/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2022 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include "py/mpconfig.h" #include "py/mpthread.h" #include "pendsv.h" #include "hardware/irq.h" #if PICO_RP2040 #include "RP2040.h" #elif PICO_RP2350 && PICO_ARM #include "RP2350.h" #elif PICO_RISCV #include "pico/aon_timer.h" #endif #if MICROPY_PY_NETWORK_CYW43 #include "lib/cyw43-driver/src/cyw43_stats.h" #endif static pendsv_dispatch_t pendsv_dispatch_table[PENDSV_DISPATCH_NUM_SLOTS]; static inline void pendsv_resume_run_dispatch(void); // PendSV IRQ priority, to run system-level tasks that preempt the main thread. #define IRQ_PRI_PENDSV PICO_LOWEST_IRQ_PRIORITY void PendSV_Handler(void); #if MICROPY_PY_THREAD // Important to use a 'nowait' mutex here as softtimer updates PendSV from the // loop of mp_wfe_or_timeout(), where we don't want the CPU event bit to be set. static mp_thread_recursive_mutex_t pendsv_mutex; // Called from CPU0 during boot, but may be called later when CPU1 wakes up void pendsv_init(void) { if (get_core_num() == 0) { mp_thread_recursive_mutex_init(&pendsv_mutex); } #if !defined(__riscv) NVIC_SetPriority(PendSV_IRQn, IRQ_PRI_PENDSV); #endif } void pendsv_suspend(void) { // Recursive Mutex here as either core may call pendsv_suspend() and expect // both mutual exclusion (other core can't enter pendsv_suspend() at the // same time), and that no PendSV handler will run. mp_thread_recursive_mutex_lock(&pendsv_mutex, 1); } void pendsv_resume(void) { mp_thread_recursive_mutex_unlock(&pendsv_mutex); pendsv_resume_run_dispatch(); } static inline int pendsv_suspend_count(void) { return pendsv_mutex.mutex.enter_count; } #else // Without threads we don't include any pico-sdk mutex in the build, // but also we don't need to worry about cross-thread contention (or // races with interrupts that update this counter). static int pendsv_lock; void pendsv_init(void) { } void pendsv_suspend(void) { pendsv_lock++; } void pendsv_resume(void) { assert(pendsv_lock > 0); pendsv_lock--; pendsv_resume_run_dispatch(); } static inline int pendsv_suspend_count(void) { return pendsv_lock; } #endif bool pendsv_is_pending(size_t slot) { return pendsv_dispatch_table[slot] != NULL; } static inline void pendsv_resume_run_dispatch(void) { // Run pendsv if needed. Find an entry with a dispatch and call pendsv dispatch // with it. If pendsv runs it will service all slots. int count = PENDSV_DISPATCH_NUM_SLOTS; while (count--) { if (pendsv_dispatch_table[count]) { pendsv_schedule_dispatch(count, pendsv_dispatch_table[count]); break; } } } void pendsv_schedule_dispatch(size_t slot, pendsv_dispatch_t f) { pendsv_dispatch_table[slot] = f; // There is a race here where other core calls pendsv_suspend() before ISR // can execute so this check fails, but dispatch will happen later when // other core calls pendsv_resume(). if (pendsv_suspend_count() == 0) { #if PICO_ARM // Note this register is part of each CPU core, so setting it on CPUx // will set the IRQ and run PendSV_Handler on CPUx only. SCB->ICSR = SCB_ICSR_PENDSVSET_Msk; #elif PICO_RISCV struct timespec ts; aon_timer_get_time(&ts); aon_timer_enable_alarm(&ts, PendSV_Handler, false); #endif } else { #if MICROPY_PY_NETWORK_CYW43 CYW43_STAT_INC(PENDSV_DISABLED_COUNT); #endif } } // PendSV interrupt handler to perform background processing. // // Handler can execute on either CPU if MICROPY_PY_THREAD is set (no code on // CPU1 calls pendsv_schedule_dispatch(), but CPU1 can call pendsv_resume() // which will trigger it). void PendSV_Handler(void) { #if MICROPY_PY_THREAD if (!mp_thread_recursive_mutex_lock(&pendsv_mutex, 0)) { // Failure here means other core holds pendsv_mutex. ISR will // run again after that core calls pendsv_resume(). return; } // This core should not already have locked pendsv_mutex assert(pendsv_mutex.mutex.enter_count == 1); #else assert(pendsv_suspend_count() == 0); #endif #if MICROPY_PY_NETWORK_CYW43 CYW43_STAT_INC(PENDSV_RUN_COUNT); #endif for (size_t i = 0; i < PENDSV_DISPATCH_NUM_SLOTS; ++i) { if (pendsv_dispatch_table[i] != NULL) { pendsv_dispatch_t f = pendsv_dispatch_table[i]; pendsv_dispatch_table[i] = NULL; f(); } } #if MICROPY_PY_THREAD mp_thread_recursive_mutex_unlock(&pendsv_mutex); // Check if a dispatch occurred while the interrupt was being serviced pendsv_resume_run_dispatch(); #endif }