Files
micropython/ports/esp32/esp32_rmt.c
Elvis Pfutzenreuter 2a3b9b0b4b
Some checks failed
JavaScript code lint and formatting with Biome / eslint (push) Has been cancelled
Check code formatting / code-formatting (push) Has been cancelled
Check spelling with codespell / codespell (push) Has been cancelled
Build docs / build (push) Has been cancelled
Check examples / embedding (push) Has been cancelled
Package mpremote / build (push) Has been cancelled
.mpy file format and tools / test (push) Has been cancelled
Build ports metadata / build (push) Has been cancelled
alif port / build_alif (alif_ae3_build) (push) Has been cancelled
cc3200 port / build (push) Has been cancelled
esp32 port / build_idf (esp32_build_c2_c6) (push) Has been cancelled
esp32 port / build_idf (esp32_build_cmod_spiram_s2) (push) Has been cancelled
esp32 port / build_idf (esp32_build_s3_c3) (push) Has been cancelled
esp8266 port / build (push) Has been cancelled
mimxrt port / build (push) Has been cancelled
nrf port / build (push) Has been cancelled
powerpc port / build (push) Has been cancelled
qemu port / build_and_test_arm (bigendian) (push) Has been cancelled
qemu port / build_and_test_arm (sabrelite) (push) Has been cancelled
qemu port / build_and_test_arm (thumb_hardfp) (push) Has been cancelled
qemu port / build_and_test_arm (thumb_softfp) (push) Has been cancelled
qemu port / build_and_test_rv32 (push) Has been cancelled
qemu port / build_and_test_rv64 (push) Has been cancelled
renesas-ra port / build_renesas_ra_board (push) Has been cancelled
rp2 port / build (push) Has been cancelled
samd port / build (push) Has been cancelled
stm32 port / build_stm32 (stm32_misc_build) (push) Has been cancelled
stm32 port / build_stm32 (stm32_nucleo_build) (push) Has been cancelled
stm32 port / build_stm32 (stm32_pyb_build) (push) Has been cancelled
unix port / minimal (push) Has been cancelled
unix port / reproducible (push) Has been cancelled
unix port / standard (push) Has been cancelled
unix port / standard_v2 (push) Has been cancelled
unix port / coverage (push) Has been cancelled
unix port / coverage_32bit (push) Has been cancelled
unix port / nanbox (push) Has been cancelled
unix port / longlong (push) Has been cancelled
unix port / float (push) Has been cancelled
unix port / gil_enabled (push) Has been cancelled
unix port / stackless_clang (push) Has been cancelled
unix port / float_clang (push) Has been cancelled
unix port / settrace_stackless (push) Has been cancelled
unix port / repr_b (push) Has been cancelled
unix port / macos (push) Has been cancelled
unix port / qemu_mips (push) Has been cancelled
unix port / qemu_arm (push) Has been cancelled
unix port / qemu_riscv64 (push) Has been cancelled
unix port / sanitize_address (push) Has been cancelled
unix port / sanitize_undefined (push) Has been cancelled
webassembly port / build (push) Has been cancelled
windows port / build-vs (Debug, true, x64, dev, 2017, [15, 16)) (push) Has been cancelled
windows port / build-vs (Debug, true, x86, dev, 2017, [15, 16)) (push) Has been cancelled
windows port / build-vs (Debug, x64, dev, 2022, [17, 18)) (push) Has been cancelled
windows port / build-vs (Debug, x86, dev, 2022, [17, 18)) (push) Has been cancelled
windows port / build-vs (Release, true, x64, dev, 2017, [15, 16)) (push) Has been cancelled
windows port / build-vs (Release, true, x64, dev, 2019, [16, 17)) (push) Has been cancelled
windows port / build-vs (Release, true, x64, standard, 2017, [15, 16)) (push) Has been cancelled
windows port / build-vs (Release, true, x64, standard, 2019, [16, 17)) (push) Has been cancelled
windows port / build-vs (Release, true, x86, dev, 2017, [15, 16)) (push) Has been cancelled
windows port / build-vs (Release, true, x86, dev, 2019, [16, 17)) (push) Has been cancelled
windows port / build-vs (Release, true, x86, standard, 2017, [15, 16)) (push) Has been cancelled
windows port / build-vs (Release, true, x86, standard, 2019, [16, 17)) (push) Has been cancelled
windows port / build-vs (Release, x64, dev, 2022, [17, 18)) (push) Has been cancelled
windows port / build-vs (Release, x64, standard, 2022, [17, 18)) (push) Has been cancelled
windows port / build-vs (Release, x86, dev, 2022, [17, 18)) (push) Has been cancelled
windows port / build-vs (Release, x86, standard, 2022, [17, 18)) (push) Has been cancelled
windows port / build-mingw (i686, mingw32, dev) (push) Has been cancelled
windows port / build-mingw (i686, mingw32, standard) (push) Has been cancelled
windows port / build-mingw (x86_64, mingw64, dev) (push) Has been cancelled
windows port / build-mingw (x86_64, mingw64, standard) (push) Has been cancelled
windows port / cross-build-on-linux (push) Has been cancelled
zephyr port / build (push) Has been cancelled
Python code lint and formatting with ruff / ruff (push) Has been cancelled
esp32/esp32_rmt: Update RMT module to use the new RMT API.
