/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2025 OpenMV LLC. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ // This file is never compiled standalone, it's included directly from // extmod/machine_uart.c via MICROPY_PY_MACHINE_UART_INCLUDEFILE. #include "py/mphal.h" #include "py/mperrno.h" #include "mpuart.h" #define DEFAULT_UART_BAUDRATE (115200) #define DEFAULT_UART_BITS (8) #define DEFAULT_UART_PARITY (MP_ROM_NONE) #define DEFAULT_UART_STOP (1) #define DEFAULT_UART_RX_BUFFER_SIZE (256) typedef struct _machine_uart_obj_t { mp_obj_base_t base; unsigned int uart_id; uint32_t baudrate; UART_DATA_BITS bits; UART_PARITY parity; UART_STOP_BITS stop; mp_hal_pin_obj_t tx; mp_hal_pin_obj_t rx; mp_hal_pin_obj_t rts; mp_hal_pin_obj_t cts; uint32_t flow; uint16_t timeout; // timeout waiting for first char (in ms) uint16_t timeout_char; // timeout waiting between chars (in ms) uint8_t *rx_ringbuf_array; ringbuf_t rx_ringbuf; uint32_t irq_flags; uint32_t irq_trigger; mp_irq_obj_t irq_obj; } machine_uart_obj_t; typedef struct _machine_uart_default_pins_t { mp_hal_pin_obj_t tx; mp_hal_pin_obj_t rx; mp_hal_pin_obj_t rts; mp_hal_pin_obj_t cts; } machine_uart_default_pins_t; static const machine_uart_default_pins_t machine_uart_default_pins[UART_MAX] = { [0] = { #if defined(MICROPY_HW_UART0_TX) && defined(MICROPY_HW_UART0_RX) MICROPY_HW_UART0_TX, MICROPY_HW_UART0_RX, #else NULL, NULL, #endif #if defined(MICROPY_HW_UART0_RTS) && defined(MICROPY_HW_UART0_CTS) MICROPY_HW_UART0_RTS, MICROPY_HW_UART0_CTS, #else NULL, NULL, #endif }, [1] = { #if defined(MICROPY_HW_UART1_TX) && defined(MICROPY_HW_UART1_RX) MICROPY_HW_UART1_TX, MICROPY_HW_UART1_RX, #else NULL, NULL, #endif #if defined(MICROPY_HW_UART1_RTS) && defined(MICROPY_HW_UART1_CTS) MICROPY_HW_UART1_RTS, MICROPY_HW_UART1_CTS, #else NULL, NULL, #endif }, [2] = { #if defined(MICROPY_HW_UART2_TX) && defined(MICROPY_HW_UART2_RX) MICROPY_HW_UART2_TX, MICROPY_HW_UART2_RX, #else NULL, NULL, #endif #if defined(MICROPY_HW_UART2_RTS) && defined(MICROPY_HW_UART2_CTS) MICROPY_HW_UART2_RTS, MICROPY_HW_UART2_CTS, #else NULL, NULL, #endif }, [3] = { #if defined(MICROPY_HW_UART3_TX) && defined(MICROPY_HW_UART3_RX) MICROPY_HW_UART3_TX, MICROPY_HW_UART3_RX, #else NULL, NULL, #endif #if defined(MICROPY_HW_UART3_RTS) && defined(MICROPY_HW_UART3_CTS) MICROPY_HW_UART3_RTS, MICROPY_HW_UART3_CTS, #else NULL, NULL, #endif }, [4] = { #if defined(MICROPY_HW_UART4_TX) && defined(MICROPY_HW_UART4_RX) MICROPY_HW_UART4_TX, MICROPY_HW_UART4_RX, #else NULL, NULL, #endif #if defined(MICROPY_HW_UART4_RTS) && defined(MICROPY_HW_UART4_CTS) MICROPY_HW_UART4_RTS, MICROPY_HW_UART4_CTS, #else NULL, NULL, #endif }, [5] = { #if defined(MICROPY_HW_UART5_TX) && defined(MICROPY_HW_UART5_RX) MICROPY_HW_UART5_TX, MICROPY_HW_UART5_RX, #else NULL, NULL, #endif #if defined(MICROPY_HW_UART5_RTS) && defined(MICROPY_HW_UART5_CTS) MICROPY_HW_UART5_RTS, MICROPY_HW_UART5_CTS, #else NULL, NULL, #endif }, [6] = { #if defined(MICROPY_HW_UART6_TX) && defined(MICROPY_HW_UART6_RX) MICROPY_HW_UART6_TX, MICROPY_HW_UART6_RX, #else NULL, NULL, #endif #if defined(MICROPY_HW_UART6_RTS) && defined(MICROPY_HW_UART6_CTS) MICROPY_HW_UART6_RTS, MICROPY_HW_UART6_CTS, #else NULL, NULL, #endif }, [7] = { #if