure->end <= length)
return -1;
else
return 0;
}
static void
gsk_standard_contour_measure_get_point (GskStandardContour *self,
gsize op,
float progress,
graphene_point_t *pos,
graphene_vec2_t *tangent)
{
const graphene_point_t *pts;
pts = &self->points[self->ops[op].point];
switch (self->ops[op].op)
{
case GSK_PATH_LINE:
case GSK_PATH_CLOSE:
if (pos)
graphene_point_interpolate (&pts[0], &pts[1], progress, pos);
if (tangent)
{
graphene_vec2_init (tangent, pts[1].x - pts[0].x, pts[1].y - pts[0].y);
graphene_vec2_normalize (tangent, tangent);
}
break;
case GSK_PATH_CURVE:
gsk_spline_get_point_cubic (pts, progress, pos, tangent);
break;
case GSK_PATH_MOVE:
default:
g_assert_not_reached ();
return;
}
}
static void
gsk_standard_contour_get_point (const GskContour *contour,
gpointer measure_data,
float distance,
graphene_point_t *pos,
graphene_vec2_t *tangent)
{
GskStandardContour *self = (GskStandardContour *) contour;
GArray *array = measure_data;
guint index;
float progress;
GskStandardContourMeasure *measure;
if (array->len == 0)
{
g_assert (distance == 0);
g_assert (self->ops[0].op == GSK_PATH_MOVE);
if (pos)
*pos = self->points[0];
if (tangent)
graphene_vec2_init (tangent, 1.f, 0.f);
return;
}
if (!g_array_binary_search (array, &distance, gsk_standard_contour_find_measure, &index))
index = array->len - 1;
measure = &g_array_index (array, GskStandardContourMeasure, index);
progress = (distance - measure->start) / (measure->end - measure->start);
progress = measure->start_progress + (measure->end_progress - measure->start_progress) * progress;
g_assert (progress >= 0 && progress <= 1);
gsk_standard_contour_measure_get_point (self, measure->op, progress, pos, tangent);
}
static gboolean
gsk_standard_contour_get_closest_point (const GskContour *contour,
gpointer measure_data,
float tolerance,
const graphene_point_t *point,
float threshold,
float *out_distance,
graphene_point_t *out_pos,
float *out_offset,
graphene_vec2_t *out_tangent)
{
GskStandardContour *self = (GskStandardContour *) contour;
GskStandardContourMeasure *measure;
float progress, dist;
GArray *array = measure_data;
graphene_point_t p, last_point;
gsize i;
gboolean result = FALSE;
g_assert (self->ops[0].op == GSK_PATH_MOVE);
last_point = self->points[0];
if (array->len == 0)
{
/* This is the special case for point-only */
dist = graphene_point_distance (&last_point, point, NULL, NULL);
if (dist > threshold)
return FALSE;
if (out_offset)
*out_offset = 0;
if (out_distance)
*out_distance = dist;
if (out_pos)
*out_pos = last_point;
if (out_tangent)
*out_tangent = *graphene_vec2_x_axis ();
return TRUE;
}
for (i = 0; i < array->len; i++)
{
measure = &g_array_index (array, GskStandardContourMeasure, i);
gsk_find_point_on_line (&last_point,
&measure->end_point,
point,
&progress,
&p);
last_point = measure->end_point;
dist = graphene_point_distance (point, &p, NULL, NULL);
/* add some wiggleroom for the accurate check below */
//g_print ("%zu: (%g-%g) dist %g\n", i, measure->start, measure->end, dist);
if (dist <= threshold + 1.0f)
{
graphene_vec2_t t;
float found_progress;
found_progress = measure->start_progress + (measure->end_progress - measure->start_progress) * progress;
gsk_standard_contour_measure_get_point (self, measure->op, found_progress, &p, out_tangent ? &t : NULL);
