curve: Some refactoring
Move cusp-related code to gskcurveintersect.c. Add functions to find cusps and inflection points of cubics. These will be used for intersections and in the stroker.
This commit is contained in:
205
gsk/gskcurve.c
205
gsk/gskcurve.c
@@ -2330,6 +2330,30 @@ gsk_curve_get_crossing (const GskCurve *curve,
|
||||
return get_class (curve->op)->get_crossing (curve, point);
|
||||
}
|
||||
|
||||
float
|
||||
gsk_curve_get_length_to (const GskCurve *curve,
|
||||
float t)
|
||||
{
|
||||
return get_class (curve->op)->get_length_to (curve, t);
|
||||
}
|
||||
|
||||
float
|
||||
gsk_curve_get_length (const GskCurve *curve)
|
||||
{
|
||||
return gsk_curve_get_length_to (curve, 1);
|
||||
}
|
||||
|
||||
float
|
||||
gsk_curve_at_length (const GskCurve *curve,
|
||||
float length,
|
||||
float epsilon)
|
||||
{
|
||||
return get_class (curve->op)->get_at_length (curve, length, epsilon);
|
||||
}
|
||||
|
||||
/* }}} */
|
||||
/* {{{ Closest point */
|
||||
|
||||
static gboolean
|
||||
project_point_onto_line (const GskCurve *curve,
|
||||
const graphene_point_t *point,
|
||||
@@ -2451,187 +2475,6 @@ gsk_curve_get_closest_point (const GskCurve *curve,
|
||||
return find_closest_point (curve, point, threshold, 0, 1, out_dist, out_t);
|
||||
}
|
||||
|
||||
float
|
||||
gsk_curve_get_length_to (const GskCurve *curve,
|
||||
float t)
|
||||
{
|
||||
return get_class (curve->op)->get_length_to (curve, t);
|
||||
}
|
||||
|
||||
float
|
||||
gsk_curve_get_length (const GskCurve *curve)
|
||||
{
|
||||
return gsk_curve_get_length_to (curve, 1);
|
||||
}
|
||||
|
||||
/* Compute the inverse of the arclength using bisection,
|
||||
* to a given precision
|
||||
*/
|
||||
float
|
||||
gsk_curve_at_length (const GskCurve *curve,
|
||||
float length,
|
||||
float epsilon)
|
||||
{
|
||||
return get_class (curve->op)->get_at_length (curve, length, epsilon);
|
||||
}
|
||||
|
||||
static inline void
|
||||
_sincosf (float angle,
|
||||
float *out_s,
|
||||
float *out_c)
|
||||
{
|
||||
#ifdef HAVE_SINCOSF
|
||||
sincosf (angle, out_s, out_c);
|
||||
#else
|
||||
*out_s = sinf (angle);
|
||||
*out_c = cosf (angle);
|
||||
#endif
|
||||
}
|
||||
|
||||
static void
|
||||
align_points (const graphene_point_t *p,
|
||||
const graphene_point_t *a,
|
||||
const graphene_point_t *b,
|
||||
graphene_point_t *q,
|
||||
int n)
|
||||
{
|
||||
graphene_vec2_t n1;
|
||||
float angle;
|
||||
float s, c;
|
||||
|
||||
get_tangent (a, b, &n1);
|
||||
angle = - atan2f (graphene_vec2_get_y (&n1), graphene_vec2_get_x (&n1));
|
||||
_sincosf (angle, &s, &c);
|
||||
|
||||
for (int i = 0; i < n; i++)
|
||||
{
|
||||
q[i].x = (p[i].x - a->x) * c - (p[i].y - a->y) * s;
|
||||
q[i].y = (p[i].x - a->x) * s + (p[i].y - a->y) * c;
|
||||
}
|
||||
}
|
||||
|
||||
static int
|
||||
filter_allowable (float t[3],
|
||||
int n)
|
||||
{
|
||||
float g[3];
|
||||
int j = 0;
|
||||
|
||||
for (int i = 0; i < n; i++)
|
||||
if (0 < t[i] && t[i] < 1)
|
||||
g[j++] = t[i];
|
||||
for (int i = 0; i < j; i++)
|
||||
t[i] = g[i];
|
||||
return j;
|
||||
}
|
||||
|
||||
/* find solutions for at^2 + bt + c = 0 */