defined(MICROPY_HW_UART7_TX) && defined(MICROPY_HW_UART7_RX) MICROPY_HW_UART7_TX, MICROPY_HW_UART7_RX, #else NULL, NULL, #endif #if defined(MICROPY_HW_UART7_RTS) && defined(MICROPY_HW_UART7_CTS) MICROPY_HW_UART7_RTS, MICROPY_HW_UART7_CTS, #else NULL, NULL, #endif }, }; static void machine_uart_irq_callback(unsigned int uart_id, unsigned int trigger); MP_REGISTER_ROOT_POINTER(struct _machine_uart_obj_t *machine_uart_obj_all[UART_MAX]); /******************************************************************************/ // MicroPython bindings for UART #define MICROPY_PY_MACHINE_UART_CLASS_CONSTANTS \ { MP_ROM_QSTR(MP_QSTR___del__), MP_ROM_PTR(&machine_uart___del___obj) }, \ { MP_ROM_QSTR(MP_QSTR_RTS), MP_ROM_INT(UART_FLOW_CONTROL_RTS) }, \ { MP_ROM_QSTR(MP_QSTR_CTS), MP_ROM_INT(UART_FLOW_CONTROL_CTS) }, \ { MP_ROM_QSTR(MP_QSTR_IRQ_RX), MP_ROM_INT(MP_UART_IRQ_RX) }, \ { MP_ROM_QSTR(MP_QSTR_IRQ_RXIDLE), MP_ROM_INT(MP_UART_IRQ_RXIDLE) }, \ { MP_ROM_QSTR(MP_QSTR_IRQ_TXIDLE), MP_ROM_INT(MP_UART_IRQ_TXIDLE) }, \ #define GET_PIN_WITH_DEFAULT(uart_id_, pin_name, pin_selection) \ (pin_selection == mp_const_none ? machine_uart_default_pins[uart_id_].pin_name : mp_hal_get_pin_obj(pin_selection)) static void machine_uart_set_bits(machine_uart_obj_t *self, mp_int_t bits) { if (!(5 <= bits && bits <= 8)) { mp_raise_ValueError(MP_ERROR_TEXT("invalid bits")); } self->bits = UART_DATA_BITS_5 + (bits - 5); } static void machine_uart_set_parity(machine_uart_obj_t *self, mp_obj_t parity) { if (parity == mp_const_none) { self->parity = UART_PARITY_NONE; } else if (mp_obj_get_int(parity) & 1) { self->parity = UART_PARITY_ODD; } else { self->parity = UART_PARITY_EVEN; } } static void machine_uart_set_stop(machine_uart_obj_t *self, mp_int_t stop) { if (!(1 <= stop && stop <= 2)) { mp_raise_ValueError(MP_ERROR_TEXT("invalid stop")); } self->stop = UART_STOP_BITS_1 + (stop - 1); } static void machine_uart_set_timeout_char(machine_uart_obj_t *self, mp_int_t timeout_char) { // Make sure timeout_char is at least as long as a whole character (13 bits to be safe). uint32_t min_timeout_char = 13000 / self->baudrate + 1; self->timeout_char = MAX(min_timeout_char, timeout_char); } static void mp_machine_uart_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { static const char *parity_name[] = {[UART_PARITY_NONE] = "None", [UART_PARITY_EVEN] = "0", [UART_PARITY_ODD] = "1"}; machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in); unsigned int bits = 5 + (self->bits - UART_DATA_BITS_5); const char *parity = parity_name[self->parity]; unsigned int stop = 1 + (self->stop - UART_STOP_BITS_1); mp_printf(print, "UART(%u, baudrate=%u, bits=%u, parity=%s, stop=%u, " "tx=%q, rx=%q, ", self->uart_id, self->baudrate, bits, parity, stop, mp_hal_pin_name(self->tx), mp_hal_pin_name(self->rx)); if (self->rts != NULL) { mp_printf(print, "rts=%q, ", mp_hal_pin_name(self->rts)); } if (self->cts != NULL) { mp_printf(print, "cts=%q, ", mp_hal_pin_name(self->cts)); } mp_printf(print, "flow=", self->rts); if (self->flow == 0) { mp_printf(print, "0"); } else { if (self->flow & UART_FLOW_CONTROL_RTS) { mp_printf(print, "RTS"); if (self->flow & UART_FLOW_CONTROL_CTS) { mp_printf(print, "|"); } } if (self->flow & UART_FLOW_CONTROL_CTS) { mp_printf(print, "CTS"); } } mp_printf(print, ", timeout=%u, timeout_char=%u, rxbuf=%u)", self->timeout, self->timeout_char, self->rx_ringbuf.size - 1); } static mp_obj_t mp_machine_uart_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) { enum { ARG_id, ARG_baudrate, ARG_bits, ARG_parity, ARG_stop, ARG_tx, ARG_rx, ARG_rts, ARG_cts, ARG_flow, ARG_timeout, ARG_timeout_char, ARG_rxbuf, }; static const mp_arg_t allowed_args[] = { #if !defined(MICROPY_HW_DEFAULT_UART_ID) { MP_QSTR_id, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = -1} }, #else { MP_QSTR_id, MP_ARG_INT, {.u_int = MICROPY_HW_DEFAULT_UART_ID} }, #endif { MP_QSTR_baudrate, MP_ARG_INT, {.u_int = DEFAULT_UART_BAUDRATE} }, { MP_QSTR_bits, MP_ARG_INT, {.u_int = DEFAULT_UART_BITS} }, { MP_QSTR_parity, MP_ARG_OBJ, {.u_rom_obj = DEFAULT_UART_PARITY} }, { MP_QSTR_stop, MP_ARG_INT, {.u_int = DEFAULT_UART_STOP} }, { MP_QSTR_tx, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} }, { MP_QSTR_rx, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} }, { MP_QSTR_rts, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} }, { MP_QSTR_cts, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} }, { MP_QSTR_flow, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_timeout_char, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_rxbuf, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = DEFAULT_UART_RX_BUFFER_SIZE} }, }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // Get UART bus. int uart_id = args[ARG_id].u_int; if (uart_id < 0 || uart_id >= UART_MAX) { mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("UART(%d) doesn't exist"), uart_id); } machine_uart_obj_t *self; bool need_init; if (MP_STATE_PORT(machine_uart_obj_all)[uart_id] == NULL) { // Create new UART object. self = mp_obj_malloc_with_finaliser(machine_uart_obj_t, &machine_uart_type); self->uart_id = uart_id; need_init = true; } else { // Reference existing UART object. self = MP_STATE_PORT(machine_uart_obj_all)[uart_id]; need_init = n_args > 1 || n_kw > 0; } if (need_init) { // Set the UART parameters. self->baudrate = args[ARG_baudrate].u_int; machine_uart_set_bits(self, args[ARG_bits].u_int); machine_uart_set_parity(self, args[ARG_parity].u_obj); machine_uart_set_stop(self, args[ARG_stop].u_int); self->tx = GET_PIN_WITH_DEFAULT(self->uart_id, tx, args[ARG_tx].u_obj); self->rx = GET_PIN_WITH_DEFAULT(self->uart_id, rx, args[ARG_rx].u_obj); self->rts = GET_PIN_WITH_DEFAULT(self->uart_id, rts, args[ARG_rts].u_obj); self->cts = GET_PIN_WITH_DEFAULT(self->uart_id, cts, args[ARG_cts].u_obj); self->flow = args[ARG_flow].u_int; self->timeout = args[ARG_timeout].u_int; uint32_t min_timeout_char = 13000 / self->baudrate + 1; // 13 bits to be safe self->timeout = MAX(min_timeout_char, args[ARG_timeout_char].u_int); // Check TX/RX pins are given. if (self->tx == NULL) { mp_raise_ValueError(MP_ERROR_TEXT("tx not given")); } if (self->rx == NULL) { mp_raise_ValueError(MP_ERROR_TEXT("rx not given")); } // Configure flow control. mp_hal_pin_obj_t rts = NULL; mp_hal_pin_obj_t cts = NULL; if (self->flow & UART_FLOW_CONTROL_RTS) { if (self->rts == NULL) { mp_raise_ValueError(MP_ERROR_TEXT("rts not given")); } rts = self->rts; } if (self->flow & UART_FLOW_CONTROL_CTS) { if (self->cts == NULL) { mp_raise_ValueError(MP_ERROR_TEXT("cts not