/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2024-2025 OpenMV LLC. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "py/runtime.h" #include "py/mphal.h" #include "py/mperrno.h" #include "extmod/modmachine.h" #include "shared/timeutils/timeutils.h" #include "rtc.h" #include "sys_ctrl_rtc.h" // The LPRTC (low-power real-time counter) is a 32-bit counter with a 16-bit prescaler, // and usually clocked by a 32768Hz clock source. To get a large date range of around // 136 years, the prescaler is set to 32768 and so the counter clocks at 1Hz. Then the // counter counts the number of seconds since the 1970 Epoch. The prescaler is used to // get the subseconds which are then converted to microseconds. // // The combined counter+prescaler counts starting at 0 from the year 1970 up to the year // 2106, with a resolution of 30.52 microseconds. #define LPRTC_PRESCALER_SETTING (32768) typedef struct _machine_rtc_obj_t { mp_obj_base_t base; LPRTC_Type *rtc; } machine_rtc_obj_t; // Singleton RTC object. static const machine_rtc_obj_t machine_rtc = {{&machine_rtc_type}, (LPRTC_Type *)LPRTC_BASE}; void LPRTC_IRQHandler(void) { lprtc_interrupt_ack(machine_rtc.rtc); lprtc_interrupt_disable(machine_rtc.rtc); } // Returns the number of seconds and microseconds since the Epoch. uint32_t mp_hal_time_get(uint32_t *microseconds) { uint32_t atomic_state = MICROPY_BEGIN_ATOMIC_SECTION(); uint32_t count = lprtc_get_count(machine_rtc.rtc); if (microseconds == NULL) { MICROPY_END_ATOMIC_SECTION(atomic_state); return count; } uint32_t prescaler = machine_rtc.rtc->LPRTC_CPCVR; uint32_t count2 = lprtc_get_count(machine_rtc.rtc); if (count != count2) { // The counter incremented during sampling of the prescaler, so resample the prescaler. prescaler = machine_rtc.rtc->LPRTC_CPCVR; } MICROPY_END_ATOMIC_SECTION(atomic_state); // Compute the microseconds from the up-counting prescaler value. MP_STATIC_ASSERT(LPRTC_PRESCALER_SETTING == 32768); *microseconds = 15625UL * prescaler / 512UL; return count2; } static mp_obj_t machine_rtc_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { const machine_rtc_obj_t *self = &machine_rtc; // Check arguments. mp_arg_check_num(n_args, n_kw, 0, 0, false); lprtc_interrupt_disable(self->rtc); lprtc_interrupt_unmask(self->rtc); // Initialise the LPRTC if it's not already enabled. if (!((VBAT->RTC_CLK_EN & RTC_CLK_ENABLE) && (self->rtc->LPRTC_CCR & CCR_LPRTC_EN) && (self->rtc->LPRTC_CPSR == LPRTC_PRESCALER_SETTING))) { enable_lprtc_clk(); self->rtc->LPRTC_CCR = 0; lprtc_load_prescaler(self->rtc, LPRTC_PRESCALER_SETTING); lprtc_load_count(self->rtc, 0); self->rtc->LPRTC_CCR = CCR_LPRTC_PSCLR_EN | CCR_LPRTC_EN; } NVIC_SetPriority(LPRTC_IRQ_IRQn, IRQ_PRI_RTC); NVIC_ClearPendingIRQ(LPRTC_IRQ_IRQn); NVIC_EnableIRQ(LPRTC_IRQ_IRQn); return MP_OBJ_FROM_PTR(self); } static mp_obj_t machine_rtc_datetime(mp_uint_t n_args, const mp_obj_t *args) { if (n_args == 1) { // Get datetime. uint32_t microseconds; mp_timestamp_t s = mp_hal_time_get(µseconds); timeutils_struct_time_t tm; timeutils_seconds_since_epoch_to_struct_time(s, &tm); mp_obj_t tuple[8] = { mp_obj_new_int(tm.tm_year), mp_obj_new_int(tm.tm_mon), mp_obj_new_int(tm.tm_mday), mp_obj_new_int(tm.tm_wday), mp_obj_new_int(tm.tm_hour), mp_obj_new_int(tm.tm_min), mp_obj_new_int(tm.tm_sec), mp_obj_new_int(microseconds), }; return mp_obj_new_tuple(8, tuple); } else { // Set datetime. mp_obj_t *items; mp_obj_get_array_fixed_n(args[1], 8, &items); timeutils_struct_time_t tm = { .tm_year = mp_obj_get_int(items[0]), .tm_mon = mp_obj_get_int(items[1]), .tm_mday = mp_obj_get_int(items[2]), .tm_hour = mp_obj_get_int(items[4]), .tm_min = mp_obj_get_int(items[5]), .tm_sec = mp_obj_get_int(items[6]), }; mp_timestamp_t s = timeutils_seconds_since_epoch(tm.tm_year, tm.tm_mon, tm.tm_mday, tm.tm_hour, tm.tm_min, tm.tm_sec); // Disable then re-enable the LPRTC so that the prescaler counter resets to 0. machine_rtc.rtc->LPRTC_CCR = 0; lprtc_load_count(machine_rtc.rtc, s); machine_rtc.rtc->LPRTC_CCR = CCR_LPRTC_PSCLR_EN | CCR_LPRTC_EN; } return mp_const_none; } static MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_rtc_datetime_obj, 1, 2, machine_rtc_datetime); static mp_obj_t machine_rtc_alarm(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_id, ARG_time, ARG_repeat }; static const mp_arg_t allowed_args[] = { { MP_QSTR_id, MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_time, MP_ARG_OBJ, {.u_obj = mp_const_none} }, { MP_QSTR_repeat, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} }, }; machine_rtc_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]); // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(args), allowed_args, args); if (mp_obj_is_int(args[ARG_time].u_obj)) { uint32_t seconds = mp_obj_get_int(args[1].u_obj) / 1000; // Make sure we are guaranteed an interrupt: // - if seconds = 0 it won't fire // - if seconds = 1 it may miss if the counter rolls over just after it's read // - if seconds >= 2 then it will always fire (when read/written close enough) seconds = MAX(2, seconds); // Configure the counter match as atomically as possible. uint32_t atomic_state = MICROPY_BEGIN_ATOMIC_SECTION(); lprtc_interrupt_ack(self->rtc); lprtc_load_counter_match_register(self->rtc, lprtc_get_count(self->rtc) + seconds); lprtc_interrupt_enable(self->rtc); MICROPY_END_ATOMIC_SECTION(atomic_state); } else { mp_raise_ValueError(MP_ERROR_TEXT("invalid argument(s)")); } return mp_const_none; } static MP_DEFINE_CONST_FUN_OBJ_KW(machine_rtc_alarm_obj, 1, machine_rtc_alarm); static const mp_rom_map_elem_t machine_rtc_locals_dict_table[] = { { MP_ROM_QSTR(MP_QSTR_datetime), MP_ROM_PTR(&machine_rtc_datetime_obj) }, { MP_ROM_QSTR(MP_QSTR_alarm), MP_ROM_PTR(&machine_rtc_alarm_obj) }, }; static MP_DEFINE_CONST_DICT(machine_rtc_locals_dict, machine_rtc_locals_dict_table); MP_DEFINE_CONST_OBJ_TYPE( machine_rtc_type, MP_QSTR_RTC, MP_TYPE_FLAG_NONE, make_new, machine_rtc_make_new, locals_dict, &machine_rtc_locals_dict );