Add gsk_curve_intersect
Add a way to find the intersections of two curves. This will be used in stroking.
This commit is contained in:
453
gsk/gskcurveintersect.c
Normal file
453
gsk/gskcurveintersect.c
Normal file
@@ -0,0 +1,453 @@
|
||||
/*
|
||||
* Copyright © 2020 Red Hat, Inc
|
||||
*
|
||||
* This library is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU Lesser General Public
|
||||
* License as published by the Free Software Foundation; either
|
||||
* version 2.1 of the License, or (at your option) any later version.
|
||||
*
|
||||
* This library is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
* Lesser General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU Lesser General Public
|
||||
* License along with this library. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* Authors: Matthias Clasen <mclasen@redhat.com>
|
||||
*/
|
||||
|
||||
#include "config.h"
|
||||
|
||||
#include "gskcurveprivate.h"
|
||||
|
||||
static inline gboolean
|
||||
acceptable (float t)
|
||||
{
|
||||
return 0 <= t && t <= 1;
|
||||
}
|
||||
|
||||
|
||||
static int
|
||||
line_intersect (const GskCurve *curve1,
|
||||
const GskCurve *curve2,
|
||||
float *t1,
|
||||
float *t2,
|
||||
graphene_point_t *p)
|
||||
{
|
||||
const graphene_point_t *pts1 = curve1->line.points;
|
||||
const graphene_point_t *pts2 = curve2->line.points;
|
||||
float a1 = pts1[0].x - pts1[1].x;
|
||||
float b1 = pts1[0].y - pts1[1].y;
|
||||
float a2 = pts2[0].x - pts2[1].x;
|
||||
float b2 = pts2[0].y - pts2[1].y;
|
||||
float det = a1 * b2 - b1 * a2;
|
||||
|
||||
if (det != 0)
|
||||
{
|
||||
float tt = ((pts1[0].x - pts2[0].x) * b2 - (pts1[0].y - pts2[0].y) * a2) / det;
|
||||
float ss = - ((pts1[0].y - pts2[0].y) * a1 - (pts1[0].x - pts2[0].x) * b1) / det;
|
||||
|
||||
if (acceptable (tt) && acceptable (ss))
|
||||
{
|
||||
p->x = pts1[0].x + tt * (pts1[1].x - pts1[0].x);
|
||||
p->y = pts1[0].y + tt * (pts1[1].y - pts1[0].y);
|
||||
|
||||
*t1 = tt;
|
||||
*t2 = ss;
|
||||
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void
|
||||
get_tangent (const graphene_point_t *p0,
|
||||
const graphene_point_t *p1,
|
||||
graphene_vec2_t *t)
|
||||
{
|
||||
graphene_vec2_init (t, p1->x - p0->x, p1->y - p0->y);
|
||||
graphene_vec2_normalize (t, t);
|
||||
}
|
||||
|
||||
static void
|
||||
align_points (const graphene_point_t *p,
|
||||
const graphene_point_t *a,
|
||||
const graphene_point_t *b,
|
||||
graphene_point_t *q,
|
||||
int n)
|
||||
{
|
||||
graphene_vec2_t n1;
|
||||
float angle;
|
||||
float s, c;
|
||||
|
||||
get_tangent (a, b, &n1);
|
||||
angle = - atan2 (graphene_vec2_get_y (&n1), graphene_vec2_get_x (&n1));
|
||||
sincosf (angle, &s, &c);
|
||||
|
||||
for (int i = 0; i < n; i++)
|
||||
{
|
||||
q[i].x = (p[i].x - a->x) * c - (p[i].y - a->y) * s;
|
||||
q[i].y = (p[i].x - a->x) * s + (p[i].y - a->y) * c;
|
||||
}
|
||||
}
|
||||
|
||||
static void
|
||||
find_point_on_line (const graphene_point_t *p1,
|
||||
const graphene_point_t *p2,
|
||||
const graphene_point_t *q,
|
||||
float *t)
|
||||
{
|
||||
float tx = p2->x - p1->x;
|
||||
float ty = p2->y - p1->y;
|
||||
float sx = q->x - p1->x;
|
||||
float sy = q->y - p1->y;