dist = graphene_point_distance (point, &p, NULL, NULL);
/* double check that the point actually is closer */
//g_print ("!!! %zu: (%g-%g) dist %g\n", i, measure->start, measure->end, dist);
if (dist <= threshold)
{
if (out_distance)
*out_distance = dist;
if (out_pos)
*out_pos = p;
if (out_offset)
*out_offset = measure->start + (measure->end - measure->start) * progress;
if (out_tangent)
*out_tangent = t;
result = TRUE;
if (tolerance >= dist)
return TRUE;
threshold = dist - tolerance;
}
}
}
return result;
}
static void
gsk_standard_contour_init (GskContour *contour,
GskPathFlags flags,
const GskStandardOperation *ops,
gsize n_ops,
const graphene_point_t *points,
gsize n_points);
static void
gsk_standard_contour_copy (const GskContour *contour,
GskContour *dest)
{
const GskStandardContour *self = (const GskStandardContour *) contour;
gsk_standard_contour_init (dest, self->flags, self->ops, self->n_ops, self->points, self->n_points);
}
static void
gsk_standard_contour_add_segment (const GskContour *contour,
GskPathBuilder *builder,
gpointer measure_data,
float start,
float end)
{
GskStandardContour *self = (GskStandardContour *) contour;
GArray *array = measure_data;
guint start_index, end_index;
float start_progress, end_progress;
GskStandardContourMeasure *start_measure, *end_measure;
gsize i;
if (start > 0)
{
if (!g_array_binary_search (array, (float[1]) { start }, gsk_standard_contour_find_measure, &start_index))
start_index = array->len - 1;
start_measure = &g_array_index (array, GskStandardContourMeasure, start_index);
start_progress = (start - start_measure->start) / (start_measure->end - start_measure->start);
start_progress = start_measure->start_progress + (start_measure->end_progress - start_measure->start_progress) * start_progress;
g_assert (start_progress >= 0 && start_progress <= 1);
}
else
{
start_measure = NULL;
start_progress = 0.0;
}
if (g_array_binary_search (array, (float[1]) { end }, gsk_standard_contour_find_measure, &end_index))
{
end_measure = &g_array_index (array, GskStandardContourMeasure, end_index);
end_progress = (end - end_measure->start) / (end_measure->end - end_measure->start);
end_progress = end_measure->start_progress + (end_measure->end_progress - end_measure->start_progress) * end_progress;
g_assert (end_progress >= 0 && end_progress <= 1);
}
else
{
end_measure = NULL;
end_progress = 1.0;
}
/* Add the first partial operation,
* taking care that first and last operation might be identical */
if (start_measure)
{
switch (self->ops[start_measure->op].op)
{
case GSK_PATH_CLOSE:
case GSK_PATH_LINE:
{
graphene_point_t *pts = &self->points[self->ops[start_measure->op].point];
graphene_point_t point;
graphene_point_interpolate (&pts[0], &pts[1], start_progress, &point);
gsk_path_builder_move_to (builder, point.x, point.y);
if (end_measure && end_measure->op == start_measure->op)
{
graphene_point_interpolate (&pts[0], &pts[1], end_progress, &point);
gsk_path_builder_line_to (builder, point.x, point.y);
return;
}
gsk_path_builder_line_to (builder, pts[1].x, pts[1].y);
}
break;
case GSK_PATH_CURVE:
{
graphene_point_t *pts = &self->points[self->ops[start_measure->op].point];
graphene_point_t curve[4], discard[4];
gsk_spline_split_cubic (pts, discard, curve, start_progress);
