path: Add gsk_path_add_circle()

Adds a circle contour, too.
This commit is contained in:
Matthias Clasen
2020-11-19 06:42:58 +01:00
parent 2559885415
commit 0e256a6935
4 changed files with 424 additions and 0 deletions

View File

@@ -103,6 +103,10 @@ gsk_contour_get_size_default (const GskContour *contour)
return contour->klass->struct_size;
}
static GskContour *
gsk_path_builder_add_contour_by_klass (GskPathBuilder *builder,
const GskContourClass *klass);
/* RECT CONTOUR */
typedef struct _GskRectContour GskRectContour;
@@ -316,6 +320,205 @@ gsk_rect_contour_init (GskContour *contour,
self->height = height;
}
/* CIRCLE CONTOUR */
#define DEG_TO_RAD(x) ((x) * (G_PI / 180.f))
typedef struct _GskCircleContour GskCircleContour;
struct _GskCircleContour
{
GskContour contour;
graphene_point_t center;
float radius;
float start_angle; /* in degrees */
float end_angle; /* start_angle +/- 360 */
};
static GskPathFlags
gsk_circle_contour_get_flags (const GskContour *contour)
{
const GskCircleContour *self = (const GskCircleContour *) contour;
/* XXX: should we explicitly close paths? */
if (fabs (self->start_angle - self->end_angle) >= 360)
return GSK_PATH_CLOSED;
else
return 0;
}
static void
gsk_circle_contour_print (const GskContour *contour,
GString *string)
{
const GskCircleContour *self = (const GskCircleContour *) contour;
graphene_point_t start = GRAPHENE_POINT_INIT (cos (DEG_TO_RAD (self->start_angle)) * self->radius,
sin (DEG_TO_RAD (self->start_angle)) * self->radius);
graphene_point_t end = GRAPHENE_POINT_INIT (cos (DEG_TO_RAD (self->end_angle)) * self->radius,
sin (DEG_TO_RAD (self->end_angle)) * self->radius);
g_string_append (string, "M ");
_g_string_append_point (string, &GRAPHENE_POINT_INIT (self->center.x + start.x, self->center.y + start.y));
g_string_append (string, " A ");
_g_string_append_point (string, &GRAPHENE_POINT_INIT (self->radius, self->radius));
g_string_append_printf (string, " 0 %u %u ",
fabs (self->start_angle - self->end_angle) > 180 ? 1 : 0,
self->start_angle < self->end_angle ? 0 : 1);
_g_string_append_point (string, &GRAPHENE_POINT_INIT (self->center.x + end.x, self->center.y + end.y));
if (fabs (self->start_angle - self->end_angle >= 360))
g_string_append (string, " z");
}
static gboolean
gsk_circle_contour_get_bounds (const GskContour *contour,
graphene_rect_t *rect)
{
const GskCircleContour *self = (const GskCircleContour *) contour;
/* XXX: handle partial circles */
graphene_rect_init (rect,
self->center.x - self->radius,
self->center.y - self->radius,
2 * self->radius,
2 * self->radius);
return TRUE;
}
typedef struct
{
GskPathForeachFunc func;
gpointer user_data;
} ForeachWrapper;
static gboolean
gsk_circle_contour_curve (const graphene_point_t curve[4],
gpointer data)
{
ForeachWrapper *wrapper = data;
return wrapper->func (GSK_PATH_CURVE, curve, 4, wrapper->user_data);
}
static gboolean
gsk_circle_contour_foreach (const GskContour *contour,
float tolerance,
GskPathForeachFunc func,
gpointer user_data)
{
const GskCircleContour *self = (const GskCircleContour *) contour;
graphene_point_t start = GRAPHENE_POINT_INIT (self->center.x + cos (DEG_TO_RAD (self->start_angle)) * self->radius,
self->center.y + sin (DEG_TO_RAD (self->start_angle)) * self->radius);
if (!func (GSK_PATH_MOVE, &start, 1, user_data))