given")); } cts = self->cts; } // Allocate the RX buffer. size_t rxbuf_len = args[ARG_rxbuf].u_int; self->rx_ringbuf_array = m_new(uint8_t, rxbuf_len + 1); self->rx_ringbuf.buf = self->rx_ringbuf_array; self->rx_ringbuf.size = rxbuf_len + 1; self->rx_ringbuf.iput = 0; self->rx_ringbuf.iget = 0; // Reset the IRQ state self->irq_flags = 0; self->irq_trigger = 0; self->irq_obj.base.type = NULL; // Initialize the UART hardware. mp_uart_init(self->uart_id, self->baudrate, self->bits, self->parity, self->stop, self->tx, self->rx, &self->rx_ringbuf); mp_uart_set_flow(self->uart_id, rts, cts); } MP_STATE_PORT(machine_uart_obj_all)[uart_id] = self; return MP_OBJ_FROM_PTR(self); } static void mp_machine_uart_init_helper(machine_uart_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_baudrate, ARG_bits, ARG_parity, ARG_stop, ARG_timeout, ARG_timeout_char, }; static const mp_arg_t allowed_args[] = { { MP_QSTR_baudrate, MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_bits, MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_parity, MP_ARG_OBJ, {.u_rom_obj = MP_ROM_INT(-1)} }, { MP_QSTR_stop, MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_timeout_char, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} }, }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); bool change_baudrate = false; bool change_bits_parity_stop = false; // Change baudrate if requested. if (args[ARG_baudrate].u_int > 0) { self->baudrate = args[ARG_baudrate].u_int; change_baudrate = true; } // Change data bits if requested. if (args[ARG_bits].u_int > 0) { machine_uart_set_bits(self, args[ARG_bits].u_int); change_bits_parity_stop = true; } // Change parity if requested. if (args[ARG_parity].u_obj != MP_OBJ_NEW_SMALL_INT(-1)) { machine_uart_set_parity(self, args[ARG_parity].u_obj); change_bits_parity_stop = true; } // Change stop bits if requested. if (args[ARG_stop].u_int > 0) { machine_uart_set_stop(self, args[ARG_stop].u_int); change_bits_parity_stop = true; } // Change timeout if requested. if (args[ARG_timeout].u_int >= 0) { self->timeout = args[ARG_timeout].u_int; } // Change timeout_char if requested. if (args[ARG_timeout_char].u_int >= 0) { machine_uart_set_timeout_char(self, args[ARG_timeout_char].u_int); } // Reconfigure the hardware parameters that have changed. if (change_baudrate) { mp_uart_set_baudrate(self->uart_id, self->baudrate); } if (change_bits_parity_stop) { mp_uart_set_bits_parity_stop(self->uart_id, self->bits, self->parity, self->stop); } } static mp_obj_t machine_uart___del__(mp_obj_t self_in) { machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_uart_deinit(self->uart_id); MP_STATE_PORT(machine_uart_obj_all)[self->uart_id] = NULL; return mp_const_none; } static MP_DEFINE_CONST_FUN_OBJ_1(machine_uart___del___obj, machine_uart___del__); // Turn off the UART bus. static void mp_machine_uart_deinit(machine_uart_obj_t *self) { mp_uart_deinit(self->uart_id); } // Return number of characters waiting. static mp_int_t mp_machine_uart_any(machine_uart_obj_t *self) { return mp_uart_rx_any(self->uart_id); } // Since uart.write() waits up to the last byte, uart.txdone() always returns True. static bool mp_machine_uart_txdone(machine_uart_obj_t *self) { return !!mp_uart_tx_any(self->uart_id); } // Change the