The current `esp32.RMT` class uses a legacy API from ESP-IDF 4.x.  The
ESP-IDF 5.x offers a new API, which is overall better, and easier to
implement the RX side in the future.  This commit updates the module and
the documentation, preserving the current MicroPython RMT API as much as
possible.

The bitstream RMT implementation was updated as well, since ESP-IDF does
not allow firmware to reference legacy and new APIs at the same time (it
resets right after boot with an error message, even if neither module is
imported).

The documentation is updated accordingly.

Signed-off-by: Elvis Pfutzenreuter <elvis.pfutzenreuter@gmail.com>
2025-11-17 10:45:19 +11:00

492 lines
19 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2019 "Matt Trentini" <matt.trentini@gmail.com>
* Copyright (c) 2024 "Elvis Pfützenreuter" <elvis.pfutzenreuter@gmail.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/mphal.h"
#include "py/runtime.h"
#include "py/stream.h"
#include "modmachine.h"
#include "modesp32.h"
#include "esp_task.h"
#if SOC_RMT_SUPPORTED
#include "esp_clk_tree.h"
#include "driver/rmt_tx.h"
#include "driver/rmt_encoder.h"
// This exposes the ESP32's RMT module to MicroPython. RMT is provided by the Espressif ESP-IDF:
//
// https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/peripherals/rmt.html
//
// With some examples provided:
//
// https://github.com/espressif/arduino-esp32/tree/master/libraries/ESP32/examples/RMT
//
// RMT allows accurate (down to 12.5ns resolution) transmit - and receive - of pulse signals.
// Originally designed to generate infrared remote control signals, the module is very
// flexible and quite easy-to-use.
//
// This code exposes the RMT TX feature.
// Forward declaration
extern const mp_obj_type_t esp32_rmt_type;
typedef struct _esp32_rmt_obj_t {
mp_obj_base_t base;
rmt_channel_handle_t channel;
bool enabled;
gpio_num_t pin;
uint32_t clock_freq;
int resolution_hz;
mp_uint_t cap_items;
rmt_symbol_word_t *items;
int loop_count;
int tx_ongoing;
rmt_encoder_handle_t encoder;
mp_uint_t idle_level;
} esp32_rmt_obj_t;
// Decide RMT usage in the machine_bitstream_high_low_rmt implementation.
