curve: Some refactoring

Move cusp-related code to gskcurveintersect.c.
Add functions to find cusps and inflection points of cubics.
These will be used for intersections and in the stroker.
This commit is contained in:
Matthias Clasen
2023-08-29 22:27:00 -04:00
parent 8ff4e27103
commit fffa490280
4 changed files with 392 additions and 182 deletions

View File

@@ -2330,6 +2330,30 @@ gsk_curve_get_crossing (const GskCurve *curve,
return get_class (curve->op)->get_crossing (curve, point);
}
float
gsk_curve_get_length_to (const GskCurve *curve,
float t)
{
return get_class (curve->op)->get_length_to (curve, t);
}
float
gsk_curve_get_length (const GskCurve *curve)
{
return gsk_curve_get_length_to (curve, 1);
}
float
gsk_curve_at_length (const GskCurve *curve,
float length,
float epsilon)
{
return get_class (curve->op)->get_at_length (curve, length, epsilon);
}
/* }}} */
/* {{{ Closest point */
static gboolean
project_point_onto_line (const GskCurve *curve,
const graphene_point_t *point,
@@ -2451,187 +2475,6 @@ gsk_curve_get_closest_point (const GskCurve *curve,
return find_closest_point (curve, point, threshold, 0, 1, out_dist, out_t);
}
float
gsk_curve_get_length_to (const GskCurve *curve,
float t)
{
return get_class (curve->op)->get_length_to (curve, t);
}
float
gsk_curve_get_length (const GskCurve *curve)
{
return gsk_curve_get_length_to (curve, 1);
}
/* Compute the inverse of the arclength using bisection,
* to a given precision
*/
float
gsk_curve_at_length (const GskCurve *curve,
float length,
float epsilon)
{
return get_class (curve->op)->get_at_length (curve, length, epsilon);
}
static inline void
_sincosf (float angle,
float *out_s,
float *out_c)
{
#ifdef HAVE_SINCOSF
sincosf (angle, out_s, out_c);
#else
*out_s = sinf (angle);
*out_c = cosf (angle);
#endif
}
static void
align_points (const graphene_point_t *p,
const graphene_point_t *a,
const graphene_point_t *b,
graphene_point_t *q,
int n)
{
graphene_vec2_t n1;
float angle;
float s, c;
get_tangent (a, b, &n1);
angle = - atan2f (graphene_vec2_get_y (&n1), graphene_vec2_get_x (&n1));
_sincosf (angle, &s, &c);
for (int i = 0; i < n; i++)
{
q[i].x = (p[i].x - a->x) * c - (p[i].y - a->y) * s;