|
||||
|
||||
*t = (tx*sx + ty*sy) / (tx*tx + ty*ty);
|
||||
}
|
||||
|
||||
static float
|
||||
cuberoot (float v)
|
||||
{
|
||||
if (v < 0)
|
||||
return -pow (-v, 1.f / 3);
|
||||
return pow (v, 1.f / 3);
|
||||
}
|
||||
|
||||
/* Solve P = 0 where P is
|
||||
* P = (1-t)^3*pa + 3*t*(1-t)^2*pb + 3*t^2*(1-t)*pc + t^3*pd
|
||||
*/
|
||||
static int
|
||||
get_cubic_roots (float pa, float pb, float pc, float pd, float roots[3])
|
||||
{
|
||||
float a, b, c, d;
|
||||
float q, q2;
|
||||
float p, p3;
|
||||
float discriminant;
|
||||
float u1, v1, sd;
|
||||
int n_roots = 0;
|
||||
|
||||
d = -pa + 3*pb - 3*pc + pd;
|
||||
a = 3*pa - 6*pb + 3*pc;
|
||||
b = -3*pa + 3*pb;
|
||||
c = pa;
|
||||
|
||||
if (fabs (d) < 0.0001)
|
||||
{
|
||||
if (fabs (a) < 0.0001)
|
||||
{
|
||||
if (fabs (b) < 0.0001)
|
||||
return 0;
|
||||
|
||||
if (acceptable (-c / b))
|
||||
{
|
||||
roots[0] = -c / b;
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
q = sqrt (b*b - 4*a*c);
|
||||
roots[n_roots] = (-b + q) / (2 * a);
|
||||
if (acceptable (roots[n_roots]))
|
||||
n_roots++;
|
||||
|
||||
roots[n_roots] = (-b - q) / (2 * a);
|
||||
if (acceptable (roots[n_roots]))
|
||||
n_roots++;
|
||||
|
||||
return n_roots;
|
||||
}
|
||||
|
||||
a /= d;
|
||||
b /= d;
|
||||
c /= d;
|
||||
|
||||
p = (3*b - a*a)/3;
|
||||
p3 = p/3;
|
||||
q = (2*a*a*a - 9*a*b + 27*c)/27;
|
||||
q2 = q/2;
|
||||
discriminant = q2*q2 + p3*p3*p3;
|
||||
|
||||
if (discriminant < 0)
|
||||
{
|
||||
float mp3 = -p/3;
|
||||
float mp33 = mp3*mp3*mp3;
|
||||
float r = sqrt (mp33);
|
||||
float t = -q / (2*r);
|
||||
float cosphi = t < -1 ? -1 : (t > 1 ? 1 : t);
|
||||
float phi = acos (cosphi);
|
||||
float crtr = cuberoot (r);
|
||||
float t1 = 2*crtr;
|
||||
|
||||
roots[n_roots] = t1 * cos (phi/3) - a/3;
|
||||
if (acceptable (roots[n_roots]))
|
||||
n_roots++;
|
||||
roots[n_roots] = t1 * cos ((phi + 2*M_PI) / 3) - a/3;
|
||||
if (acceptable (roots[n_roots]))
|
||||
n_roots++;
|
||||
roots[n_roots] = t1 * cos ((phi + 4*M_PI) / 3) - a/3;
|
||||
if (acceptable (roots[n_roots]))
|
||||
n_roots++;
|
||||
|
||||
return n_roots;
|
||||
}
|
||||
|
||||
if (discriminant == 0)
|
||||
{
|
||||
u1 = q2 < 0 ? cuberoot (-q2) : -cuberoot (q2);
|
||||
roots[n_roots] = 2*u1 - a/3;
|
||||
if (acceptable (roots[n_roots]))
|
||||
n_roots++;
|
||||
roots[n_roots] = -u1 - a/3;
|
||||
if (acceptable (roots[n_roots]))
|
||||
n_roots++;
|
||||
|
||||
return n_roots;
|
||||
}
|
||||
|
||||
sd = sqrt (discriminant);
|
||||
u1 = cuberoot (sd - q2);
|
||||
v1 = cuberoot (sd + q2);
|
||||
roots[n_roots] = u1 - v1 - a/3;
|
||||
if (acceptable (roots[n_roots]))
|
||||
n_roots++;
|
||||
|
||||
return n_roots;
|
||||
}
|
||||
|
||||
static int
|
||||
line_curve_intersect (const GskCurve *curve1,
|
||||
const GskCurve *curve2,
|
||||
float *t1,
|
||||
float *t2,
|
||||
graphene_point_t *p,
|
||||
int n)
|
||||
{
|
||||
const graphene_point_t *a = &curve1->line.points[0];
|
||||
const graphene_point_t *b = &curve1->line.points[1];
|
||||
graphene_point_t pts[4];
|
||||
float t[3];
|
||||
int m, i;
|
||||
|
||||
/* Rotate things to place curve1 on the x axis,
|
||||
* then solve curve2 for y == 0.
