curve: Move some curve apis to gskcurve.c
Some of this will be reused elsewhere, so move it out of gskpathstroke.c.
This commit is contained in:
144
gsk/gskcurve.c
144
gsk/gskcurve.c
@@ -1802,3 +1802,147 @@ gsk_curve_get_curvature (const GskCurve *curve,
|
||||
|
||||
return k;
|
||||
}
|
||||
|
||||
static void
|
||||
align_points (const graphene_point_t *p,
|
||||
const graphene_point_t *a,
|
||||
const graphene_point_t *b,
|
||||
graphene_point_t *q,
|
||||
int n)
|
||||
{
|
||||
graphene_vec2_t n1;
|
||||
float angle;
|
||||
float s, c;
|
||||
|
||||
get_tangent (a, b, &n1);
|
||||
angle = - atan2 (graphene_vec2_get_y (&n1), graphene_vec2_get_x (&n1));
|
||||
sincosf (angle, &s, &c);
|
||||
|
||||
for (int i = 0; i < n; i++)
|
||||
{
|
||||
q[i].x = (p[i].x - a->x) * c - (p[i].y - a->y) * s;
|
||||
q[i].y = (p[i].x - a->x) * s + (p[i].y - a->y) * c;
|
||||
}
|
||||
}
|
||||
|
||||
/* find solutions for at^2 + bt + c = 0 */
|
||||
static int
|
||||
solve_quadratic (float a, float b, float c, float t[2])
|
||||
{
|
||||
float d;
|
||||
int n = 0;
|
||||
|
||||
if (fabs (a) > 0.0001)
|
||||
{
|
||||
if (b*b > 4*a*c)
|
||||
{
|
||||
d = sqrt (b*b - 4*a*c);
|
||||
t[n++] = (-b + d)/(2*a);
|
||||
t[n++] = (-b - d)/(2*a);
|
||||
}
|
||||
else
|
||||
{
|
||||
t[n++] = -b / (2*a);
|
||||
}
|
||||
}
|
||||
else if (fabs (b) > 0.0001)
|
||||
{
|
||||
t[n++] = -c / b;
|
||||
}
|
||||
|
||||
return n;
|
||||
}
|
||||
|
||||
static int
|
||||
filter_allowable (float t[3],
|
||||
int n)
|
||||
{
|
||||
float g[3];
|
||||
int j = 0;
|
||||
|
||||
for (int i = 0; i < n; i++)
|
||||
if (0 < t[i] && t[i] < 1)
|
||||
g[j++] = t[i];
|
||||
for (int i = 0; i < j; i++)
|
||||
t[i] = g[i];
|
||||
return j;
|
||||
}
|
||||
|
||||
/* Get the points where the curvature of curve is
|
||||
* zero, or a maximum or minimum, inside the open
|
||||
* interval from 0 to 1.
|
||||
*/
|
||||
int
|
||||
gsk_curve_get_curvature_points (const GskCurve *curve,
|
||||
float t[3])
|
||||
{
|
||||
const graphene_point_t *pts = curve->curve.points;
|
||||
graphene_point_t p[4];
|
||||
float a, b, c, d;
|
||||
float x, y, z;
|
||||
int n;
|
||||
|
||||
align_points (pts, &pts[0], &pts[3], p, 4);
|
||||
|
||||
a = p[2].x * p[1].y;
|
||||
b = p[3].x * p[1].y;
|
||||
c = p[1].x * p[2].y;
|
||||
d = p[3].x * p[2].y;
|
||||
|
||||
x = - 3*a + 2*b + 3*c - d;
|
||||
y = 3*a - b - 3*c;
|
||||
z = c - a;
|
||||
|
||||
n = solve_quadratic (x, y, z, t);
|
||||
return filter_allowable (t, n);
|
||||
}
|
||||
|
||||
/* Find cusps inside the open interval from 0 to 1. According
|
||||
* to Stone & deRose, A Geometric Characterization of Parametric
|
||||
* Cubic curves, a necessary and sufficient condition is that
|
||||
* the first derivative vanishes.
