curve: Add utilities for cusps and inflections
Add functions to find cusps and inflection points of cubics. These will be used for intersections and in the stroker.
This commit is contained in:
367
gsk/gskcurveintersect.c
Normal file
367
gsk/gskcurveintersect.c
Normal file
@@ -0,0 +1,367 @@
|
||||
/*
|
||||
* Copyright © 2020 Red Hat, Inc
|
||||
*
|
||||
* This library is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU Lesser General Public
|
||||
* License as published by the Free Software Foundation; either
|
||||
* version 2.1 of the License, or (at your option) any later version.
|
||||
*
|
||||
* This library is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
* Lesser General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU Lesser General Public
|
||||
* License along with this library. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* Authors: Matthias Clasen <mclasen@redhat.com>
|
||||
*/
|
||||
|
||||
#include "config.h"
|
||||
|
||||
#include <math.h>
|
||||
|
||||
#include "gskcurveprivate.h"
|
||||
|
||||
/* {{{ Utilities */
|
||||
|
||||
static void
|
||||
get_tangent (const graphene_point_t *p0,
|
||||
const graphene_point_t *p1,
|
||||
graphene_vec2_t *t)
|
||||
{
|
||||
graphene_vec2_init (t, p1->x - p0->x, p1->y - p0->y);
|
||||
graphene_vec2_normalize (t, t);
|
||||
}
|
||||
|
||||
static inline gboolean
|
||||
acceptable (float t)
|
||||
{
|
||||
return 0 - FLT_EPSILON <= t && t <= 1 + FLT_EPSILON;
|
||||
}
|
||||
|
||||
static inline void
|
||||
_sincosf (float angle,
|
||||
float *out_s,
|
||||
float *out_c)
|
||||
{
|
||||
#ifdef HAVE_SINCOSF
|
||||
sincosf (angle, out_s, out_c);
|
||||
#else
|
||||
*out_s = sinf (angle);
|
||||
*out_c = cosf (angle);
|
||||
#endif
|
||||
}
|
||||
|
||||
static void
|
||||
align_points (const graphene_point_t *p,
|
||||
const graphene_point_t *a,
|
||||
const graphene_point_t *b,
|
||||
graphene_point_t *q,
|
||||
int n)
|
||||
{
|
||||
graphene_vec2_t n1;
|
||||
float angle;
|
||||
float s, c;
|
||||
|
||||
get_tangent (a, b, &n1);
|
||||
angle = - atan2 (graphene_vec2_get_y (&n1), graphene_vec2_get_x (&n1));
|
||||
_sincosf (angle, &s, &c);
|
||||
|
||||
for (int i = 0; i < n; i++)
|
||||
{
|
||||
q[i].x = (p[i].x - a->x) * c - (p[i].y - a->y) * s;
|
||||
q[i].y = (p[i].x - a->x) * s + (p[i].y - a->y) * c;
|
||||
}
|
||||
}
|
||||
|
||||
static void
|
||||
find_point_on_line (const graphene_point_t *p1,
|
||||
const graphene_point_t *p2,
|
||||
const graphene_point_t *q,
|
||||
float *t)
|
||||
{
|
||||
if (p2->x != p1->x)
|
||||
*t = (q->x - p1->x) / (p2->x - p1->x);
|
||||
else
|
||||
*t = (q->y - p1->y) / (p2->y - p1->y);
|
||||
}
|
||||
|
||||
/* find solutions for at^2 + bt + c = 0 */
|
||||
static int
|
||||
solve_quadratic (float a, float b, float c, float t[2])
|
||||
{
|
||||
float d;
|
||||
int n = 0;
|
||||
|
||||
if (fabs (a) > 0.0001)
|
||||
{
|
||||
if (b*b > 4*a*c)
|
||||
{
|
||||
d = sqrt (b*b - 4*a*c);
|
||||
t[n++] = (-b + d)/(2*a);
|
||||
t[n++] = (-b - d)/(2*a);
|
||||
}
|
||||
else
|
||||
{
|
||||
t[n++] = -b / (2*a);
|
||||
}
|
||||
}
|
||||
else if (fabs (b) > 0.0001)
|
||||
{
|
||||
t[n++] = -c / b;
|
||||
}
|
||||
|
||||
return n;
|
||||
}
|
||||
|
||||
static int
|
||||
filter_allowable (float t[3],
|
||||
int n)
|
||||
{
|
||||
float g[3];
|
||||
int j = 0;
|
||||
|
||||
for (int i = 0; i < n; i++)
|
||||
if (0 < t[i] && t[i] < 1)
|
||||
g[j++] = t[i];
|
||||
for (int i = 0; i < j; i++)
|
||||
t[i] = g[i];
|
||||
return j;
|
||||
}
|
||||
|
||||
/* Solve P = 0 where P is
|
||||
* P = (1-t)^2*pa + 2*t*(1-t)*pb + t^2*pc