q[i].y = (p[i].x - a->x) * s + (p[i].y - a->y) * c;
}
}
static int
filter_allowable (float t[3],
int n)
{
float g[3];
int j = 0;
for (int i = 0; i < n; i++)
if (0 < t[i] && t[i] < 1)
g[j++] = t[i];
for (int i = 0; i < j; i++)
t[i] = g[i];
return j;
}
/* find solutions for at^2 + bt + c = 0 */
static int
solve_quadratic (float a, float b, float c, float t[2])
{
float d;
int n = 0;
if (fabsf (a) > 0.0001)
{
if (b*b > 4*a*c)
{
d = sqrtf (b*b - 4*a*c);
t[n++] = (-b + d)/(2*a);
t[n++] = (-b - d)/(2*a);
}
else
{
t[n++] = -b / (2*a);
}
}
else if (fabsf (b) > 0.0001)
{
t[n++] = -c / b;
}
return n;
}
int
gsk_curve_get_curvature_points (const GskCurve *curve,
float t[3])
{
const graphene_point_t *pts = curve->cubic.points;
graphene_point_t p[4];
float a, b, c, d;
float x, y, z;
int n;
if (curve->op != GSK_PATH_CUBIC)
return 0; /* FIXME */
align_points (pts, &pts[0], &pts[3], p, 4);
a = p[2].x * p[1].y;
b = p[3].x * p[1].y;
c = p[1].x * p[2].y;
d = p[3].x * p[2].y;
x = - 3*a + 2*b + 3*c - d;
y = 3*a - b - 3*c;
z = c - a;
n = solve_quadratic (x, y, z, t);
return filter_allowable (t, n);
}
/* Find cusps inside the open interval from 0 to 1.
*
* According to Stone & deRose, A Geometric Characterization
* of Parametric Cubic curves, a necessary and sufficient
* condition is that the first derivative vanishes.
*/
int
gsk_curve_get_cusps (const GskCurve *curve,
float t[2])
{
const graphene_point_t *pts = curve->cubic.points;
graphene_point_t p[3];
float ax, bx, cx;
float ay, by, cy;
float tx[3];
int nx;
int n = 0;
if (curve->op != GSK_PATH_CUBIC)
return 0;
p[0].x = 3 * (pts[1].x - pts[0].x);
p[0].y = 3 * (pts[1].y - pts[0].y);
p[1].x = 3 * (pts[2].x - pts[1].x);
p[1].y = 3 * (pts[2].y - pts[1].y);
p[2].x = 3 * (pts[3].x - pts[2].x);
p[2].y = 3 * (pts[3].y - pts[2].y);
ax = p[0].x - 2 * p[1].x + p[2].x;
bx = - 2 * p[0].x + 2 * p[1].x;
cx = p[0].x;
nx = solve_quadratic (ax, bx, cx, tx);
nx = filter_allowable (tx, nx);
ay = p[0].y - 2 * p[1].y + p[2].y;
by = - 2 * p[0].y + 2 * p[1].y;
cy = p[0].y;
for (int i = 0; i < nx; i++)
{
float ti = tx[i];
if (0 < ti && ti < 1 &&
fabsf (ay * ti * ti + by * ti + cy) < 0.001)
t[n++] = ti;
}
return n;
}
/* }}} */
/* vim:set foldmethod=marker expandtab: */

