Merge branch 'vm-alloca' of github.com:pfalcon/micropython into pfalcon-vm-alloca

Conflicts:
	py/vm.c

Fixed stack underflow check.  Use UINT_FMT/INT_FMT where necessary.
Specify maximum VM-stack byte size by multiple of machine word size, so
that on 64 bit machines it has same functionality as 32 bit.
This commit is contained in:
Damien George
2014-06-01 12:06:17 +01:00
3 changed files with 84 additions and 85 deletions

103
py/vm.c
View File

@@ -28,6 +28,7 @@
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include <alloca.h>
#include "mpconfig.h"
#include "nlr.h"
@@ -40,11 +41,10 @@
#include "bc.h"
#include "objgenerator.h"
// With these macros you can tune the maximum number of state slots
// With these macros you can tune the maximum number of function state bytes
// that will be allocated on the stack. Any function that needs more
// than this will use the heap.
#define VM_MAX_STATE_ON_STACK (10)
#define VM_MAX_EXC_STATE_ON_STACK (4)
#define VM_MAX_STATE_ON_STACK (10 * sizeof(machine_uint_t))
#define DETECT_VM_STACK_OVERFLOW (0)
#if 0
@@ -117,54 +117,54 @@ mp_vm_return_kind_t mp_execute_bytecode(const byte *code, const mp_obj_t *args,
ip += 4;
// allocate state for locals and stack
mp_obj_t temp_state[VM_MAX_STATE_ON_STACK];
mp_obj_t *state = &temp_state[0];
#if DETECT_VM_STACK_OVERFLOW
n_state += 1;
#endif
if (n_state > VM_MAX_STATE_ON_STACK) {
state = m_new(mp_obj_t, n_state);
}
mp_obj_t *sp = &state[0] - 1;
// allocate state for exceptions
mp_exc_stack_t exc_state[VM_MAX_EXC_STATE_ON_STACK];
mp_exc_stack_t *exc_stack = &exc_state[0];
if (n_exc_stack > VM_MAX_EXC_STATE_ON_STACK) {
exc_stack = m_new(mp_exc_stack_t, n_exc_stack);
int state_size = n_state * sizeof(mp_obj_t) + n_exc_stack * sizeof(mp_exc_stack_t);
mp_code_state *code_state;
if (state_size > VM_MAX_STATE_ON_STACK) {
code_state = m_new_obj_var(mp_code_state, byte, state_size);
} else {
code_state = alloca(sizeof(mp_code_state) + state_size);
}
mp_exc_stack_t *exc_sp = &exc_stack[0] - 1;
code_state->code_info = code;
code_state->sp = &code_state->state[0] - 1;
code_state->exc_sp = (mp_exc_stack_t*)(code_state->state + n_state) - 1;
code_state->n_state = n_state;
// init args
for (uint i = 0; i < n_args; i++) {
state[n_state - 1 - i] = args[i];
code_state->state[n_state - 1 - i] = args[i];
}
for (uint i = 0; i < n_args2; i++) {
state[n_state - 1 - n_args - i] = args2[i];
code_state->state[n_state - 1 - n_args - i] = args2[i];
}
// set rest of state to MP_OBJ_NULL
for (uint i = 0; i < n_state - n_args - n_args2; i++) {
state[i] = MP_OBJ_NULL;
code_state->state[i] = MP_OBJ_NULL;
}
// bytecode prelude: initialise closed over variables
for (uint n_local = *ip++; n_local > 0; n_local--) {
uint local_num = *ip++;
state[n_state - 1 - local_num] = mp_obj_new_cell(state[n_state - 1 - local_num]);
code_state->state[n_state - 1 - local_num] = mp_obj_new_cell(code_state->state[n_state - 1 - local_num]);
}
code_state->ip = ip;
// execute the byte code
mp_vm_return_kind_t vm_return_kind = mp_execute_bytecode2(code, &ip, &state[n_state - 1], &sp, exc_stack, &exc_sp, MP_OBJ_NULL);
mp_vm_return_kind_t vm_return_kind = mp_execute_bytecode2(code_state, MP_OBJ_NULL);
#if DETECT_VM_STACK_OVERFLOW
if (vm_return_kind == MP_VM_RETURN_NORMAL) {
if (sp < state) {
printf("VM stack underflow: " INT_FMT "\n", sp - state);
if (code_state->sp < code_state->state) {
printf("VM stack underflow: " INT_FMT "\n", code_state->sp - code_state->state);
assert(0);
}
}
// We can't check the case when an exception is returned in state[n_state - 1]
// and there are no arguments, because in this case our detection slot may have
// been overwritten by the returned exception (which is allowed).