|
||||
*/
|
||||
static int
|
||||
get_quadratic_roots (float pa, float pb, float pc, float roots[2])
|
||||
{
|
||||
float a, b, c, d;
|
||||
int n_roots = 0;
|
||||
|
||||
a = pa - 2 * pb + pc;
|
||||
b = 2 * (pb - pa);
|
||||
c = pa;
|
||||
|
||||
d = b*b - 4*a*c;
|
||||
|
||||
if (d > 0.0001)
|
||||
{
|
||||
float q = sqrt (d);
|
||||
roots[n_roots] = (-b + q) / (2 * a);
|
||||
if (acceptable (roots[n_roots]))
|
||||
n_roots++;
|
||||
roots[n_roots] = (-b - q) / (2 * a);
|
||||
if (acceptable (roots[n_roots]))
|
||||
n_roots++;
|
||||
}
|
||||
else if (fabs (d) < 0.0001)
|
||||
{
|
||||
roots[n_roots] = -b / (2 * a);
|
||||
if (acceptable (roots[n_roots]))
|
||||
n_roots++;
|
||||
}
|
||||
|
||||
return n_roots;
|
||||
}
|
||||
|
||||
static float
|
||||
cuberoot (float v)
|
||||
{
|
||||
if (v < 0)
|
||||
return -pow (-v, 1.f / 3);
|
||||
return pow (v, 1.f / 3);
|
||||
}
|
||||
|
||||
/* Solve P = 0 where P is
|
||||
* P = (1-t)^3*pa + 3*t*(1-t)^2*pb + 3*t^2*(1-t)*pc + t^3*pd
|
||||
*/
|
||||
static int
|
||||
get_cubic_roots (float pa, float pb, float pc, float pd, float roots[3])
|
||||
{
|
||||
float a, b, c, d;
|
||||
float q, q2;
|
||||
float p, p3;
|
||||
float discriminant;
|
||||
float u1, v1, sd;
|
||||
int n_roots = 0;
|
||||
|
||||
d = -pa + 3*pb - 3*pc + pd;
|
||||
a = 3*pa - 6*pb + 3*pc;
|
||||
b = -3*pa + 3*pb;
|
||||
c = pa;
|
||||
|
||||
if (fabs (d) < 0.0001)
|
||||
{
|
||||
if (fabs (a) < 0.0001)
|
||||
{
|
||||
if (fabs (b) < 0.0001)
|
||||
return 0;
|
||||
|
||||
if (acceptable (-c / b))
|
||||
{
|
||||
roots[0] = -c / b;
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
q = sqrt (b*b - 4*a*c);
|
||||
roots[n_roots] = (-b + q) / (2 * a);
|
||||
if (acceptable (roots[n_roots]))
|
||||
n_roots++;
|
||||
|
||||
roots[n_roots] = (-b - q) / (2 * a);
|
||||
if (acceptable (roots[n_roots]))
|
||||
n_roots++;
|
||||
|
||||
return n_roots;
|
||||
}
|
||||
|
||||
a /= d;
|
||||
b /= d;
|
||||
c /= d;
|
||||
|
||||
p = (3*b - a*a)/3;
|
||||
p3 = p/3;
|
||||
q = (2*a*a*a - 9*a*b + 27*c)/27;
|
||||
q2 = q/2;
|
||||
discriminant = q2*q2 + p3*p3*p3;
|
||||
|
||||
if (discriminant < 0)
|
||||
{
|
||||
float mp3 = -p/3;
|
||||
float mp33 = mp3*mp3*mp3;
|
||||
float r = sqrt (mp33);
|
||||
float t = -q / (2*r);
|
||||
float cosphi = t < -1 ? -1 : (t > 1 ? 1 : t);
|
||||
float phi = acos (cosphi);
|
||||
float crtr = cuberoot (r);
|
||||
float t1 = 2*crtr;
|
||||
|
||||
roots[n_roots] = t1 * cos (phi/3) - a/3;
|
||||
if (acceptable (roots[n_roots]))
|
||||
n_roots++;
|
||||
roots[n_roots] = t1 * cos ((phi + 2*M_PI) / 3) - a/3;
|
||||
if (acceptable (roots[n_roots]))
|
||||
n_roots++;
|
||||
roots[n_roots] = t1 * cos ((phi + 4*M_PI) / 3) - a/3;
|
||||
if (acceptable (roots[n_roots]))
|
||||
n_roots++;
|
||||
|
||||
return n_roots;
|
||||
}
|
||||
|
||||
if (discriminant == 0)
|
||||
{
|
||||
u1 = q2 < 0 ? cuberoot (-q2) : -cuberoot (q2);
|
||||
roots[n_roots] = 2*u1 - a/3;
|
||||
if (acceptable (roots[n_roots]))
|
||||
n_roots++;
|
||||
roots[n_roots] = -u1 - a/3;
|
||||
if (acceptable (roots[n_roots]))
|
||||
n_roots++;
|
||||
|
||||
return n_roots;
|
||||
}
|
||||
|
||||
sd = sqrt (discriminant);
|
||||
u1 = cuberoot (sd - q2);
|
||||
v1 = cuberoot (sd + q2);
|
||||
roots[n_roots] = u1 - v1 - a/3;
|
||||
if (acceptable (roots[n_roots]))
|
||||
n_roots++;
|
||||
|
||||
return n_roots;
|
||||
}
|
||||
|
||||
/* }}} */
|
||||
/* {{{ Cusps and inflections */
|
||||
|
||||
/* Get the points where the curvature of curve is
|
||||
* zero, or a maximum or minimum, inside the open
|
||||
* interval from 0 to 1.