367
gsk/gskcurveintersect.c Normal file
View File

@@ -0,0 +1,367 @@
/*
* Copyright © 2020 Red Hat, Inc
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library. If not, see <http://www.gnu.org/licenses/>.
*
* Authors: Matthias Clasen <mclasen@redhat.com>
*/
#include "config.h"
#include <math.h>
#include "gskcurveprivate.h"
/* {{{ Utilities */
static void
get_tangent (const graphene_point_t *p0,
const graphene_point_t *p1,
graphene_vec2_t *t)
{
graphene_vec2_init (t, p1->x - p0->x, p1->y - p0->y);
graphene_vec2_normalize (t, t);
}
static inline gboolean
acceptable (float t)
{
return 0 - FLT_EPSILON <= t && t <= 1 + FLT_EPSILON;
}
static inline void
_sincosf (float angle,
float *out_s,
float *out_c)
{
#ifdef HAVE_SINCOSF
sincosf (angle, out_s, out_c);
#else
*out_s = sinf (angle);
*out_c = cosf (angle);
#endif
}
static void
align_points (const graphene_point_t *p,
const graphene_point_t *a,
const graphene_point_t *b,
graphene_point_t *q,
int n)
{
graphene_vec2_t n1;
float angle;
float s, c;
get_tangent (a, b, &n1);
angle = - atan2 (graphene_vec2_get_y (&n1), graphene_vec2_get_x (&n1));
_sincosf (angle, &s, &c);
for (int i = 0; i < n; i++)
{
q[i].x = (p[i].x - a->x) * c - (p[i].y - a->y) * s;
q[i].y = (p[i].x - a->x) * s + (p[i].y - a->y) * c;
}
}
static void
find_point_on_line (const graphene_point_t *p1,
const graphene_point_t *p2,
const graphene_point_t *q,
float *t)
{
if (p2->x != p1->x)
*t = (q->x - p1->x) / (p2->x - p1->x);
else
*t = (q->y - p1->y) / (p2->y - p1->y);
}
/* find solutions for at^2 + bt + c = 0 */
static int
solve_quadratic (float a, float b, float c, float t[2])
{
float d;
int n = 0;
if (fabs (a) > 0.0001)
{
if (b*b > 4*a*c)
{
d = sqrt (b*b - 4*a*c);
t[n++] = (-b + d)/(2*a);
t[n++] = (-b - d)/(2*a);
}
else
{
t[n++] = -b / (2*a);
}
}
else if (fabs (b) > 0.0001)
{
t[n++] = -c / b;
}
return n;
}
static int
filter_allowable (float t[3],
int n)
{
float g[3];
int j = 0;
for (int i = 0; i < n; i++)
if (0 < t[i] && t[i] < 1)
g[j++] = t[i];
for (int i = 0; i < j; i++)
t[i] = g[i];
return j;
}
/* Solve P = 0 where P is
* P = (1-t)^2*pa + 2*t*(1-t)*pb + t^2*pc
*/
static int
get_quadratic_roots (float pa, float pb, float pc, float roots[2])
{
float a, b, c, d;
int n_roots = 0;
a = pa - 2 * pb + pc;
b = 2 * (pb - pa);
c = pa;
d = b*b - 4*a*c;
if (d > 0.0001)
{
float q = sqrt (d);
roots[n_roots] = (-b + q) / (2 * a);
if (acceptable (roots[n_roots]))
n_roots++;
roots[n_roots] = (-b - q) / (2 * a);
if (acceptable (roots[n_roots]))
n_roots++;
}
else if (fabs (d) < 0.0001)
{
roots[n_roots] = -b / (2 * a);
if (acceptable (roots[n_roots]))
n_roots++;
}
return n_roots;
}
static float
cuberoot (float v)
{
if (v < 0)
return -pow (-v, 1.f / 3);
return pow (v, 1.f / 3);
}
/* Solve P = 0 where P is
* P = (1-t)^3*pa + 3*t*(1-t)^2*pb + 3*t^2*(1-t)*pc + t^3*pd
*/
static int
get_cubic_roots (float pa, float pb, float pc, float pd, float roots[3])
{
float a, b, c, d;
float q, q2;
float p, p3;
float discriminant;
float u1, v1, sd;
int n_roots = 0;
d = -pa + 3*pb - 3*pc + pd;
a = 3*pa - 6*pb + 3*pc;
b = -3*pa + 3*pb;
c = pa;
if (fabs (d) < 0.0001)
{
if (fabs (a) < 0.0001)
{
if (fabs (b) < 0.0001)
return 0;
if (acceptable (-c / b))
{
roots[0] = -c / b;
return 1;
}
return 0;
}
q = sqrt (b*b - 4*a*c);
roots[n_roots] = (-b + q) / (2 * a);