|
||||
*/
|
||||
align_points (curve2->curve.points, a, b, pts, 4);
|
||||
|
||||
m = get_cubic_roots (pts[0].y, pts[1].y, pts[2].y, pts[3].y, t);
|
||||
|
||||
m = MIN (m, n);
|
||||
for (i = 0; i < m; i++)
|
||||
{
|
||||
t2[i] = t[i];
|
||||
gsk_curve_get_point (curve2, t[i], &p[i]);
|
||||
find_point_on_line (a, b, &p[i], &t1[i]);
|
||||
}
|
||||
|
||||
return m;
|
||||
}
|
||||
|
||||
static void
|
||||
curve_intersect_recurse (const GskCurve *curve1,
|
||||
const GskCurve *curve2,
|
||||
float t1l,
|
||||
float t1r,
|
||||
float t2l,
|
||||
float t2r,
|
||||
float *t1,
|
||||
float *t2,
|
||||
graphene_point_t *p,
|
||||
int n,
|
||||
int *pos)
|
||||
{
|
||||
GskCurve p11, p12, p21, p22;
|
||||
graphene_rect_t b1, b2;
|
||||
float d1, d2;
|
||||
|
||||
if (*pos == n)
|
||||
return;
|
||||
|
||||
gsk_curve_get_tight_bounds (curve1, &b1);
|
||||
gsk_curve_get_tight_bounds (curve2, &b2);
|
||||
|
||||
if (!graphene_rect_intersection (&b1, &b2, NULL))
|
||||
return;
|
||||
|
||||
d1 = (t1r - t1l) / 2;
|
||||
d2 = (t2r - t2l) / 2;
|
||||
|
||||
if (b1.size.width < 0.1 && b1.size.height < 0.1 &&
|
||||
b2.size.width < 0.1 && b2.size.height < 0.1)
|
||||
{
|
||||
graphene_point_t c;
|
||||
t1[*pos] = t1l + d1;
|
||||
t2[*pos] = t2l + d2;
|
||||
gsk_curve_get_point (curve1, 0.5, &c);
|
||||
|
||||
for (int i = 0; i < *pos; i++)
|
||||
{
|
||||
if (graphene_point_near (&c, &p[i], 0.1))
|
||||
return;
|
||||
}
|
||||
|
||||
p[*pos] = c;
|
||||
(*pos)++;
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
gsk_curve_split (curve1, 0.5, &p11, &p12);
|
||||
gsk_curve_split (curve2, 0.5, &p21, &p22);
|
||||
|
||||
curve_intersect_recurse (&p11, &p21, t1l, t1l + d1, t2l, t2l + d2, t1, t2, p, n, pos);
|
||||
curve_intersect_recurse (&p11, &p22, t1l, t1l + d1, t2l + d2, t2r, t1, t2, p, n, pos);
|
||||
curve_intersect_recurse (&p12, &p21, t1l + d1, t1r, t2l, t2l + d2, t1, t2, p, n, pos);
|
||||
curve_intersect_recurse (&p12, &p22, t1l + d1, t1r, t2l + d2, t2r, t1, t2, p, n, pos);
|
||||
}
|
||||
|
||||
static int
|
||||
curve_intersect (const GskCurve *curve1,
|
||||
const GskCurve *curve2,
|
||||
float *t1,
|
||||
float *t2,
|
||||
graphene_point_t *p,
|
||||
int n)
|
||||
{
|
||||
int pos = 0;
|
||||
|
||||
curve_intersect_recurse (curve1, curve2, 0, 1, 0, 1, t1, t2, p, n, &pos);
|
||||
|
||||
return pos;
|
||||
}
|
||||
|
||||
static void
|
||||
get_bounds (const GskCurve *curve,
|
||||
float tl,
|
||||
float tr,
|
||||
graphene_rect_t *bounds)
|
||||
{
|
||||
GskCurve c;
|
||||
|
||||
gsk_curve_segment (curve, tl, tr, &c);
|
||||
gsk_curve_get_tight_bounds (&c, bounds);
|
||||
}
|
||||
|
||||
static void
|
||||
general_intersect_recurse (const GskCurve *curve1,
|
||||
const GskCurve *curve2,
|
||||
float t1l,
|
||||
float t1r,
|
||||
float t2l,
|
||||
float t2r,
|
||||
float *t1,
|
||||
float *t2,
|
||||
graphene_point_t *p,
|
||||
int n,
|
||||
int *pos)
|
||||
{
|
||||
graphene_rect_t b1, b2;
|
||||
float d1, d2;
|
||||
|
||||
if (*pos == n)
|
||||
return;
|
||||
|
||||
get_bounds (curve1, t1l, t1r, &b1);
|
||||
get_bounds (curve2, t2l, t2r, &b2);
|
||||
|
||||
if (!graphene_rect_intersection (&b1, &b2, NULL))
|
||||
return;
|
||||
|
||||
d1 = (t1r - t1l) / 2;
|
||||
d2 = (t2r - t2l) / 2;
|
||||
|
||||
if (b1.size.width < 0.1 && b1.size.height < 0.1 &&
|
||||
b2.size.width < 0.1 && b2.size.height < 0.1)
|
||||
{
|
||||
graphene_point_t c;
|
||||
t1[*pos] = t1l + d1;
|
||||
t2[*pos] = t2l + d2;
|
||||
gsk_curve_get_point (curve1, t1[*pos], &c);
|
||||
|
||||
for (int i = 0; i < *pos; i++)
|
||||
{
|
||||
if (graphene_point_near (&c, &p[i], 0.1))
|
||||
return;
|
||||
}
|
||||
|
||||
p[*pos] = c;
|
||||
(*pos)++;
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
/* Note that in the conic case, we cannot just split the curves and
|
||||
* pass the two halves down, since splitting changes the parametrization,
|
||||
* and we need the t's to be valid parameters wrt to the original curve.