bool esp32_rmt_bitstream_enabled = true;
static bool IRAM_ATTR esp32_rmt_tx_trans_done(rmt_channel_handle_t channel, const rmt_tx_done_event_data_t *edata, void *user_ctx) {
esp32_rmt_obj_t *self = user_ctx;
self->tx_ongoing -= 1;
return false;
}
static mp_obj_t esp32_rmt_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_id, MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_pin, MP_ARG_REQUIRED | MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_resolution_hz, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_clock_div, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_idle_level, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} }, // low voltage
{ MP_QSTR_tx_carrier, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} }, // no carrier
{ MP_QSTR_num_symbols, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = SOC_RMT_MEM_WORDS_PER_CHANNEL} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// RMT channel is an opaque struct in current RMT API and channel_id is a dummy parameter
// mp_uint_t channel_id = args[0].u_int;
gpio_num_t pin_id = machine_pin_get_id(args[1].u_obj);
uint32_t clock_freq;
check_esp_err(esp_clk_tree_src_get_freq_hz(RMT_CLK_SRC_DEFAULT, ESP_CLK_TREE_SRC_FREQ_PRECISION_CACHED, &clock_freq));
mp_uint_t resolution_hz;
if (args[2].u_obj != mp_const_none && args[3].u_obj != mp_const_none) {
mp_raise_ValueError(MP_ERROR_TEXT("resolution_hz and clock_div are mutually exclusive"));
} else if (args[2].u_obj == mp_const_none && args[3].u_obj == mp_const_none) {
// default value
resolution_hz = 10000000;
} else if (args[2].u_obj != mp_const_none) {
resolution_hz = mp_obj_get_int(args[2].u_obj);
if (resolution_hz <= 0) {
mp_raise_ValueError(MP_ERROR_TEXT("resolution_hz must be positive"));
}
} else if (args[3].u_obj != mp_const_none) {
mp_uint_t clock_div = mp_obj_get_int(args[3].u_obj);
if (clock_div < 1 || clock_div > 255) {
mp_raise_ValueError(MP_ERROR_TEXT("clock_div must be between 1 and 255"));
}
resolution_hz = clock_freq / clock_div;
}
mp_uint_t idle_level = args[4].u_bool;
mp_obj_t tx_carrier_obj = args[5].u_obj;
mp_uint_t num_symbols = args[6].u_int;
if (num_symbols < SOC_RMT_MEM_WORDS_PER_CHANNEL || ((num_symbols % 2) == 1)) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("num_symbols must be even and at least %d"), SOC_RMT_MEM_WORDS_PER_CHANNEL);
}
esp32_rmt_obj_t *self = mp_obj_malloc_with_finaliser(esp32_rmt_obj_t, &esp32_rmt_type);
self->channel = NULL;
self->pin = pin_id;
self->clock_freq = clock_freq;
self->resolution_hz = resolution_hz;
self->loop_count = 0;
self->tx_ongoing = 0;
self->idle_level = idle_level;
self->enabled = false;
rmt_tx_channel_config_t tx_chan_config = {
.clk_src = RMT_CLK_SRC_DEFAULT,
.gpio_num = self->pin,
.mem_block_symbols = num_symbols,
.resolution_hz = resolution_hz,
.trans_queue_depth = 4,
};
check_esp_err(rmt_new_tx_channel(&tx_chan_config, &self->channel));
if (tx_carrier_obj != mp_const_none) {
mp_obj_t *tx_carrier_details = NULL;
mp_obj_get_array_fixed_n(tx_carrier_obj, 3, &tx_carrier_details);
mp_uint_t frequency = mp_obj_get_int(tx_carrier_details[0]);
mp_uint_t duty = mp_obj_get_int(tx_carrier_details[1]);
mp_uint_t level = mp_obj_is_true(tx_carrier_details[2]);
if (frequency == 0) {
mp_raise_ValueError(MP_ERROR_TEXT("tx_carrier frequency must be >0"));
}
if (duty > 100) {
mp_raise_ValueError(MP_ERROR_TEXT("tx_carrier duty must be 0..100"));
}
rmt_carrier_config_t tx_carrier_cfg = {
.duty_cycle = ((float)duty) / 100.0,
.frequency_hz = frequency,
.flags.polarity_active_low = !level,
};
check_esp_err(rmt_apply_carrier(self->channel, &tx_carrier_cfg));
}
rmt_copy_encoder_config_t copy_encoder_config = {};
check_esp_err(rmt_new_copy_encoder(&copy_encoder_config, &self->encoder));
rmt_tx_event_callbacks_t callbacks = {
.on_trans_done = esp32_rmt_tx_trans_done,
};
check_esp_err(rmt_tx_register_event_callbacks(self->channel, &callbacks, self));
return MP_OBJ_FROM_PTR(self);
}
static void esp32_rmt_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
esp32_rmt_obj_t *self = MP_OBJ_TO_PTR(self_in);
if (self->pin != -1) {
mp_printf(print, "RMT(pin=%u, source_freq=%u, resolution_hz=%u, idle_level=%u)",
self->pin, self->clock_freq, self->resolution_hz, self->idle_level);
} else {
mp_printf(print, "RMT()");
}
}
static void esp32_rmt_deactivate(esp32_rmt_obj_t *self) {
if (self->enabled) {
// FIXME: panics in ESP32 if called while TX is ongoing and TX sequence is long (>300ms)
// Does not panic in ESP32-S3, ESP32-C3 and ESP32-C6.
// Tested with ESP-IDF up to 5.5
// ESP-IDF issue: https://github.com/espressif/esp-idf/issues/17692
//
// Cause is Interrupt WDT to trigger because ESP-IDF rmt_disable() disables
// interrupts and spinlocks until the ongoing TX sequence is finished.