|
||||
static int
|
||||
solve_quadratic (float a, float b, float c, float t[2])
|
||||
{
|
||||
float d;
|
||||
int n = 0;
|
||||
|
||||
if (fabsf (a) > 0.0001)
|
||||
{
|
||||
if (b*b > 4*a*c)
|
||||
{
|
||||
d = sqrtf (b*b - 4*a*c);
|
||||
t[n++] = (-b + d)/(2*a);
|
||||
t[n++] = (-b - d)/(2*a);
|
||||
}
|
||||
else
|
||||
{
|
||||
t[n++] = -b / (2*a);
|
||||
}
|
||||
}
|
||||
else if (fabsf (b) > 0.0001)
|
||||
{
|
||||
t[n++] = -c / b;
|
||||
}
|
||||
|
||||
return n;
|
||||
}
|
||||
|
||||
int
|
||||
gsk_curve_get_curvature_points (const GskCurve *curve,
|
||||
float t[3])
|
||||
{
|
||||
const graphene_point_t *pts = curve->cubic.points;
|
||||
graphene_point_t p[4];
|
||||
float a, b, c, d;
|
||||
float x, y, z;
|
||||
int n;
|
||||
|
||||
if (curve->op != GSK_PATH_CUBIC)
|
||||
return 0; /* FIXME */
|
||||
|
||||
align_points (pts, &pts[0], &pts[3], p, 4);
|
||||
|
||||
a = p[2].x * p[1].y;
|
||||
b = p[3].x * p[1].y;
|
||||
c = p[1].x * p[2].y;
|
||||
d = p[3].x * p[2].y;
|
||||
|
||||
x = - 3*a + 2*b + 3*c - d;
|
||||
y = 3*a - b - 3*c;
|
||||
z = c - a;
|
||||
|
||||
n = solve_quadratic (x, y, z, t);
|
||||
return filter_allowable (t, n);
|
||||
}
|
||||
|
||||
/* Find cusps inside the open interval from 0 to 1.
|
||||
*
|
||||
* According to Stone & deRose, A Geometric Characterization
|
||||
* of Parametric Cubic curves, a necessary and sufficient
|
||||
* condition is that the first derivative vanishes.
|
||||
*/
|
||||
int
|
||||
gsk_curve_get_cusps (const GskCurve *curve,
|
||||
float t[2])
|
||||
{
|
||||
const graphene_point_t *pts = curve->cubic.points;
|
||||
graphene_point_t p[3];
|
||||
float ax, bx, cx;
|
||||
float ay, by, cy;
|
||||
float tx[3];
|
||||
int nx;
|
||||
int n = 0;
|
||||
|
||||
if (curve->op != GSK_PATH_CUBIC)
|
||||
return 0;
|
||||
|
||||
p[0].x = 3 * (pts[1].x - pts[0].x);
|
||||
p[0].y = 3 * (pts[1].y - pts[0].y);
|
||||
p[1].x = 3 * (pts[2].x - pts[1].x);
|
||||
p[1].y = 3 * (pts[2].y - pts[1].y);
|
||||
p[2].x = 3 * (pts[3].x - pts[2].x);
|
||||
p[2].y = 3 * (pts[3].y - pts[2].y);
|
||||
|
||||
ax = p[0].x - 2 * p[1].x + p[2].x;
|
||||
bx = - 2 * p[0].x + 2 * p[1].x;
|
||||
cx = p[0].x;
|
||||
|
||||
nx = solve_quadratic (ax, bx, cx, tx);
|
||||
nx = filter_allowable (tx, nx);
|
||||
|
||||
ay = p[0].y - 2 * p[1].y + p[2].y;
|
||||
by = - 2 * p[0].y + 2 * p[1].y;
|
||||
cy = p[0].y;
|
||||
|
||||
for (int i = 0; i < nx; i++)
|
||||
{
|
||||
float ti = tx[i];
|
||||
|
||||
if (0 < ti && ti < 1 &&
|
||||
fabsf (ay * ti * ti + by * ti + cy) < 0.001)
|
||||
t[n++] = ti;
|
||||
}
|
||||
|
||||
return n;
|
||||
}
|
||||
|
||||
/* }}} */
|
||||
|
||||
/* vim:set foldmethod=marker expandtab: */
|
||||
|
||||
367
gsk/gskcurveintersect.c
Normal file
367
gsk/gskcurveintersect.c
Normal file
@@ -0,0 +1,367 @@
|
||||
/*
|
||||
* Copyright © 2020 Red Hat, Inc
|
||||
*
|
||||
* This library is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU Lesser General Public
|
||||
* License as published by the Free Software Foundation; either
|
||||
* version 2.1 of the License, or (at your option) any later version.