|
||||
*/
|
||||
int
|
||||
gsk_curve_get_cusps (const GskCurve *curve,
|
||||
float t[2])
|
||||
{
|
||||
const graphene_point_t *pts = curve->curve.points;
|
||||
graphene_point_t p[3];
|
||||
float ax, bx, cx;
|
||||
float ay, by, cy;
|
||||
float tx[3];
|
||||
int nx;
|
||||
int n = 0;
|
||||
|
||||
if (curve->op != GSK_PATH_CURVE)
|
||||
return 0;
|
||||
|
||||
p[0].x = 3 * (pts[1].x - pts[0].x);
|
||||
p[0].y = 3 * (pts[1].y - pts[0].y);
|
||||
p[1].x = 3 * (pts[2].x - pts[1].x);
|
||||
p[1].y = 3 * (pts[2].y - pts[1].y);
|
||||
p[2].x = 3 * (pts[3].x - pts[2].x);
|
||||
p[2].y = 3 * (pts[3].y - pts[2].y);
|
||||
|
||||
ax = p[0].x - 2 * p[1].x + p[2].x;
|
||||
bx = - 2 * p[0].x + 2 * p[1].x;
|
||||
cx = p[0].x;
|
||||
|
||||
nx = solve_quadratic (ax, bx, cx, tx);
|
||||
nx = filter_allowable (tx, nx);
|
||||
|
||||
ay = p[0].y - 2 * p[1].y + p[2].y;
|
||||
by = - 2 * p[0].y + 2 * p[1].y;
|
||||
cy = p[0].y;
|
||||
|
||||
for (int i = 0; i < nx; i++)
|
||||
{
|
||||
float ti = tx[i];
|
||||
|
||||
if (0 < ti && ti < 1 &&
|
||||
fabs (ay * ti * ti + by * ti + cy) < 0.001)
|
||||
t[n++] = ti;
|
||||
}
|
||||
|
||||
return n;
|
||||
}
|
||||
|
||||
@@ -149,6 +149,12 @@ float gsk_curve_get_curvature (const GskCurve
|
||||
float t,
|
||||
graphene_point_t *center);
|
||||
|
||||
int gsk_curve_get_curvature_points (const GskCurve *curve,
|
||||
float t[3]);
|
||||
|
||||
int gsk_curve_get_cusps (const GskCurve *curve,
|
||||
float t[2]);
|
||||
|
||||
G_END_DECLS
|
||||
|
||||
#endif /* __GSK_CURVE_PRIVATE_H__ */
|
||||
|
||||
@@ -573,147 +573,6 @@ conic_is_degenerate (const GskCurve *curve)
|
||||
return FALSE;
|
||||
}
|
||||
|
||||
static void
|
||||
align_points (const graphene_point_t *p,
|
||||
const graphene_point_t *a,
|
||||
const graphene_point_t *b,
|
||||
graphene_point_t *q,
|
||||
int n)
|
||||
{
|
||||
graphene_vec2_t n1;
|
||||
float angle;
|
||||
float s, c;
|
||||
|
||||
get_tangent (a, b, &n1);
|
||||
angle = - atan2 (graphene_vec2_get_y (&n1), graphene_vec2_get_x (&n1));
|
||||
sincosf (angle, &s, &c);
|
||||
|
||||
for (int i = 0; i < n; i++)
|
||||
{
|
||||
q[i].x = (p[i].x - a->x) * c - (p[i].y - a->y) * s;
|
||||
q[i].y = (p[i].x - a->x) * s + (p[i].y - a->y) * c;
|
||||
}
|
||||
}
|
||||
|
||||
/* find solutions for at^2 + bt + c = 0 */
|
||||
static int
|
||||
solve_quadratic (float a, float b, float c, float t[2])
|
||||
{
|
||||
float d;
|
||||
int n = 0;
|
||||
|
||||
if (fabs (a) > 0.0001)
|
||||
{
|
||||
if (b*b > 4*a*c)
|
||||
{
|
||||
d = sqrt (b*b - 4*a*c);
|
||||
t[n++] = (-b + d)/(2*a);
|
||||
t[n++] = (-b - d)/(2*a);
|
||||
}
|
||||
else
|
||||
{
|
||||
t[n++] = -b / (2*a);
|
||||
}
|
||||
}
|
||||
else if (fabs (b) > 0.0001)
|
||||
{
|
||||
t[n++] = -c / b;
|
||||
}
|
||||
|
||||
return n;
|
||||
}
|
||||
|
||||
static int
|
||||
filter_allowable (float t[3],
|
||||
int n)
|
||||
{
|
||||
float g[3];
|
||||
int j = 0;
|
||||
|
||||
for (int i = 0; i < n; i++)
|
||||
if (0 < t[i] && t[i] < 1)
|
||||
g[j++] = t[i];
|
||||
for (int i = 0; i < j; i++)
|
||||
t[i] = g[i];
|
||||
return j;
|
||||
}
|
||||
|
||||
/* Get the points where the curvature of curve is
|
||||
* zero, or a maximum or minimum, inside the open
|
||||
* interval from 0 to 1.