//
// Workaround is never try to stop RMT sequences longer than 300ms (which are unusual
// anyway). Or apply the patch mentioned at the GitHub issue to ESP-IDF.
rmt_disable(self->channel);
self->enabled = false;
}
}
static mp_obj_t esp32_rmt_active(size_t n_args, const mp_obj_t *args) {
esp32_rmt_obj_t *self = MP_OBJ_TO_PTR(args[0]);
if (n_args == 1) {
return mp_obj_new_bool(self->enabled && self->tx_ongoing > 0);
} else if (mp_obj_is_true(args[1])) {
mp_raise_ValueError(MP_ERROR_TEXT("activate by calling write_pulses()"));
}
esp32_rmt_deactivate(self);
return mp_const_false;
}
static MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(esp32_rmt_active_obj, 1, 2, esp32_rmt_active);
static mp_obj_t esp32_rmt_deinit(mp_obj_t self_in) {
esp32_rmt_obj_t *self = MP_OBJ_TO_PTR(self_in);
if (self->pin != -1) { // Check if channel has already been deinitialised.
esp32_rmt_deactivate(self);
rmt_tx_event_callbacks_t callbacks = {
.on_trans_done = NULL,
};
rmt_tx_register_event_callbacks(self->channel, &callbacks, self);
rmt_del_encoder(self->encoder);
rmt_del_channel(self->channel);
self->pin = -1; // -1 to indicate RMT is unused
self->tx_ongoing = 0;
m_free(self->items);
}
return mp_const_none;
}
static MP_DEFINE_CONST_FUN_OBJ_1(esp32_rmt_deinit_obj, esp32_rmt_deinit);
// Return the source frequency.
// Currently only the default clock (80MHz) can be used but it is possible other
// clock sources will added in the future.
static mp_obj_t esp32_rmt_source_freq() {
uint32_t clock_freq;
check_esp_err(esp_clk_tree_src_get_freq_hz(RMT_CLK_SRC_DEFAULT, ESP_CLK_TREE_SRC_FREQ_PRECISION_CACHED, &clock_freq));
return mp_obj_new_int(clock_freq);
}
static MP_DEFINE_CONST_FUN_OBJ_0(esp32_rmt_source_freq_obj, esp32_rmt_source_freq);
static MP_DEFINE_CONST_STATICMETHOD_OBJ(esp32_rmt_source_obj, MP_ROM_PTR(&esp32_rmt_source_freq_obj));
// Return the clock divider.
static mp_obj_t esp32_rmt_clock_div(mp_obj_t self_in) {
esp32_rmt_obj_t *self = MP_OBJ_TO_PTR(self_in);
if (self->pin == -1) {
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("already deinitialized"));
}
return mp_obj_new_int(self->clock_freq / self->resolution_hz);
}
static MP_DEFINE_CONST_FUN_OBJ_1(esp32_rmt_clock_div_obj, esp32_rmt_clock_div);
// Query whether the channel has finished sending pulses. Takes an optional
// timeout (in milliseconds), returning true if the pulse stream has
// completed or false if they are still transmitting (or timeout is reached).