if (acceptable (roots[n_roots]))
n_roots++;
roots[n_roots] = (-b - q) / (2 * a);
if (acceptable (roots[n_roots]))
n_roots++;
return n_roots;
}
a /= d;
b /= d;
c /= d;
p = (3*b - a*a)/3;
p3 = p/3;
q = (2*a*a*a - 9*a*b + 27*c)/27;
q2 = q/2;
discriminant = q2*q2 + p3*p3*p3;
if (discriminant < 0)
{
float mp3 = -p/3;
float mp33 = mp3*mp3*mp3;
float r = sqrt (mp33);
float t = -q / (2*r);
float cosphi = t < -1 ? -1 : (t > 1 ? 1 : t);
float phi = acos (cosphi);
float crtr = cuberoot (r);
float t1 = 2*crtr;
roots[n_roots] = t1 * cos (phi/3) - a/3;
if (acceptable (roots[n_roots]))
n_roots++;
roots[n_roots] = t1 * cos ((phi + 2*M_PI) / 3) - a/3;
if (acceptable (roots[n_roots]))
n_roots++;
roots[n_roots] = t1 * cos ((phi + 4*M_PI) / 3) - a/3;
if (acceptable (roots[n_roots]))
n_roots++;
return n_roots;
}
if (discriminant == 0)
{
u1 = q2 < 0 ? cuberoot (-q2) : -cuberoot (q2);
roots[n_roots] = 2*u1 - a/3;
if (acceptable (roots[n_roots]))
n_roots++;
roots[n_roots] = -u1 - a/3;
if (acceptable (roots[n_roots]))
n_roots++;
return n_roots;
}
sd = sqrt (discriminant);
u1 = cuberoot (sd - q2);
v1 = cuberoot (sd + q2);
roots[n_roots] = u1 - v1 - a/3;
if (acceptable (roots[n_roots]))
n_roots++;
return n_roots;
}
/* }}} */
/* {{{ Cusps and inflections */
/* Get the points where the curvature of curve is
* zero, or a maximum or minimum, inside the open
* interval from 0 to 1.
*/
int
gsk_curve_get_curvature_points (const GskCurve *curve,
float t[3])
{
const graphene_point_t *pts = curve->cubic.points;
graphene_point_t p[4];
float a, b, c, d;
float x, y, z;
int n;
if (curve->op != GSK_PATH_CUBIC)
return 0;
align_points (pts, &pts[0], &pts[3], p, 4);
a = p[2].x * p[1].y;
b = p[3].x * p[1].y;
c = p[1].x * p[2].y;
d = p[3].x * p[2].y;
x = - 3*a + 2*b + 3*c - d;
y = 3*a - b - 3*c;
z = c - a;
n = solve_quadratic (x, y, z, t);
return filter_allowable (t, n);
}
/* Find cusps inside the open interval from 0 to 1.
*
* According to Stone & deRose, A Geometric Characterization
* of Parametric Cubic curves, a necessary and sufficient
* condition is that the first derivative vanishes.
*/
int
gsk_curve_get_cusps (const GskCurve *curve,
float t[2])
{
const graphene_point_t *pts = curve->cubic.points;
graphene_point_t p[3];
float ax, bx, cx;
float ay, by, cy;
float tx[3];
int nx;
int n = 0;
if (curve->op != GSK_PATH_CUBIC)
return 0;
p[0].x = 3 * (pts[1].x - pts[0].x);
p[0].y = 3 * (pts[1].y - pts[0].y);
p[1].x = 3 * (pts[2].x - pts[1].x);
p[1].y = 3 * (pts[2].y - pts[1].y);
p[2].x = 3 * (pts[3].x - pts[2].x);
p[2].y = 3 * (pts[3].y - pts[2].y);
ax = p[0].x - 2 * p[1].x + p[2].x;
bx = - 2 * p[0].x + 2 * p[1].x;
cx = p[0].x;
nx = solve_quadratic (ax, bx, cx, tx);
nx = filter_allowable (tx, nx);
ay = p[0].y - 2 * p[1].y + p[2].y;
by = - 2 * p[0].y + 2 * p[1].y;
cy = p[0].y;
for (int i = 0; i < nx; i++)
{
float ti = tx[i];
if (0 < ti && ti < 1 &&
fabs (ay * ti * ti + by * ti + cy) < 0.001)
t[n++] = ti;
}
return n;
}
/* }}} */
/* vim:set foldmethod=marker expandtab: */

View File

@@ -187,6 +187,5 @@ int gsk_curve_get_curvature_points (const GskCurve
int gsk_curve_get_cusps (const GskCurve *curve,
float t[2]);
G_END_DECLS

View File

@@ -45,6 +45,7 @@ gsk_private_sources = files([
'gskcairoblur.c',
'gskcontour.c',
'gskcurve.c',
'gskcurveintersect.c',
'gskdebug.c',
'gskprivate.c',
'gskprofiler.c',