|
||||
*
|
||||
* This library is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
* Lesser General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU Lesser General Public
|
||||
* License along with this library. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* Authors: Matthias Clasen <mclasen@redhat.com>
|
||||
*/
|
||||
|
||||
#include "config.h"
|
||||
|
||||
#include <math.h>
|
||||
|
||||
#include "gskcurveprivate.h"
|
||||
|
||||
/* {{{ Utilities */
|
||||
|
||||
static void
|
||||
get_tangent (const graphene_point_t *p0,
|
||||
const graphene_point_t *p1,
|
||||
graphene_vec2_t *t)
|
||||
{
|
||||
graphene_vec2_init (t, p1->x - p0->x, p1->y - p0->y);
|
||||
graphene_vec2_normalize (t, t);
|
||||
}
|
||||
|
||||
static inline gboolean
|
||||
acceptable (float t)
|
||||
{
|
||||
return 0 - FLT_EPSILON <= t && t <= 1 + FLT_EPSILON;
|
||||
}
|
||||
|
||||
static inline void
|
||||
_sincosf (float angle,
|
||||
float *out_s,
|
||||
float *out_c)
|
||||
{
|
||||
#ifdef HAVE_SINCOSF
|
||||
sincosf (angle, out_s, out_c);
|
||||
#else
|
||||
*out_s = sinf (angle);
|
||||
*out_c = cosf (angle);
|
||||
#endif
|
||||
}
|
||||
|
||||
static void
|
||||
align_points (const graphene_point_t *p,
|
||||
const graphene_point_t *a,
|
||||
const graphene_point_t *b,
|
||||
graphene_point_t *q,
|
||||
int n)
|
||||
{
|
||||
graphene_vec2_t n1;
|
||||
float angle;
|
||||
float s, c;
|
||||
|
||||
get_tangent (a, b, &n1);
|
||||
angle = - atan2 (graphene_vec2_get_y (&n1), graphene_vec2_get_x (&n1));
|
||||
_sincosf (angle, &s, &c);
|
||||
|
||||
for (int i = 0; i < n; i++)
|
||||
{
|
||||
q[i].x = (p[i].x - a->x) * c - (p[i].y - a->y) * s;
|
||||
q[i].y = (p[i].x - a->x) * s + (p[i].y - a->y) * c;
|
||||
}
|
||||
}
|
||||
|
||||
static void
|
||||
find_point_on_line (const graphene_point_t *p1,
|
||||
const graphene_point_t *p2,
|
||||
const graphene_point_t *q,
|
||||
float *t)
|
||||
{
|
||||
if (p2->x != p1->x)
|
||||
*t = (q->x - p1->x) / (p2->x - p1->x);
|
||||
else
|
||||
*t = (q->y - p1->y) / (p2->y - p1->y);
|
||||
}
|
||||
|
||||
/* find solutions for at^2 + bt + c = 0 */
|
||||
static int
|
||||
solve_quadratic (float a, float b, float c, float t[2])
|
||||
{
|
||||
float d;
|
||||
int n = 0;
|
||||
|
||||
if (fabs (a) > 0.0001)
|
||||
{
|
||||
if (b*b > 4*a*c)
|
||||
{
|
||||
d = sqrt (b*b - 4*a*c);
|
||||
t[n++] = (-b + d)/(2*a);
|
||||
t[n++] = (-b - d)/(2*a);
|
||||
}
|
||||
else
|
||||
{
|
||||
t[n++] = -b / (2*a);
|
||||
}
|
||||
}
|
||||
else if (fabs (b) > 0.0001)
|
||||
{
|
||||
t[n++] = -c / b;
|
||||
}
|
||||
|
||||
return n;
|
||||
}
|
||||
|
||||
static int
|
||||
filter_allowable (float t[3],
|
||||
int n)
|
||||
{
|
||||
float g[3];
|
||||
int j = 0;
|
||||
|
||||
for (int i = 0; i < n; i++)
|
||||
if (0 < t[i] && t[i] < 1)
|
||||
g[j++] = t[i];
|
||||
for (int i = 0; i < j; i++)
|
||||
t[i] = g[i];
|
||||
return j;
|
||||
}
|
||||
|
||||
/* Solve P = 0 where P is
|
||||
* P = (1-t)^2*pa + 2*t*(1-t)*pb + t^2*pc
|
||||
*/
|
||||
static int
|
||||
get_quadratic_roots (float pa, float pb, float pc, float roots[2])
|
||||
{
|
||||
float a, b, c, d;
|
||||
int n_roots = 0;
|
||||
|
||||
a = pa - 2 * pb + pc;
|
||||
b = 2 * (pb - pa);
|
||||
c = pa;
|
||||
|
||||
d = b*b - 4*a*c;
|
||||
|
||||
if (d > 0.0001)