if (end_measure && end_measure->op == start_measure->op)
{
graphene_point_t tiny[4];
gsk_spline_split_cubic (curve, tiny, discard, (end_progress - start_progress) / (1 - start_progress));
gsk_path_builder_move_to (builder, tiny[0].x, tiny[0].y);
gsk_path_builder_curve_to (builder, tiny[1].x, tiny[1].y, tiny[2].x, tiny[2].y, tiny[3].x, tiny[3].y);
return;
}
gsk_path_builder_move_to (builder, curve[0].x, curve[0].y);
gsk_path_builder_curve_to (builder, curve[1].x, curve[1].y, curve[2].x, curve[2].y, curve[3].x, curve[3].y);
}
break;
case GSK_PATH_MOVE:
default:
g_assert_not_reached();
return;
}
i = start_measure->op + 1;
}
else
i = 0;
for (; i < (end_measure ? end_measure->op : self->n_ops); i++)
{
graphene_point_t *pt = &self->points[self->ops[i].point];
switch (self->ops[i].op)
{
case GSK_PATH_MOVE:
gsk_path_builder_move_to (builder, pt[0].x, pt[0].y);
break;
case GSK_PATH_LINE:
case GSK_PATH_CLOSE:
gsk_path_builder_line_to (builder, pt[1].x, pt[1].y);
break;
case GSK_PATH_CURVE:
gsk_path_builder_curve_to (builder, pt[1].x, pt[1].y, pt[2].x, pt[2].y, pt[3].x, pt[3].y);
break;
default:
g_assert_not_reached();
return;
}
}
/* Add the last partial operation */
if (end_measure)
{
switch (self->ops[end_measure->op].op)
{
case GSK_PATH_CLOSE:
case GSK_PATH_LINE:
{
graphene_point_t *pts = &self->points[self->ops[end_measure->op].point];
graphene_point_t point;
graphene_point_interpolate (&pts[0], &pts[1], end_progress, &point);
gsk_path_builder_line_to (builder, point.x, point.y);
}
break;
case GSK_PATH_CURVE:
{
graphene_point_t *pts = &self->points[self->ops[end_measure->op].point];
graphene_point_t curve[4], discard[4];
gsk_spline_split_cubic (pts, curve, discard, end_progress);
gsk_path_builder_curve_to (builder, curve[1].x, curve[1].y, curve[2].x, curve[2].y, curve[3].x, curve[3].y);
}
break;
case GSK_PATH_MOVE:
default:
g_assert_not_reached();
return;
}
}
}
static const GskContourClass GSK_STANDARD_CONTOUR_CLASS =
{
sizeof (GskStandardContour),
"GskStandardContour",
gsk_standard_contour_get_size,
gsk_standard_contour_get_flags,
gsk_standard_contour_print,
gsk_standard_contour_get_bounds,
gsk_standard_contour_get_start_end,
gsk_standard_contour_foreach,
gsk_standard_contour_init_measure,
gsk_standard_contour_free_measure,
gsk_standard_contour_get_point,
gsk_standard_contour_get_closest_point,
gsk_standard_contour_copy,
gsk_standard_contour_add_segment
};
/* You must ensure the contour has enough size allocated,
* see gsk_standard_contour_compute_size()
*/
static void
gsk_standard_contour_init (GskContour *contour,
GskPathFlags flags,
const GskStandardOperation *ops,
gsize n_ops,
const graphene_point_t *points,
gsize n_points)
{
GskStandardContour *self = (GskStandardContour *) contour;
self->contour.klass = &GSK_STANDARD_CONTOUR_CLASS;
self->flags = flags;
self->n_ops = n_ops;
memcpy (self->ops, ops, sizeof (GskStandardOperation) * n_ops);
self->n_points = n_points;
self->points = (graphene_point_t *) &self->ops[n_ops];
memcpy (self->points, points, sizeof (graphene_point_t) * n_points);
}
GskContour *
gsk_standard_contour_new (GskPathFlags flags,
const GskStandardOperation *ops,
gsize n_ops,
const graphene_point_t *points,
gsize n_points)
{
GskContour *contour;