return FALSE;
if (!gsk_spline_decompose_arc (&self->center,
self->radius,
tolerance,
DEG_TO_RAD (self->start_angle),
DEG_TO_RAD (self->end_angle),
gsk_circle_contour_curve,
&(ForeachWrapper) { func, user_data }))
return FALSE;
if (fabs (self->start_angle - self->end_angle) >= 360)
{
if (!func (GSK_PATH_CLOSE, (graphene_point_t[2]) { start, start }, 2, user_data))
return FALSE;
}
return TRUE;
}
static gpointer
gsk_circle_contour_init_measure (const GskContour *contour,
float tolerance,
float *out_length)
{
const GskCircleContour *self = (const GskCircleContour *) contour;
*out_length = DEG_TO_RAD (fabs (self->start_angle - self->end_angle)) * self->radius;
return NULL;
}
static void
gsk_circle_contour_free_measure (const GskContour *contour,
gpointer data)
{
}
static void
gsk_circle_contour_copy (const GskContour *contour,
GskContour *dest)
{
const GskCircleContour *self = (const GskCircleContour *) contour;
GskCircleContour *target = (GskCircleContour *) dest;
*target = *self;
}
static void
gsk_circle_contour_init (GskContour *contour,
const graphene_point_t *center,
float radius,
float start_angle,
float end_angle);
static void
gsk_circle_contour_add_segment (const GskContour *contour,
GskPathBuilder *builder,
gpointer measure_data,
float start,
float end)
{
const GskCircleContour *self = (const GskCircleContour *) contour;
float delta = self->end_angle - self->start_angle;
float length = self->radius * DEG_TO_RAD (delta);
GskContour *segment;
segment = gsk_path_builder_add_contour_by_klass (builder, contour->klass);
gsk_circle_contour_init (segment,
&self->center, self->radius,
self->start_angle + start/length * delta,
self->start_angle + end/length * delta);
}
static const GskContourClass GSK_CIRCLE_CONTOUR_CLASS =
{
sizeof (GskCircleContour),
"GskCircleContour",
gsk_contour_get_size_default,
gsk_circle_contour_get_flags,
gsk_circle_contour_print,
gsk_circle_contour_get_bounds,
gsk_circle_contour_foreach,
gsk_circle_contour_init_measure,
gsk_circle_contour_free_measure,
gsk_circle_contour_copy,
gsk_circle_contour_add_segment
};
static void
gsk_circle_contour_init (GskContour *contour,
const graphene_point_t *center,
float radius,
float start_angle,
float end_angle)
{
GskCircleContour *self = (GskCircleContour *) contour;
g_assert (fabs (start_angle - end_angle) <= 360);
self->contour.klass = &GSK_CIRCLE_CONTOUR_CLASS;
self->center = *center;
self->radius = radius;
self->start_angle = start_angle;
self->end_angle = end_angle;
}
/* STANDARD CONTOUR */
typedef struct _GskStandardOperation GskStandardOperation;
@@ -1527,6 +1730,29 @@ gsk_path_builder_add_rect (GskPathBuilder *builder,
rect->size.width, rect->size.height);
}
/**
* gsk_path_builder_add_circle:
* @builder: a #GskPathBuilder
* @center: the center of the circle
* @radius: the radius of the circle
*
* Adds a circle with the @center and @radius.
**/
void
gsk_path_builder_add_circle (GskPathBuilder *builder,
const graphene_point_t *center,
float radius)
{
GskContour *contour;
g_return_if_fail (builder != NULL);
g_return_if_fail (center != NULL);
g_return_if_fail (radius > 0);
contour = gsk_path_builder_add_contour_by_klass (builder, &GSK_CIRCLE_CONTOUR_CLASS);
gsk_circle_contour_init (contour, center, radius, 0, 360);
}
void
gsk_path_builder_move_to (GskPathBuilder *builder,
float x,