|
||||
*/
|
||||
static int
|
||||
cubic_curvature_points (const GskCurve *curve,
|
||||
float t[3])
|
||||
{
|
||||
const graphene_point_t *pts = curve->curve.points;
|
||||
graphene_point_t p[4];
|
||||
float a, b, c, d;
|
||||
float x, y, z;
|
||||
int n;
|
||||
|
||||
align_points (pts, &pts[0], &pts[3], p, 4);
|
||||
|
||||
a = p[2].x * p[1].y;
|
||||
b = p[3].x * p[1].y;
|
||||
c = p[1].x * p[2].y;
|
||||
d = p[3].x * p[2].y;
|
||||
|
||||
x = - 3*a + 2*b + 3*c - d;
|
||||
y = 3*a - b - 3*c;
|
||||
z = c - a;
|
||||
|
||||
n = solve_quadratic (x, y, z, t);
|
||||
return filter_allowable (t, n);
|
||||
}
|
||||
|
||||
/* Find cusps inside the open interval from 0 to 1. According
|
||||
* to Stone & deRose, A Geometric Characterization of Parametric
|
||||
* Cubic curves, a necessary and sufficient condition is that
|
||||
* the first derivative vanishes.
|
||||
*/
|
||||
static int
|
||||
find_cusps (const GskCurve *curve,
|
||||
float t[2])
|
||||
{
|
||||
const graphene_point_t *pts = curve->curve.points;
|
||||
graphene_point_t p[3];
|
||||
float ax, bx, cx;
|
||||
float ay, by, cy;
|
||||
float tx[3];
|
||||
int nx;
|
||||
int n = 0;
|
||||
|
||||
p[0].x = 3 * (pts[1].x - pts[0].x);
|
||||
p[0].y = 3 * (pts[1].y - pts[0].y);
|
||||
p[1].x = 3 * (pts[2].x - pts[1].x);
|
||||
p[1].y = 3 * (pts[2].y - pts[1].y);
|
||||
p[2].x = 3 * (pts[3].x - pts[2].x);
|
||||
p[2].y = 3 * (pts[3].y - pts[2].y);
|
||||
|
||||
ax = p[0].x - 2 * p[1].x + p[2].x;
|
||||
bx = - 2 * p[0].x + 2 * p[1].x;
|
||||
cx = p[0].x;
|
||||
|
||||
nx = solve_quadratic (ax, bx, cx, tx);
|
||||
nx = filter_allowable (tx, nx);
|
||||
|
||||
ay = p[0].y - 2 * p[1].y + p[2].y;
|
||||
by = - 2 * p[0].y + 2 * p[1].y;
|
||||
cy = p[0].y;
|
||||
|
||||
for (int i = 0; i < nx; i++)
|
||||
{
|
||||
float ti = tx[i];
|
||||
|
||||
if (0 < ti && ti < 1 &&
|
||||
fabs (ay * ti * ti + by * ti + cy) < 0.001)
|
||||
t[n++] = ti;
|
||||
}
|
||||
|
||||
return n;
|
||||
}
|
||||
|
||||
/* }}} */
|
||||
/* {{{ Stroke helpers */
|
||||
|
||||
@@ -1761,7 +1620,7 @@ subdivide_and_add_curve (const GskCurve *curve,
|
||||
add_curve_cb (curve, force_round_join, data);
|
||||
else if (level < MAX_SUBDIVISION && cubic_is_simple (curve))
|
||||
add_curve_cb (curve, force_round_join, data);
|
||||
else if (level == MAX_SUBDIVISION && (n = find_cusps (curve, t)) > 0)
|
||||
else if (level == MAX_SUBDIVISION && (n = gsk_curve_get_cusps (curve, t)) > 0)
|
||||
{
|
||||
t[n++] = 0;
|
||||
t[n++] = 1;
|
||||
@@ -1783,7 +1642,7 @@ subdivide_and_add_curve (const GskCurve *curve,
|
||||
|
||||
if (level == MAX_SUBDIVISION)
|
||||
{
|
||||
n += cubic_curvature_points (curve, &t[n]);
|
||||
n += gsk_curve_get_curvature_points (curve, &t[n]);
|
||||
qsort (t, n, sizeof (float), cmpfloat);
|
||||
}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user