|
||||
*
|
||||
* So, instead, we determine the bounding boxes above by always starting
|
||||
* from the original curve. That is a bit less efficient, but also works
|
||||
* for conics.
|
||||
*/
|
||||
general_intersect_recurse (curve1, curve2, t1l, t1l + d1, t2l, t2l + d2, t1, t2, p, n, pos);
|
||||
general_intersect_recurse (curve1, curve2, t1l, t1l + d1, t2l + d2, t2r, t1, t2, p, n, pos);
|
||||
general_intersect_recurse (curve1, curve2, t1l + d1, t1r, t2l, t2l + d2, t1, t2, p, n, pos);
|
||||
general_intersect_recurse (curve1, curve2, t1l + d1, t1r, t2l + d2, t2r, t1, t2, p, n, pos);
|
||||
}
|
||||
|
||||
static int
|
||||
general_intersect (const GskCurve *curve1,
|
||||
const GskCurve *curve2,
|
||||
float *t1,
|
||||
float *t2,
|
||||
graphene_point_t *p,
|
||||
int n)
|
||||
{
|
||||
int pos = 0;
|
||||
|
||||
general_intersect_recurse (curve1, curve2, 0, 1, 0, 1, t1, t2, p, n, &pos);
|
||||
|
||||
return pos;
|
||||
}
|
||||
|
||||
/* Place intersections between the curves in p, and their Bezier positions
|
||||
* in t1 and t2, up to n. Return the number of intersections found.
|
||||
*
|
||||
* Note that two cubic Beziers can have up to 9 intersections.
|
||||
*/
|
||||
int
|
||||
gsk_curve_intersect (const GskCurve *curve1,
|
||||
const GskCurve *curve2,
|
||||
float *t1,
|
||||
float *t2,
|
||||
graphene_point_t *p,
|
||||
int n)
|
||||
{
|
||||
GskPathOperation op1 = curve1->op;
|
||||
GskPathOperation op2 = curve2->op;
|
||||
|
||||
if (op1 == GSK_PATH_CLOSE)
|
||||
op1 = GSK_PATH_LINE;
|
||||
|
||||
if (op2 == GSK_PATH_CLOSE)
|
||||
op2 = GSK_PATH_LINE;
|
||||
|
||||
/* We special-case line-line and line-curve intersections,
|
||||
* since we can solve them directly.
|
||||
* Everything else is done via bisection.
|
||||
*/
|
||||
if (op1 == GSK_PATH_LINE && op2 == GSK_PATH_LINE)
|
||||
return line_intersect (curve1, curve2, t1, t2, p);
|
||||
else if (op1 == GSK_PATH_LINE && op2 == GSK_PATH_CURVE)
|
||||
return line_curve_intersect (curve1, curve2, t1, t2, p, n);
|
||||
else if (op1 == GSK_PATH_CURVE && op2 == GSK_PATH_LINE)
|
||||
return line_curve_intersect (curve2, curve1, t2, t1, p, n);
|
||||
else if (op1 == GSK_PATH_CURVE && op2 == GSK_PATH_CURVE)
|
||||
return curve_intersect (curve1, curve2, t1, t2, p, n);
|
||||
else
|
||||
return general_intersect (curve1, curve2, t1, t2, p, n);
|
||||
|
||||
}
|
||||
@@ -118,6 +118,12 @@ void gsk_curve_get_bounds (const GskCurve
|
||||
void gsk_curve_get_tight_bounds (const GskCurve *curve,
|
||||
graphene_rect_t *bounds);
|
||||
|
||||
int gsk_curve_intersect (const GskCurve *curve1,
|
||||
const GskCurve *curve2,
|
||||
float *t1,
|
||||
float *t2,
|
||||
graphene_point_t *p,
|
||||
int n);
|
||||
|
||||
G_END_DECLS
|
||||
|
||||
|
||||
@@ -42,6 +42,7 @@ gsk_private_sources = files([
|
||||
'gskcairoblur.c',
|
||||
'gskcontour.c',
|
||||
'gskcurve.c',
|
||||
'gskcurveintersect.c',
|
||||
'gskdebug.c',
|
||||
'gskprivate.c',
|
||||
'gskprofiler.c',
|
||||
|
||||
Reference in New Issue
Block a user