View File

@@ -104,6 +104,11 @@ GDK_AVAILABLE_IN_ALL
void gsk_path_builder_add_rect (GskPathBuilder *builder,
const graphene_rect_t *rect);
GDK_AVAILABLE_IN_ALL
void gsk_path_builder_add_circle (GskPathBuilder *builder,
const graphene_point_t *center,
float radius);
GDK_AVAILABLE_IN_ALL
void gsk_path_builder_move_to (GskPathBuilder *builder,
float x,
float y);

View File

@@ -23,6 +23,8 @@
#include "gsksplineprivate.h"
#include <math.h>
typedef struct
{
graphene_point_t last_point;
@@ -177,3 +179,184 @@ gsk_spline_decompose_cubic (const graphene_point_t pts[4],
g_assert (decomp.last_progress == 1.0f || decomp.last_progress == 0.0f);
}
/* Spline deviation from the circle in radius would be given by:
error = sqrt (x**2 + y**2) - 1
A simpler error function to work with is:
e = x**2 + y**2 - 1
From "Good approximation of circles by curvature-continuous Bezier
curves", Tor Dokken and Morten Daehlen, Computer Aided Geometric
Design 8 (1990) 22-41, we learn:
abs (max(e)) = 4/27 * sin**6(angle/4) / cos**2(angle/4)
and
abs (error) =~ 1/2 * e
Of course, this error value applies only for the particular spline
approximation that is used in _cairo_gstate_arc_segment.
*/
static float
arc_error_normalized (float angle)
{
return 2.0/27.0 * pow (sin (angle / 4), 6) / pow (cos (angle / 4), 2);
}
static float
arc_max_angle_for_tolerance_normalized (float tolerance)
{
float angle, error;
guint i;
/* Use table lookup to reduce search time in most cases. */
struct {
float angle;
float error;
} table[] = {
{ G_PI / 1.0, 0.0185185185185185036127 },
{ G_PI / 2.0, 0.000272567143730179811158 },
{ G_PI / 3.0, 2.38647043651461047433e-05 },
{ G_PI / 4.0, 4.2455377443222443279e-06 },
{ G_PI / 5.0, 1.11281001494389081528e-06 },
{ G_PI / 6.0, 3.72662000942734705475e-07 },
{ G_PI / 7.0, 1.47783685574284411325e-07 },
{ G_PI / 8.0, 6.63240432022601149057e-08 },
{ G_PI / 9.0, 3.2715520137536980553e-08 },
{ G_PI / 10.0, 1.73863223499021216974e-08 },
{ G_PI / 11.0, 9.81410988043554039085e-09 },
};
for (i = 0; i < G_N_ELEMENTS (table); i++)
{
if (table[i].error < tolerance)
return table[i].angle;
}
i++;
do {
angle = G_PI / i++;
error = arc_error_normalized (angle);
} while (error > tolerance);
return angle;
}
static guint
arc_segments_needed (float angle,
float radius,
float tolerance)
{
float max_angle;
/* the error is amplified by at most the length of the
* major axis of the circle; see cairo-pen.c for a more detailed analysis
* of this. */
max_angle = arc_max_angle_for_tolerance_normalized (tolerance / radius);
return ceil (fabs (angle) / max_angle);
}
/* We want to draw a single spline approximating a circular arc radius
R from angle A to angle B. Since we want a symmetric spline that
matches the endpoints of the arc in position and slope, we know
that the spline control points must be:
(R * cos(A), R * sin(A))
(R * cos(A) - h * sin(A), R * sin(A) + h * cos (A))
(R * cos(B) + h * sin(B), R * sin(B) - h * cos (B))
(R * cos(B), R * sin(B))
for some value of h.
"Approximation of circular arcs by cubic polynomials", Michael
Goldapp, Computer Aided Geometric Design 8 (1991) 227-238, provides
various values of h along with error analysis for each.
From that paper, a very practical value of h is:
h = 4/3 * R * tan(angle/4)
This value does not give the spline with minimal error, but it does
provide a very good approximation, (6th-order convergence), and the
error expression is quite simple, (see the comment for
_arc_error_normalized).
*/
static gboolean
gsk_spline_decompose_arc_segment (const graphene_point_t *center,
float radius,
float angle_A,
float angle_B,
GskSplineAddCurveFunc curve_func,
gpointer user_data)
{
float r_sin_A, r_cos_A;
float r_sin_B, r_cos_B;
float h;
r_sin_A = radius * sin (angle_A);
r_cos_A = radius * cos (angle_A);
r_sin_B = radius * sin (angle_B);
r_cos_B = radius * cos (angle_B);
h = 4.0/3.0 * tan ((angle_B - angle_A) / 4.0);
return curve_func ((graphene_point_t[4]) {
GRAPHENE_POINT_INIT (
center->x + r_cos_A,
center->y + r_sin_A
),
GRAPHENE_POINT_INIT (
center->x + r_cos_A - h * r_sin_A,
center->y + r_sin_A + h * r_cos_A
),
GRAPHENE_POINT_INIT (
center->x + r_cos_B + h * r_sin_B,
center->y + r_sin_B - h * r_cos_B
),
GRAPHENE_POINT_INIT (
center->x + r_cos_B,
center->y + r_sin_B
)
},
user_data);
}
gboolean
gsk_spline_decompose_arc (const graphene_point_t *center,
float radius,
float tolerance,
float start_angle,
float end_angle,
GskSplineAddCurveFunc curve_func,
gpointer user_data)
{
float step = start_angle - end_angle;
guint i, n_segments;
/* Recurse if drawing arc larger than pi */
if (ABS (step) > G_PI)
{
float mid_angle = (start_angle + end_angle) / 2.0;
return gsk_spline_decompose_arc (center, radius, tolerance, start_angle, mid_angle, curve_func, user_data)
&& gsk_spline_decompose_arc (center, radius, tolerance, mid_angle, end_angle, curve_func, user_data);
}
else if (ABS (step) < tolerance)
{
return gsk_spline_decompose_arc_segment (center, radius, start_angle, end_angle, curve_func, user_data);
}
n_segments = arc_segments_needed (ABS (step), radius, tolerance);
step = (end_angle - start_angle) / n_segments;
for (i = 0; i < n_segments - 1; i++, start_angle += step)
{
if (!gsk_spline_decompose_arc_segment (center, radius, start_angle, start_angle + step, curve_func, user_data))
return FALSE;
}
return gsk_spline_decompose_arc_segment (center, radius, start_angle, end_angle, curve_func, user_data);
}

View File

@@ -40,6 +40,16 @@ void gsk_spline_decompose_cubic (const graphene_
GskSplineAddPointFunc add_point_func,
gpointer user_data);
typedef gboolean (* GskSplineAddCurveFunc) (const graphene_point_t curve[4],
gpointer user_data);
gboolean gsk_spline_decompose_arc (const graphene_point_t *center,
float radius,
float tolerance,
float start_angle,
float end_angle,
GskSplineAddCurveFunc curve_func,
gpointer user_data);
G_END_DECLS
#endif /* __GSK_SPLINE_PRIVATE_H__ */