/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2024 OpenMV LLC. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ // This file is never compiled standalone, it's included directly from // extmod/machine_adc.c via MICROPY_PY_MACHINE_ADC_INCLUDEFILE. #include "py/mphal.h" #include "analog_config.h" #include "adc.h" #include "sys_ctrl_adc.h" #define ADC_CHANNEL_TEMP_SENSOR (6) #define ADC_CHANNEL_INT_VREF (7) static const uint8_t adc_instance_table[4] = { ADC_INSTANCE_ADC12_0, ADC_INSTANCE_ADC12_1, ADC_INSTANCE_ADC12_2, ADC_INSTANCE_ADC24_0, }; static ADC_Type *const adc_regs_table[4] = { (ADC_Type *)ADC120_BASE, (ADC_Type *)ADC121_BASE, (ADC_Type *)ADC122_BASE, (ADC_Type *)ADC24_BASE, }; static bool adc_inited[4]; static conv_info_t adc_conv_info_table[4]; static void adc_nvic_config(unsigned int irq) { NVIC_ClearPendingIRQ(irq); NVIC_SetPriority(irq, IRQ_PRI_ADC); NVIC_EnableIRQ(irq); } static void adc_init(uint8_t adc_periph) { if (adc_inited[adc_periph]) { return; } ADC_Type *regs = adc_regs_table[adc_periph]; uint8_t adc_instance = adc_instance_table[adc_periph]; conv_info_t *conv_info = &adc_conv_info_table[adc_periph]; adc_set_clk_control(adc_instance, true); enable_cmp_periph_clk(); analog_config_vbat_reg2(); analog_config_cmp_reg2(); adc_set_differential_ctrl(adc_instance, false); adc_set_comparator_ctrl(adc_instance, true, 2); if (adc_instance == ADC_INSTANCE_ADC24_0) { enable_adc24(); set_adc24_output_rate(0); set_adc24_bias(0); } else { adc_set_sample_width(regs, 32); } adc_set_clk_div(regs, 4); adc_set_avg_sample(regs, 32); adc_set_n_shift_bit(regs, 1, 1); adc_set_single_ch_scan_mode(regs, conv_info); adc_unmask_interrupt(regs); adc_nvic_config(ADC120_DONE0_IRQ_IRQn); adc_nvic_config(ADC120_DONE1_IRQ_IRQn); adc_nvic_config(ADC121_DONE0_IRQ_IRQn); adc_nvic_config(ADC121_DONE1_IRQ_IRQn); adc_nvic_config(ADC122_DONE0_IRQ_IRQn); adc_nvic_config(ADC122_DONE1_IRQ_IRQn); } static uint16_t adc_config_and_read_u16(unsigned int adc_periph, uint32_t channel) { ADC_Type *adc_regs = adc_regs_table[adc_periph]; conv_info_t *conv_info = &adc_conv_info_table[adc_periph]; conv_info->status = ADC_CONV_STAT_NONE; conv_info->mode = ADC_CONV_MODE_SINGLE_SHOT; // Select channel and start conversion. adc_init_channel_select(adc_regs, channel); adc_set_single_ch_scan_mode(adc_regs, conv_info); adc_enable_single_shot_conv(adc_regs); // Wait for conversion to complete. while (!(conv_info->status & ADC_CONV_STAT_COMPLETE)) { __WFE(); } return conv_info->sampled_value; } static void adc_done0_irq_handler_helper(unsigned int adc_periph) { adc_done0_irq_handler(adc_regs_table[adc_periph], &adc_conv_info_table[adc_periph]); } static void adc_done1_irq_handler_helper(unsigned int adc_periph) { adc_done1_irq_handler(adc_regs_table[adc_periph], &adc_conv_info_table[adc_periph]); } void ADC120_DONE0_IRQHandler(void) { adc_done0_irq_handler_helper(0); __SEV(); } void ADC120_DONE1_IRQHandler(void) { adc_done1_irq_handler_helper(0); __SEV(); } void ADC121_DONE0_IRQHandler(void) { adc_done0_irq_handler_helper(1); __SEV(); } void ADC121_DONE1_IRQHandler(void) { adc_done1_irq_handler_helper(1); __SEV(); } void ADC122_DONE0_IRQHandler(void) { adc_done0_irq_handler_helper(2); __SEV(); } void ADC122_DONE1_IRQHandler(void) { adc_done1_irq_handler_helper(2); __SEV(); } /******************************************************************************/ // MicroPython bindings for machine.ADC #define MICROPY_PY_MACHINE_ADC_CLASS_CONSTANTS \ { MP_ROM_QSTR(MP_QSTR_CORE_TEMP), MP_ROM_INT(ADC_CHANNEL_TEMP_SENSOR) }, \ { MP_ROM_QSTR(MP_QSTR_CORE_VREF), MP_ROM_INT(ADC_CHANNEL_INT_VREF) }, \ typedef struct _machine_adc_obj_t { mp_obj_base_t base; uint8_t adc_periph; uint8_t adc_channel; } machine_adc_obj_t; static void mp_machine_adc_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { machine_adc_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_printf(print, "", self->adc_periph, self->adc_channel); } // ADC(id) static mp_obj_t mp_machine_adc_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) { // Check number of arguments mp_arg_check_num(n_args, n_kw, 1, 1, false); mp_obj_t source = all_args[0]; uint8_t adc_periph; uint8_t adc_channel; const machine_pin_obj_t *pin = NULL; if (mp_obj_is_int(source)) { // Get and validate channel number. adc_channel = mp_obj_get_int(source); if (adc_channel < ADC_CHANNEL_TEMP_SENSOR) { adc_periph = 0; } else if (adc_channel == ADC_CHANNEL_TEMP_SENSOR || adc_channel == ADC_CHANNEL_INT_VREF) { adc_periph = 2; } else { mp_raise_ValueError(MP_ERROR_TEXT("invalid channel")); } } else { // Get GPIO and check it has ADC capabilities. pin = mp_hal_get_pin_obj(source); if (pin->adc12_periph <= 2 && pin->adc12_channel <= 5) { // Select the ADC12 peripheral and channel. adc_periph = pin->adc12_periph; adc_channel = pin->adc12_channel; // Configure the pad for analog input. pinconf_set(pin->port, pin->pin, PINMUX_ALTERNATE_FUNCTION_7, PADCTRL_READ_ENABLE); } else { mp_raise_ValueError(MP_ERROR_TEXT("Pin doesn't have ADC capabilities")); } } // Initialise the ADC peripheral. adc_init(adc_periph); // Create ADC object. machine_adc_obj_t *o = mp_obj_malloc(machine_adc_obj_t, &machine_adc_type); o->adc_periph = adc_periph; o->adc_channel = adc_channel; return MP_OBJ_FROM_PTR(o); } // read_u16() static mp_int_t mp_machine_adc_read_u16(machine_adc_obj_t *self) { return adc_config_and_read_u16(self->adc_periph, self->adc_channel); }