contour = g_malloc0 (gsk_standard_contour_compute_size (n_ops, n_points));
gsk_standard_contour_init (contour, flags, ops, n_ops, points, n_points);
return contour;
}
/* CONTOUR */
static gsize
gsk_contour_get_size (const GskContour *contour)
{
return contour->klass->get_size (contour);
}
static gboolean
gsk_contour_foreach (const GskContour *contour,
float tolerance,
GskPathForeachFunc func,
gpointer user_data)
{
return contour->klass->foreach (contour, tolerance, func, user_data);
}
gpointer
gsk_contour_init_measure (GskPath *path,
gsize i,
float tolerance,
float *out_length)
{
GskContour *self = path->contours[i];
return self->klass->init_measure (self, tolerance, out_length);
}
void
gsk_contour_free_measure (GskPath *path,
gsize i,
gpointer data)
{
GskContour *self = path->contours[i];
self->klass->free_measure (self, data);
}
void
gsk_contour_get_start_end (const GskContour *self,
graphene_point_t *start,
graphene_point_t *end)
{
self->klass->get_start_end (self, start, end);
}
void
gsk_contour_get_point (GskPath *path,
gsize i,
gpointer measure_data,
float distance,
graphene_point_t *pos,
graphene_vec2_t *tangent)
{
GskContour *self = path->contours[i];
self->klass->get_point (self, measure_data, distance, pos, tangent);
}
gboolean
gsk_contour_get_closest_point (GskPath *path,
gsize i,
gpointer measure_data,
float tolerance,
const graphene_point_t *point,
float threshold,
float *out_distance,
graphene_point_t *out_pos,
float *out_offset,
graphene_vec2_t *out_tangent)
{
GskContour *self = path->contours[i];
return self->klass->get_closest_point (self,
measure_data,
tolerance,
point,
threshold,
out_distance,
out_pos,
out_offset,
out_tangent);
}
void
gsk_contour_add_segment (const GskContour *self,
GskPathBuilder *builder,
gpointer measure_data,
float start,
float end)
{
self->klass->add_segment (self, builder, measure_data, start, end);
}
static inline void
gsk_contour_copy (GskContour *dest,
const GskContour *src)
{
src->klass->copy (src, dest);
}
GskContour *
gsk_contour_dup (const GskContour *src)
{
GskContour *copy;
copy = g_malloc0 (gsk_contour_get_size (src));
gsk_contour_copy (copy, src);
return copy;
}
/* PATH */
GskPath *
gsk_path_new_from_contours (const GSList *contours)
{
GskPath *path;
const GSList *l;
gsize size;
gsize n_contours;
guint8 *contour_data;
GskPathFlags flags;
flags = GSK_PATH_CLOSED | GSK_PATH_FLAT;
size = 0;
n_contours = 0;
for (l = contours; l; l = l->next)
{
GskContour *contour = l->data;
n_contours++;
size += sizeof (GskContour *);
size += gsk_contour_get_size (contour);
flags &= contour->klass->get_flags (contour);
}
path = g_malloc0 (sizeof (GskPath) + size);
path->ref_count = 1;
path->flags = flags;
path->n_contours = n_contours;
contour_data = (guint8 *) &path->contours[n_contours];
n_contours = 0;
for (l = contours; l; l = l->next)
{
GskContour *contour = l->data;
path->contours[n_contours] = (GskContour *) contour_data;
gsk_contour_copy ((GskContour *) contour_data, contour);
size = gsk_contour_get_size (contour);
contour_data += size;
n_contours++;
}
return path;
}
/**
* gsk_path_new_from_cairo:
* @path: a Cairo path
*
* This is a convenience function that constructs a #GskPath from a Cairo path.
*
* You can use cairo_copy_path() to access the path from a Cairo context.