@@ -172,13 +172,13 @@ mp_vm_return_kind_t mp_execute_bytecode(const byte *code, const mp_obj_t *args,
// Just check to see that we have at least 1 null object left in the state.
bool overflow = true;
for (uint i = 0; i < n_state - n_args - n_args2; i++) {
if (state[i] == MP_OBJ_NULL) {
if (code_state->state[i] == MP_OBJ_NULL) {
overflow = false;
break;
}
}
if (overflow) {
printf("VM stack overflow state=%p n_state+1=" UINT_FMT "\n", state, n_state);
printf("VM stack overflow state=%p n_state+1=" UINT_FMT "\n", code_state->state, n_state);
assert(0);
}
}
@@ -188,13 +188,13 @@ mp_vm_return_kind_t mp_execute_bytecode(const byte *code, const mp_obj_t *args,
switch (vm_return_kind) {
case MP_VM_RETURN_NORMAL:
// return value is in *sp
*ret = *sp;
*ret = *code_state->sp;
ret_kind = MP_VM_RETURN_NORMAL;
break;
case MP_VM_RETURN_EXCEPTION:
// return value is in state[n_state - 1]
*ret = state[n_state - 1];
*ret = code_state->state[n_state - 1];
ret_kind = MP_VM_RETURN_EXCEPTION;
break;
@@ -203,18 +203,13 @@ mp_vm_return_kind_t mp_execute_bytecode(const byte *code, const mp_obj_t *args,
assert(0);
*ret = mp_const_none;
ret_kind = MP_VM_RETURN_NORMAL;
break;
}
// free the state if it was allocated on the heap
if (n_state > VM_MAX_STATE_ON_STACK) {
m_free(state, n_state);
if (state_size > VM_MAX_STATE_ON_STACK) {
m_del_var(mp_code_state, byte, state_size, code_state);
}
// free the exception state if it was allocated on the heap
if (n_exc_stack > VM_MAX_EXC_STATE_ON_STACK) {
m_free(exc_stack, n_exc_stack);
}
return ret_kind;
}
@@ -224,10 +219,7 @@ mp_vm_return_kind_t mp_execute_bytecode(const byte *code, const mp_obj_t *args,
// MP_VM_RETURN_NORMAL, sp valid, return value in *sp
// MP_VM_RETURN_YIELD, ip, sp valid, yielded value in *sp
// MP_VM_RETURN_EXCEPTION, exception in fastn[0]
mp_vm_return_kind_t mp_execute_bytecode2(const byte *code_info, const byte **ip_in_out,
mp_obj_t *fastn, mp_obj_t **sp_in_out,
mp_exc_stack_t *exc_stack, mp_exc_stack_t **exc_sp_in_out,
volatile mp_obj_t inject_exc) {
mp_vm_return_kind_t mp_execute_bytecode2(mp_code_state *code_state, volatile mp_obj_t inject_exc) {
#if MICROPY_OPT_COMPUTED_GOTO
#include "vmentrytable.h"
#define DISPATCH() do { \
@@ -249,11 +241,15 @@ mp_vm_return_kind_t mp_execute_bytecode2(const byte *code_info, const byte **ip_
// loop and the exception handler, leading to very obscure bugs.