|
||||
{
|
||||
float q = sqrt (d);
|
||||
roots[n_roots] = (-b + q) / (2 * a);
|
||||
if (acceptable (roots[n_roots]))
|
||||
n_roots++;
|
||||
roots[n_roots] = (-b - q) / (2 * a);
|
||||
if (acceptable (roots[n_roots]))
|
||||
n_roots++;
|
||||
}
|
||||
else if (fabs (d) < 0.0001)
|
||||
{
|
||||
roots[n_roots] = -b / (2 * a);
|
||||
if (acceptable (roots[n_roots]))
|
||||
n_roots++;
|
||||
}
|
||||
|
||||
return n_roots;
|
||||
}
|
||||
|
||||
static float
|
||||
cuberoot (float v)
|
||||
{
|
||||
if (v < 0)
|
||||
return -pow (-v, 1.f / 3);
|
||||
return pow (v, 1.f / 3);
|
||||
}
|
||||
|
||||
/* Solve P = 0 where P is
|
||||
* P = (1-t)^3*pa + 3*t*(1-t)^2*pb + 3*t^2*(1-t)*pc + t^3*pd
|
||||
*/
|
||||
static int
|
||||
get_cubic_roots (float pa, float pb, float pc, float pd, float roots[3])
|
||||
{
|
||||
float a, b, c, d;
|
||||
float q, q2;
|
||||
float p, p3;
|
||||
float discriminant;
|
||||
float u1, v1, sd;
|
||||
int n_roots = 0;
|
||||
|
||||
d = -pa + 3*pb - 3*pc + pd;
|
||||
a = 3*pa - 6*pb + 3*pc;
|
||||
b = -3*pa + 3*pb;
|
||||
c = pa;
|
||||
|
||||
if (fabs (d) < 0.0001)
|
||||
{
|
||||
if (fabs (a) < 0.0001)
|
||||
{
|
||||
if (fabs (b) < 0.0001)
|
||||
return 0;
|
||||
|
||||
if (acceptable (-c / b))
|
||||
{
|
||||
roots[0] = -c / b;
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
q = sqrt (b*b - 4*a*c);
|
||||
roots[n_roots] = (-b + q) / (2 * a);
|
||||
if (acceptable (roots[n_roots]))
|
||||
n_roots++;
|
||||
|
||||
roots[n_roots] = (-b - q) / (2 * a);
|
||||
if (acceptable (roots[n_roots]))
|
||||
n_roots++;
|
||||
|
||||
return n_roots;
|
||||
}
|
||||
|
||||
a /= d;
|
||||
b /= d;
|
||||
c /= d;
|
||||
|
||||
p = (3*b - a*a)/3;
|
||||
p3 = p/3;
|
||||
q = (2*a*a*a - 9*a*b + 27*c)/27;
|
||||
q2 = q/2;
|
||||
discriminant = q2*q2 + p3*p3*p3;
|
||||
|
||||
if (discriminant < 0)
|
||||
{
|
||||
float mp3 = -p/3;
|
||||
float mp33 = mp3*mp3*mp3;
|
||||
float r = sqrt (mp33);
|
||||
float t = -q / (2*r);
|
||||
float cosphi = t < -1 ? -1 : (t > 1 ? 1 : t);
|
||||
float phi = acos (cosphi);
|
||||
float crtr = cuberoot (r);
|
||||
float t1 = 2*crtr;
|
||||
|
||||
roots[n_roots] = t1 * cos (phi/3) - a/3;
|
||||
if (acceptable (roots[n_roots]))
|
||||
n_roots++;
|
||||
roots[n_roots] = t1 * cos ((phi + 2*M_PI) / 3) - a/3;
|
||||
if (acceptable (roots[n_roots]))
|
||||
n_roots++;
|
||||
roots[n_roots] = t1 * cos ((phi + 4*M_PI) / 3) - a/3;
|
||||
if (acceptable (roots[n_roots]))
|
||||
n_roots++;
|
||||
|
||||
return n_roots;
|
||||
}
|
||||
|
||||
if (discriminant == 0)
|
||||
{
|
||||
u1 = q2 < 0 ? cuberoot (-q2) : -cuberoot (q2);
|
||||
roots[n_roots] = 2*u1 - a/3;
|
||||
if (acceptable (roots[n_roots]))
|
||||
n_roots++;
|
||||
roots[n_roots] = -u1 - a/3;
|
||||
if (acceptable (roots[n_roots]))
|
||||
n_roots++;
|
||||
|
||||
return n_roots;
|
||||
}
|
||||
|
||||
sd = sqrt (discriminant);
|
||||
u1 = cuberoot (sd - q2);
|
||||
v1 = cuberoot (sd + q2);
|
||||
roots[n_roots] = u1 - v1 - a/3;
|
||||
if (acceptable (roots[n_roots]))
|
||||
n_roots++;
|
||||
|
||||
return n_roots;
|
||||
}
|
||||
|
||||
/* }}} */
|
||||
/* {{{ Cusps and inflections */
|
||||
|
||||
/* Get the points where the curvature of curve is
|
||||
* zero, or a maximum or minimum, inside the open
|
||||
* interval from 0 to 1.