|
||||
*/
|
||||
int
|
||||
gsk_curve_get_curvature_points (const GskCurve *curve,
|
||||
float t[3])
|
||||
{
|
||||
const graphene_point_t *pts = curve->cubic.points;
|
||||
graphene_point_t p[4];
|
||||
float a, b, c, d;
|
||||
float x, y, z;
|
||||
int n;
|
||||
|
||||
if (curve->op != GSK_PATH_CUBIC)
|
||||
return 0;
|
||||
|
||||
align_points (pts, &pts[0], &pts[3], p, 4);
|
||||
|
||||
a = p[2].x * p[1].y;
|
||||
b = p[3].x * p[1].y;
|
||||
c = p[1].x * p[2].y;
|
||||
d = p[3].x * p[2].y;
|
||||
|
||||
x = - 3*a + 2*b + 3*c - d;
|
||||
y = 3*a - b - 3*c;
|
||||
z = c - a;
|
||||
|
||||
n = solve_quadratic (x, y, z, t);
|
||||
return filter_allowable (t, n);
|
||||
}
|
||||
|
||||
/* Find cusps inside the open interval from 0 to 1.
|
||||
*
|
||||
* According to Stone & deRose, A Geometric Characterization
|
||||
* of Parametric Cubic curves, a necessary and sufficient
|
||||
* condition is that the first derivative vanishes.
|
||||
*/
|
||||
int
|
||||
gsk_curve_get_cusps (const GskCurve *curve,
|
||||
float t[2])
|
||||
{
|
||||
const graphene_point_t *pts = curve->cubic.points;
|
||||
graphene_point_t p[3];
|
||||
float ax, bx, cx;
|
||||
float ay, by, cy;
|
||||
float tx[3];
|
||||
int nx;
|
||||
int n = 0;
|
||||
|
||||
if (curve->op != GSK_PATH_CUBIC)
|
||||
return 0;
|
||||
|
||||
p[0].x = 3 * (pts[1].x - pts[0].x);
|
||||
p[0].y = 3 * (pts[1].y - pts[0].y);
|
||||
p[1].x = 3 * (pts[2].x - pts[1].x);
|
||||
p[1].y = 3 * (pts[2].y - pts[1].y);
|
||||
p[2].x = 3 * (pts[3].x - pts[2].x);
|
||||
p[2].y = 3 * (pts[3].y - pts[2].y);
|
||||
|
||||
ax = p[0].x - 2 * p[1].x + p[2].x;
|
||||
bx = - 2 * p[0].x + 2 * p[1].x;
|
||||
cx = p[0].x;
|
||||
|
||||
nx = solve_quadratic (ax, bx, cx, tx);
|
||||
nx = filter_allowable (tx, nx);
|
||||
|
||||
ay = p[0].y - 2 * p[1].y + p[2].y;
|
||||
by = - 2 * p[0].y + 2 * p[1].y;
|
||||
cy = p[0].y;
|
||||
|
||||
for (int i = 0; i < nx; i++)
|
||||
{
|
||||
float ti = tx[i];
|
||||
|
||||
if (0 < ti && ti < 1 &&
|
||||
fabs (ay * ti * ti + by * ti + cy) < 0.001)
|
||||
t[n++] = ti;
|
||||
}
|
||||
|
||||
return n;
|
||||
}
|
||||
|
||||
/* }}} */
|
||||
|
||||
/* vim:set foldmethod=marker expandtab: */
|
||||
@@ -164,5 +164,11 @@ void gsk_curve_get_bounds (const GskCurve
|
||||
void gsk_curve_get_tight_bounds (const GskCurve *curve,
|
||||
GskBoundingBox *bounds);
|
||||
|
||||
int gsk_curve_get_curvature_points (const GskCurve *curve,
|
||||
float t[3]);
|
||||
|
||||
int gsk_curve_get_cusps (const GskCurve *curve,
|
||||
float t[2]);
|
||||
|
||||
G_END_DECLS
|
||||
|
||||
|
||||
@@ -44,6 +44,7 @@ gsk_private_sources = files([
|
||||
'gskcairoblur.c',
|
||||
'gskcontour.c',
|
||||
'gskcurve.c',
|
||||
'gskcurveintersect.c',
|
||||
'gskdebug.c',
|
||||
'gskpathdash.c',
|
||||
'gskprivate.c',
|
||||
|
||||
Reference in New Issue
Block a user