#define RAISE(o) do { nlr_pop(); nlr.ret_val = o; goto exception_handler; } while(0)
// Pointers which are constant for particular invocation of mp_execute_bytecode2()
mp_obj_t *const fastn = &code_state->state[code_state->n_state - 1];
mp_exc_stack_t *const exc_stack = (mp_exc_stack_t*)(code_state->state + code_state->n_state);
// variables that are visible to the exception handler (declared volatile)
volatile bool currently_in_except_block = MP_TAGPTR_TAG(*exc_sp_in_out); // 0 or 1, to detect nested exceptions
mp_exc_stack_t *volatile exc_sp = MP_TAGPTR_PTR(*exc_sp_in_out); // stack grows up, exc_sp points to top of stack
const byte *volatile save_ip = *ip_in_out; // this is so we can access ip in the exception handler without making ip volatile (which means the compiler can't keep it in a register in the main loop)
mp_obj_t *volatile save_sp = *sp_in_out; // this is so we can access sp in the exception handler when needed
volatile bool currently_in_except_block = MP_TAGPTR_TAG(code_state->exc_sp); // 0 or 1, to detect nested exceptions
mp_exc_stack_t *volatile exc_sp = MP_TAGPTR_PTR(code_state->exc_sp); // stack grows up, exc_sp points to top of stack
const byte *volatile save_ip = code_state->ip; // this is so we can access ip in the exception handler without making ip volatile (which means the compiler can't keep it in a register in the main loop)
mp_obj_t *volatile save_sp = code_state->sp; // this is so we can access sp in the exception handler when needed
// outer exception handling loop
for (;;) {
@@ -261,8 +257,8 @@ mp_vm_return_kind_t mp_execute_bytecode2(const byte *code_info, const byte **ip_
outer_dispatch_loop:
if (nlr_push(&nlr) == 0) {
// local variables that are not visible to the exception handler
const byte *ip = *ip_in_out;
mp_obj_t *sp = *sp_in_out;
const byte *ip = code_state->ip;
mp_obj_t *sp = code_state->sp;
machine_uint_t unum;
mp_obj_t obj_shared;
@@ -905,7 +901,7 @@ unwind_return:
exc_sp--;
}
nlr_pop();
*sp_in_out = sp;
code_state->sp = sp;
assert(exc_sp == exc_stack - 1);
return MP_VM_RETURN_NORMAL;
@@ -936,9 +932,9 @@ unwind_return:
ENTRY(MP_BC_YIELD_VALUE):
yield:
nlr_pop();
*ip_in_out = ip;
*sp_in_out = sp;
*exc_sp_in_out = MP_TAGPTR_MAKE(exc_sp, currently_in_except_block);
code_state->ip = ip;
code_state->sp = sp;
code_state->exc_sp = MP_TAGPTR_MAKE(exc_sp, currently_in_except_block);
return MP_VM_RETURN_YIELD;
ENTRY(MP_BC_YIELD_FROM): {
@@ -1032,8 +1028,8 @@ exception_handler:
const byte *ip = save_ip + 1;
machine_uint_t unum;
DECODE_ULABEL; // the jump offset if iteration finishes; for labels are always forward
*ip_in_out = ip + unum; // jump to after for-block
*sp_in_out = save_sp - 1; // pop the exhausted iterator
code_state->ip = ip + unum; // jump to after for-block
code_state->sp = save_sp - 1; // pop the exhausted iterator
goto outer_dispatch_loop; // continue with dispatch loop
}
@@ -1042,6 +1038,7 @@ exception_handler:
// But consider how to handle nested exceptions.
// TODO need a better way of not adding traceback to constant objects (right now, just GeneratorExit_obj and MemoryError_obj)
if (mp_obj_is_exception_instance(nlr.ret_val) && nlr.ret_val != &mp_const_GeneratorExit_obj && nlr.ret_val != &mp_const_MemoryError_obj) {
const byte *code_info = code_state->code_info;
machine_uint_t code_info_size = code_info[0] | (code_info[1] << 8) | (code_info[2] << 16) | (code_info[3] << 24);
qstr source_file = code_info[4] | (code_info[5] << 8) | (code_info[6] << 16) | (code_info[7] << 24);
qstr block_name = code_info[8] | (code_info[9] << 8) | (code_info[10] << 16) | (code_info[11] << 24);
@@ -1072,7 +1069,7 @@ exception_handler:
currently_in_except_block = 1;
// catch exception and pass to byte code
*ip_in_out = exc_sp->handler;
code_state->ip = exc_sp->handler;
mp_obj_t *sp = MP_TAGPTR_PTR(exc_sp->val_sp);
// save this exception in the stack so it can be used in a reraise, if needed
exc_sp->prev_exc = nlr.ret_val;
@@ -1080,7 +1077,7 @@ exception_handler:
PUSH(mp_const_none);
PUSH(nlr.ret_val);
PUSH(mp_obj_get_type(nlr.ret_val));
*sp_in_out = sp;
code_state->sp = sp;
} else {
// propagate exception to higher level