|
||||
*/
|
||||
int
|
||||
gsk_curve_get_curvature_points (const GskCurve *curve,
|
||||
float t[3])
|
||||
{
|
||||
const graphene_point_t *pts = curve->cubic.points;
|
||||
graphene_point_t p[4];
|
||||
float a, b, c, d;
|
||||
float x, y, z;
|
||||
int n;
|
||||
|
||||
if (curve->op != GSK_PATH_CUBIC)
|
||||
return 0;
|
||||
|
||||
align_points (pts, &pts[0], &pts[3], p, 4);
|
||||
|
||||
a = p[2].x * p[1].y;
|
||||
b = p[3].x * p[1].y;
|
||||
c = p[1].x * p[2].y;
|
||||
d = p[3].x * p[2].y;
|
||||
|
||||
x = - 3*a + 2*b + 3*c - d;
|
||||
y = 3*a - b - 3*c;
|
||||
z = c - a;
|
||||
|
||||
n = solve_quadratic (x, y, z, t);
|
||||
return filter_allowable (t, n);
|
||||
}
|
||||
|
||||
/* Find cusps inside the open interval from 0 to 1.
|
||||
*
|
||||
* According to Stone & deRose, A Geometric Characterization
|
||||
* of Parametric Cubic curves, a necessary and sufficient
|
||||
* condition is that the first derivative vanishes.
|
||||
*/
|
||||
int
|
||||
gsk_curve_get_cusps (const GskCurve *curve,
|
||||
float t[2])
|
||||
{
|
||||
const graphene_point_t *pts = curve->cubic.points;
|
||||
graphene_point_t p[3];
|
||||
float ax, bx, cx;
|
||||
float ay, by, cy;
|
||||
float tx[3];
|
||||
int nx;
|
||||
int n = 0;
|
||||
|
||||
if (curve->op != GSK_PATH_CUBIC)
|
||||
return 0;
|
||||
|
||||
p[0].x = 3 * (pts[1].x - pts[0].x);
|
||||
p[0].y = 3 * (pts[1].y - pts[0].y);
|
||||
p[1].x = 3 * (pts[2].x - pts[1].x);
|
||||
p[1].y = 3 * (pts[2].y - pts[1].y);
|
||||
p[2].x = 3 * (pts[3].x - pts[2].x);
|
||||
p[2].y = 3 * (pts[3].y - pts[2].y);
|
||||
|
||||
ax = p[0].x - 2 * p[1].x + p[2].x;
|
||||
bx = - 2 * p[0].x + 2 * p[1].x;
|
||||
cx = p[0].x;
|
||||
|
||||
nx = solve_quadratic (ax, bx, cx, tx);
|
||||
nx = filter_allowable (tx, nx);
|
||||
|
||||
ay = p[0].y - 2 * p[1].y + p[2].y;
|
||||
by = - 2 * p[0].y + 2 * p[1].y;
|
||||
cy = p[0].y;
|
||||
|
||||
for (int i = 0; i < nx; i++)
|
||||
{
|
||||
float ti = tx[i];
|
||||
|
||||
if (0 < ti && ti < 1 &&
|
||||
fabs (ay * ti * ti + by * ti + cy) < 0.001)
|
||||
t[n++] = ti;
|
||||
}
|
||||
|
||||
return n;
|
||||
}
|
||||
|
||||
/* }}} */
|
||||
|
||||
/* vim:set foldmethod=marker expandtab: */
|
||||
@@ -187,6 +187,5 @@ int gsk_curve_get_curvature_points (const GskCurve
|
||||
int gsk_curve_get_cusps (const GskCurve *curve,
|
||||
float t[2]);
|
||||
|
||||
|
||||
G_END_DECLS
|
||||
|
||||
|
||||
@@ -45,6 +45,7 @@ gsk_private_sources = files([
|
||||
'gskcairoblur.c',
|
||||
'gskcontour.c',
|
||||
'gskcurve.c',
|
||||
'gskcurveintersect.c',
|
||||
'gskdebug.c',
|
||||
'gskprivate.c',
|
||||
'gskprofiler.c',
|
||||
|
||||
Reference in New Issue
Block a user