*
* Returns: a new #GskPath
**/
GskPath *
gsk_path_new_from_cairo (const cairo_path_t *path)
{
GskPathBuilder *builder;
gsize i;
g_return_val_if_fail (path != NULL, NULL);
builder = gsk_path_builder_new ();
for (i = 0; i < path->num_data; i += path->data[i].header.length)
{
const cairo_path_data_t *data = &path->data[i];
switch (data->header.type)
{
case CAIRO_PATH_MOVE_TO:
gsk_path_builder_move_to (builder, data[1].point.x, data[1].point.y);
break;
case CAIRO_PATH_LINE_TO:
gsk_path_builder_line_to (builder, data[1].point.x, data[1].point.y);
break;
case CAIRO_PATH_CURVE_TO:
gsk_path_builder_curve_to (builder,
data[1].point.x, data[1].point.y,
data[2].point.x, data[2].point.y,
data[3].point.x, data[3].point.y);
break;
case CAIRO_PATH_CLOSE_PATH:
gsk_path_builder_close (builder);
break;
default:
g_assert_not_reached ();
break;
}
}
return gsk_path_builder_free_to_path (builder);
}
/**
* gsk_path_ref:
* @self: a #GskPath
*
* Increases the reference count of a #GskPath by one.
*
* Returns: the passed in #GskPath.
**/
GskPath *
gsk_path_ref (GskPath *self)
{
g_return_val_if_fail (self != NULL, NULL);
self->ref_count++;
return self;
}
/**
* gsk_path_unref:
* @self: a #GskPath
*
* Decreases the reference count of a #GskPath by one.
* If the resulting reference count is zero, frees the path.
**/
void
gsk_path_unref (GskPath *self)
{
g_return_if_fail (self != NULL);
g_return_if_fail (self->ref_count > 0);
self->ref_count--;
if (self->ref_count > 0)
return;
g_free (self);
}
const GskContour *
gsk_path_get_contour (GskPath *path,
gsize i)
{
return path->contours[i];
}
/**
* gsk_path_print:
* @self: a #GskPath
* @string: The string to print into
*
* Converts @self into a human-readable string representation suitable
* for printing.
*
* The string is compatible with
* [SVG path syntax](https://www.w3.org/TR/SVG11/paths.html#PathData),
* with the exception that conic curves will generate a string of the
* form "O x1 y1, x2 y2, w" where x1, y1 is the control point, x2, y2
* is the end point, and w is the weight.
**/
void
gsk_path_print (GskPath *self,
GString *string)
{
gsize i;
g_return_if_fail (self != NULL);
g_return_if_fail (string != NULL);
for (i = 0; i < self->n_contours; i++)
{
if (i > 0)
g_string_append_c (string, ' ');
self->contours[i]->klass->print (self->contours[i], string);
}
}
/**
* gsk_path_to_string:
* @self: a #GskPath
*
* Converts the path into a string that is suitable for
* printing. You can use this function in a debugger to get a quick overview
* of the path.
*
* This is a wrapper around gsk_path_print(), see that function
* for details.
*
* Returns: A new string for @self
**/
char *
gsk_path_to_string (GskPath *self)
{
GString *string;
g_return_val_if_fail (self != NULL, NULL);
string = g_string_new ("");
gsk_path_print (self, string);
return g_string_free (string, FALSE);
}
static gboolean
gsk_path_to_cairo_add_op (GskPathOperation op,
const graphene_point_t *pts,
gsize n_pts,
gpointer cr)
{
switch (op)
{
case GSK_PATH_MOVE:
cairo_move_to (cr, pts[0].x, pts[0].y);
break;
case GSK_PATH_CLOSE:
cairo_close_path (cr);
break;
case GSK_PATH_LINE:
cairo_line_to (cr, pts[1].x, pts[1].y);
break;
case GSK_PATH_CURVE:
cairo_curve_to (cr, pts[1].x, pts[1].y, pts[2].x, pts[2].y, pts[3].x, pts[3].y);
break;
default:
g_assert_not_reached ();
return FALSE;
}
return TRUE;
}
/**
* gsk_path_to_cairo:
* @self: a #GskPath
* @cr: a cairo context
*
* Appends the given @path to the given cairo context for drawing
* with Cairo.