static mp_obj_t esp32_rmt_wait_done(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_self, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
esp32_rmt_obj_t *self = MP_OBJ_TO_PTR(args[0].u_obj);
if (self->pin == -1) {
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("already deinitialized"));
} else if (!self->enabled) {
return mp_const_true;
} else if (args[1].u_int == 0 && self->tx_ongoing > 0) {
// shortcut to avoid console spamming with timeout msgs by rmt_tx_wait_all_done()
return mp_const_false;
}
esp_err_t err = rmt_tx_wait_all_done(self->channel, args[1].u_int);
return err == ESP_OK ? mp_const_true : mp_const_false;
}
static MP_DEFINE_CONST_FUN_OBJ_KW(esp32_rmt_wait_done_obj, 1, esp32_rmt_wait_done);
static mp_uint_t esp32_rmt_stream_ioctl(
mp_obj_t self_in, mp_uint_t request, uintptr_t arg, int *errcode) {
if (request != MP_STREAM_POLL) {
*errcode = MP_EINVAL;
return MP_STREAM_ERROR;
}
esp32_rmt_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_uint_t ret = 0;
if ((arg & MP_STREAM_POLL_WR) && self->tx_ongoing == 0) {
ret |= MP_STREAM_POLL_WR;
}
return ret;
}
static const mp_stream_p_t esp32_rmt_stream_p = {
.ioctl = esp32_rmt_stream_ioctl,
};
static void esp32_rmt_loop_in(esp32_rmt_obj_t *self, int new_loop_count) {
if (self->enabled && self->tx_ongoing > 0 && self->loop_count != 0 && new_loop_count == 0) {
// Break ongoing loop
esp32_rmt_deactivate(self);
}
self->loop_count = new_loop_count;
}
static mp_obj_t esp32_rmt_loop(mp_obj_t self_in, mp_obj_t loop) {
esp32_rmt_obj_t *self = MP_OBJ_TO_PTR(self_in);
if (self->pin == -1) {
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("already deinitialized"));
}
bool loop_en = mp_obj_get_int(loop);
esp32_rmt_loop_in(self, loop_en ? -1 : 0);
return mp_const_none;
}
static MP_DEFINE_CONST_FUN_OBJ_2(esp32_rmt_loop_obj, esp32_rmt_loop);
static mp_obj_t esp32_rmt_loop_count(mp_obj_t self_in, mp_obj_t loop) {
esp32_rmt_obj_t *self = MP_OBJ_TO_PTR(self_in);
if (self->pin == -1) {
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("already deinitialized"));
}
int loop_count = mp_obj_get_int(loop);
if (loop_count < -1) {
mp_raise_ValueError(MP_ERROR_TEXT("arg must be -1, 0 or positive"));
}
esp32_rmt_loop_in(self, loop_count);
return mp_const_none;
}
static MP_DEFINE_CONST_FUN_OBJ_2(esp32_rmt_loop_count_obj, esp32_rmt_loop_count);
static mp_obj_t esp32_rmt_write_pulses(size_t n_args, const mp_obj_t *args) {
esp32_rmt_obj_t *self = MP_OBJ_TO_PTR(args[0]);
if (self->pin == -1) {
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("already deinitialized"));
}
if (self->enabled) {
rmt_tx_wait_all_done(self->channel, -1);
} else {
check_esp_err(rmt_enable(self->channel));
self->enabled = true;
}
mp_obj_t duration_obj = args[1];
mp_obj_t data_obj = n_args > 2 ? args[2] : mp_const_true;
mp_uint_t duration = 0;
size_t duration_length = 0;
mp_obj_t *duration_ptr = NULL;
mp_uint_t data = 0;
size_t data_length = 0;
mp_obj_t *data_ptr = NULL;
mp_uint_t num_pulses = 0;
if (!(mp_obj_is_type(data_obj, &mp_type_tuple) || mp_obj_is_type(data_obj, &mp_type_list))) {
// Mode 1: array of durations, toggle initial data value
mp_obj_get_array(duration_obj, &duration_length, &duration_ptr);
data = mp_obj_is_true(data_obj);
num_pulses = duration_length;
} else if (mp_obj_is_int(duration_obj)) {
// Mode 2: constant duration, array of data values
duration = mp_obj_get_int(duration_obj);
mp_obj_get_array(data_obj, &data_length, &data_ptr);
num_pulses = data_length;
} else {
// Mode 3: arrays of durations and data values
mp_obj_get_array(duration_obj, &duration_length, &duration_ptr);
mp_obj_get_array(data_obj, &data_length, &data_ptr);
if (duration_length != data_length) {
mp_raise_ValueError(MP_ERROR_TEXT("duration and data must have same length"));
}
num_pulses = duration_length;
}
if (num_pulses == 0) {