trigger for the UART IRQ. static mp_uint_t machine_uart_irq_trigger(mp_obj_t self_in, mp_uint_t new_trigger) { machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in); self->irq_trigger = new_trigger; mp_uart_set_irq_callback(self->uart_id, self->irq_trigger, machine_uart_irq_callback); return 0; } // Get UART IRQ state. static mp_uint_t machine_uart_irq_info(mp_obj_t self_in, mp_uint_t info_type) { machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in); if (info_type == MP_IRQ_INFO_FLAGS) { return self->irq_flags; } else if (info_type == MP_IRQ_INFO_TRIGGERS) { return self->irq_trigger; } return 0; } static const mp_irq_methods_t machine_uart_irq_methods = { .trigger = machine_uart_irq_trigger, .info = machine_uart_irq_info, }; // Retrieve and configure the UART IRQ object. static mp_irq_obj_t *mp_machine_uart_irq(machine_uart_obj_t *self, bool any_args, mp_arg_val_t *args) { if (self->irq_obj.base.type == NULL) { mp_irq_init(&self->irq_obj, &machine_uart_irq_methods, MP_OBJ_FROM_PTR(self)); } if (any_args) { self->irq_obj.handler = args[MP_IRQ_ARG_INIT_handler].u_obj; self->irq_obj.ishard = args[MP_IRQ_ARG_INIT_hard].u_bool; machine_uart_irq_trigger(MP_OBJ_FROM_PTR(self), args[MP_IRQ_ARG_INIT_trigger].u_int); } return &self->irq_obj; } static mp_uint_t mp_machine_uart_read(mp_obj_t self_in, void *buf_in, mp_uint_t size, int *errcode) { machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_uint_t start = mp_hal_ticks_ms(); mp_uint_t timeout = self->timeout; uint8_t *dest = buf_in; for (size_t i = 0; i < size; i++) { // Wait for the first/next character while (!mp_uart_rx_any(self->uart_id)) { mp_uint_t elapsed = mp_hal_ticks_ms() - start; if (elapsed > timeout) { // timed out if (i <= 0) { *errcode = MP_EAGAIN; return MP_STREAM_ERROR; } else { return i; } } mp_event_handle_nowait(); } *dest++ = mp_uart_rx_char(self->uart_id); start = mp_hal_ticks_ms(); // Inter-character timeout timeout = self->timeout_char; } return size; } static mp_uint_t mp_machine_uart_write(mp_obj_t self_in, const void *buf_in, mp_uint_t size, int *errcode) { machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_uart_tx_data(self->uart_id, buf_in, size); return size; } static mp_uint_t mp_machine_uart_ioctl(mp_obj_t self_in, mp_uint_t request, uintptr_t arg, int *errcode) { machine_uart_obj_t *self = self_in; mp_uint_t ret; if (request == MP_STREAM_POLL) { uintptr_t flags = arg; ret = 0; if ((flags & MP_STREAM_POLL_RD) && mp_uart_rx_any(self->uart_id)) { ret |= MP_STREAM_POLL_RD; } if ((flags & MP_STREAM_POLL_WR)) { ret |= MP_STREAM_POLL_WR; } } else if (request == MP_STREAM_FLUSH) { uint32_t t0 = mp_hal_ticks_ms(); const uint32_t timeout_ms = 100 + 10 * mp_uart_tx_any(self->uart_id); while (mp_uart_tx_any(self->uart_id)) { if (mp_hal_ticks_ms() - t0 > timeout_ms) { *errcode = MP_ETIMEDOUT; ret = MP_STREAM_ERROR; } mp_event_handle_nowait(); } return 0; } else { *errcode = MP_EINVAL; ret = MP_STREAM_ERROR; } return ret; } static void machine_uart_irq_callback(unsigned int uart_id, unsigned int trigger) { machine_uart_obj_t *self = MP_STATE_PORT(machine_uart_obj_all)[uart_id]; self->irq_flags = trigger; if (self->irq_obj.base.type != NULL && (self->irq_flags & self->irq_trigger)) { mp_irq_handler(&self->irq_obj); } }