*
* This may cause some suboptimal conversions to be performed as Cairo
* may not support all features of #GskPath.
*
* This function does not clear the existing Cairo path. Call
* cairo_new_path() if you want this.
**/
void
gsk_path_to_cairo (GskPath *self,
cairo_t *cr)
{
g_return_if_fail (self != NULL);
g_return_if_fail (cr != NULL);
gsk_path_foreach_with_tolerance (self,
cairo_get_tolerance (cr),
gsk_path_to_cairo_add_op,
cr);
}
/*
* gsk_path_get_n_contours:
* @path: a #GskPath
*
* Gets the number of contours @path is composed out of.
*
* Returns: the number of contours in @path
**/
gsize
gsk_path_get_n_contours (GskPath *path)
{
return path->n_contours;
}
/**
* gsk_path_is_empty:
* @path: a #GskPath
*
* Checks if the path is empty, i.e. contains no lines or curves.
*
* Returns: %TRUE if the path is empty
**/
gboolean
gsk_path_is_empty (GskPath *path)
{
g_return_val_if_fail (path != NULL, FALSE);
return path->n_contours == 0;
}
/**
* gsk_path_get_bounds:
* @self: a #GskPath
* @bounds: (out) (caller-allocates): the bounds of the given path
*
* Computes the bounds of the given path.
*
* The returned bounds may be larger than necessary, because this
* function aims to be fast, not accurate. The bounds are guaranteed
* to contain the path.
*
* It is possible that the returned rectangle has 0 width and/or height.
* This can happen when the path only describes a point or an
* axis-aligned line.
*
* If the path is empty, %FALSE is returned and @bounds are set to
* graphene_rect_zero(). This is different from the case where the path
* is a single point at the origin, where the @bounds will also be set to
* the zero rectangle but 0 will be returned.
*
* Returns: %TRUE if the path has bounds, %FALSE if the path is known
* to be empty and have no bounds.
**/
gboolean
gsk_path_get_bounds (GskPath *self,
graphene_rect_t *bounds)
{
gsize i;
g_return_val_if_fail (self != NULL, FALSE);
g_return_val_if_fail (bounds != NULL, FALSE);
for (i = 0; i < self->n_contours; i++)
{
if (self->contours[i]->klass->get_bounds (self->contours[i], bounds))
break;
}
if (i >= self->n_contours)
{
graphene_rect_init_from_rect (bounds, graphene_rect_zero ());
return FALSE;
}
for (i++; i < self->n_contours; i++)
{
graphene_rect_t tmp;
if (self->contours[i]->klass->get_bounds (self->contours[i], &tmp))
graphene_rect_union (bounds, &tmp, bounds);
}
return TRUE;
}
/**
* gsk_path_foreach:
* @self: a #GskPath
* @func: (scope call) (closure user_data): the function to call for operations
* @user_data: (nullable): user data passed to @func
*
* Calls @func for every operation of the path. Note that this only approximates
* @self, because paths can contain optimizations for various specialized contours.
*
* Returns: %FALSE if @func returned %FALSE, %TRUE otherwise.
**/
gboolean
gsk_path_foreach (GskPath *self,
GskPathForeachFunc func,
gpointer user_data)
{
g_return_val_if_fail (self != NULL, FALSE);
g_return_val_if_fail (func, FALSE);
return gsk_path_foreach_with_tolerance (self, GSK_PATH_TOLERANCE_DEFAULT, func, user_data);
}
gboolean
gsk_path_foreach_with_tolerance (GskPath *self,
double tolerance,
GskPathForeachFunc func,
gpointer user_data)
{
gsize i;
for (i = 0; i < self->n_contours; i++)
{
if (!gsk_contour_foreach (self->contours[i], tolerance, func, user_data))
return FALSE;
}
return TRUE;
}