mp_raise_ValueError(MP_ERROR_TEXT("No pulses"));
}
mp_uint_t num_items = (num_pulses / 2) + (num_pulses % 2);
if (num_items > self->cap_items) {
self->items = (rmt_symbol_word_t *)m_realloc(self->items, num_items * sizeof(rmt_symbol_word_t *));
self->cap_items = num_items;
}
for (mp_uint_t item_index = 0, pulse_index = 0; item_index < num_items; item_index++) {
self->items[item_index].duration0 = duration_length ? mp_obj_get_int(duration_ptr[pulse_index]) : duration;
self->items[item_index].level0 = data_length ? mp_obj_is_true(data_ptr[pulse_index]) : data++;
pulse_index++;
if (pulse_index < num_pulses) {
self->items[item_index].duration1 = duration_length ? mp_obj_get_int(duration_ptr[pulse_index]) : duration;
self->items[item_index].level1 = data_length ? mp_obj_is_true(data_ptr[pulse_index]) : data++;
pulse_index++;
} else {
self->items[item_index].duration1 = 0;
self->items[item_index].level1 = 0;
}
}
rmt_transmit_config_t tx_config = {
.loop_count = self->loop_count,
.flags.eot_level = self->idle_level ? 1 : 0,
};
rmt_encoder_reset(self->encoder);
check_esp_err(rmt_transmit(self->channel, self->encoder, self->items, num_items * sizeof(rmt_symbol_word_t), &tx_config));
self->tx_ongoing += 1;
return mp_const_none;
}
static MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(esp32_rmt_write_pulses_obj, 2, 3, esp32_rmt_write_pulses);
static mp_obj_t esp32_rmt_bitstream_rmt(size_t n_args, const mp_obj_t *args) {
if (n_args > 0) {
esp32_rmt_bitstream_enabled = mp_obj_is_true(args[0]);
}
return esp32_rmt_bitstream_enabled ? mp_const_true : mp_const_false;
}
static MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(esp32_rmt_bitstream_rmt_fun_obj, 0, 1, esp32_rmt_bitstream_rmt);
static MP_DEFINE_CONST_STATICMETHOD_OBJ(esp32_rmt_bitstream_rmt_obj, MP_ROM_PTR(&esp32_rmt_bitstream_rmt_fun_obj));
static mp_obj_t esp32_rmt_bitstream_channel(size_t n_args, const mp_obj_t *args) {
if (n_args > 0) {
if (args[0] == mp_const_none) {
esp32_rmt_bitstream_enabled = false;
} else {
mp_int_t channel_id = mp_obj_get_int(args[0]);
if (channel_id < 0) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid channel"));
}
esp32_rmt_bitstream_enabled = true;
}
}
if (!esp32_rmt_bitstream_enabled) {
return mp_const_none;
} else {
return MP_OBJ_NEW_SMALL_INT(1);
}
}
static MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(esp32_rmt_bitstream_channel_fun_obj, 0, 1, esp32_rmt_bitstream_channel);
static MP_DEFINE_CONST_STATICMETHOD_OBJ(esp32_rmt_bitstream_channel_obj, MP_ROM_PTR(&esp32_rmt_bitstream_channel_fun_obj));
static const mp_rom_map_elem_t esp32_rmt_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR___del__), MP_ROM_PTR(&esp32_rmt_deinit_obj) },
{ MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&esp32_rmt_deinit_obj) },
{ MP_ROM_QSTR(MP_QSTR_active), MP_ROM_PTR(&esp32_rmt_active_obj) },
{ MP_ROM_QSTR(MP_QSTR_clock_div), MP_ROM_PTR(&esp32_rmt_clock_div_obj) },
{ MP_ROM_QSTR(MP_QSTR_wait_done), MP_ROM_PTR(&esp32_rmt_wait_done_obj) },
{ MP_ROM_QSTR(MP_QSTR_loop), MP_ROM_PTR(&esp32_rmt_loop_obj) },
{ MP_ROM_QSTR(MP_QSTR_loop_count), MP_ROM_PTR(&esp32_rmt_loop_count_obj) },
{ MP_ROM_QSTR(MP_QSTR_write_pulses), MP_ROM_PTR(&esp32_rmt_write_pulses_obj) },
// Static methods
{ MP_ROM_QSTR(MP_QSTR_bitstream_rmt), MP_ROM_PTR(&esp32_rmt_bitstream_rmt_obj) },
{ MP_ROM_QSTR(MP_QSTR_bitstream_channel), MP_ROM_PTR(&esp32_rmt_bitstream_channel_obj) },
// Class methods
{ MP_ROM_QSTR(MP_QSTR_source_freq), MP_ROM_PTR(&esp32_rmt_source_obj) },
// Constants
{ MP_ROM_QSTR(MP_QSTR_PULSE_MAX), MP_ROM_INT(32767) },
};
static MP_DEFINE_CONST_DICT(esp32_rmt_locals_dict, esp32_rmt_locals_dict_table);
MP_DEFINE_CONST_OBJ_TYPE(
esp32_rmt_type,
MP_QSTR_RMT,
MP_TYPE_FLAG_NONE,
make_new, esp32_rmt_make_new,
print, esp32_rmt_print,
locals_dict, &esp32_rmt_locals_dict,
protocol, &esp32_rmt_stream_p
);
#endif // SOC_RMT_SUPPORTED