esp32/network_ppp: Restructure to match extmod/network_ppp_lwip.

The ESP32 PPP implementation predates the generic
implementation in extmod. The new extmod
implementation has a few advantages such as a
better deinitialisation procedure (the ESP32
implemementation would not clean up properly and
cause crashes if recreated) and using the UART IRQ
functionality instead of running a task to read
data from the UART.

This change restructures the ESP implementation to
be much closer to the new extmod version, while
also bringing a few tiny improvements from the
ESP32 version to the extmod version. The diff
between extmod/network_ppp_lwip.c and
ports/esp32/network_ppp.c is now a small set of
easy to review ESP32 port-specific changes.

Signed-off-by: Daniël van de Giessen <daniel@dvdgiessen.nl>
This commit is contained in:
Daniël van de Giessen
2024-05-27 14:25:23 +02:00
committed by Damien George
parent 2406582479
commit 3b1e22c669
4 changed files with 378 additions and 282 deletions

View File

@@ -24,6 +24,10 @@
* THE SOFTWARE.
*/
// This file is intended to closely match ports/esp32/network_ppp.c. Changes can
// and should probably be applied to both files. Compare them directly by using:
// git diff --no-index extmod/network_ppp_lwip.c ports/esp32/network_ppp.c
#include "py/runtime.h"
#include "py/mphal.h"
#include "py/stream.h"
@@ -80,7 +84,6 @@ static void network_ppp_status_cb(ppp_pcb *pcb, int err_code, void *ctx) {
break;
case PPPERR_USER:
if (self->state >= STATE_ERROR) {
network_ppp_stream_uart_irq_disable(self);
// Indicate that we are no longer connected and thus
// only need to free the PPP PCB, not close it.
self->state = STATE_ACTIVE;
@@ -121,6 +124,7 @@ static mp_obj_t network_ppp___del__(mp_obj_t self_in) {
self->state = STATE_INACTIVE;
ppp_close(self->pcb, 1);
}
network_ppp_stream_uart_irq_disable(self);
// Free PPP PCB and reset state.
self->state = STATE_INACTIVE;
ppp_free(self->pcb);
@@ -295,7 +299,8 @@ static mp_obj_t network_ppp_connect(size_t n_args, const mp_obj_t *args, mp_map_
ppp_set_auth(self->pcb, parsed_args[ARG_security].u_int, user_str, key_str);
}
netif_set_default(self->pcb->netif);
ppp_set_default(self->pcb);
ppp_set_usepeerdns(self->pcb, true);
if (ppp_connect(self->pcb, 0) != ERR_OK) {

View File

@@ -52,7 +52,7 @@ extern const mp_obj_type_t esp_network_wlan_type;
MP_DECLARE_CONST_FUN_OBJ_0(esp_network_initialize_obj);
MP_DECLARE_CONST_FUN_OBJ_VAR_BETWEEN(esp_network_get_wlan_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(esp_network_get_lan_obj);
MP_DECLARE_CONST_FUN_OBJ_1(esp_network_ppp_make_new_obj);
extern const struct _mp_obj_type_t esp_network_ppp_lwip_type;
MP_DECLARE_CONST_FUN_OBJ_VAR_BETWEEN(esp_network_ifconfig_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(esp_network_ipconfig_obj);
MP_DECLARE_CONST_FUN_OBJ_KW(esp_nic_ipconfig_obj);

View File

@@ -8,7 +8,7 @@
{ MP_ROM_QSTR(MP_QSTR_LAN), MP_ROM_PTR(&esp_network_get_lan_obj) },
#endif
#if defined(CONFIG_ESP_NETIF_TCPIP_LWIP) && defined(CONFIG_LWIP_PPP_SUPPORT)
{ MP_ROM_QSTR(MP_QSTR_PPP), MP_ROM_PTR(&esp_network_ppp_make_new_obj) },
{ MP_ROM_QSTR(MP_QSTR_PPP), MP_ROM_PTR(&esp_network_ppp_lwip_type) },
#endif
{ MP_ROM_QSTR(MP_QSTR_phy_mode), MP_ROM_PTR(&esp_network_phy_mode_obj) },
{ MP_ROM_QSTR(MP_QSTR_ipconfig), MP_ROM_PTR(&esp_network_ipconfig_obj) },

View File

@@ -4,6 +4,7 @@
* The MIT License (MIT)
*
* Copyright (c) 2018 "Eric Poulsen" <eric@zyxod.com>
* Copyright (c) 2024 Damien P. George
*
* Based on the ESP IDF example code which is Public Domain / CC0
*
@@ -26,316 +27,168 @@
* THE SOFTWARE.
*/
// This file is intended to closely match extmod/network_ppp_lwip.c. Changes can
// and should probably be applied to both files. Compare them directly by using:
// git diff --no-index extmod/network_ppp_lwip.c ports/esp32/network_ppp.c
#include "py/runtime.h"
#include "py/mphal.h"
#include "py/objtype.h"
#include "py/stream.h"
#include "shared/netutils/netutils.h"
#include "modmachine.h"
#include "ppp_set_auth.h"
#include "netif/ppp/ppp.h"
#include "netif/ppp/pppos.h"
#include "lwip/err.h"
#include "lwip/sockets.h"
#include "lwip/sys.h"
#include "lwip/netdb.h"
#include "lwip/dns.h"
#include "netif/ppp/pppapi.h"
#if defined(CONFIG_ESP_NETIF_TCPIP_LWIP) && defined(CONFIG_LWIP_PPP_SUPPORT)
#define PPP_CLOSE_TIMEOUT_MS (4000)
#include "lwip/dns.h"
#include "netif/ppp/ppp.h"
#include "netif/ppp/pppapi.h"
#include "netif/ppp/pppos.h"
typedef struct _ppp_if_obj_t {
// Includes for port-specific changes compared to network_ppp_lwip.c
#include "shared/netutils/netutils.h"
#include "ppp_set_auth.h"
// Enable this to see the serial data going between the PPP layer.
#define PPP_TRACE_IN_OUT (0)
typedef enum {
STATE_INACTIVE,
STATE_ACTIVE,
STATE_ERROR,
STATE_CONNECTING,
STATE_CONNECTED,
} network_ppp_state_t;
typedef struct _network_ppp_obj_t {
mp_obj_base_t base;
bool active;
bool connected;
volatile bool clean_close;
ppp_pcb *pcb;
network_ppp_state_t state;
int error_code;
mp_obj_t stream;
SemaphoreHandle_t inactiveWaitSem;
volatile TaskHandle_t client_task_handle;
struct netif pppif;
} ppp_if_obj_t;
ppp_pcb *pcb;
struct netif netif;
} network_ppp_obj_t;
const mp_obj_type_t ppp_if_type;
const mp_obj_type_t esp_network_ppp_lwip_type;
static void ppp_status_cb(ppp_pcb *pcb, int err_code, void *ctx) {
ppp_if_obj_t *self = ctx;
struct netif *pppif = ppp_netif(self->pcb);
static mp_obj_t network_ppp___del__(mp_obj_t self_in);
static void network_ppp_stream_uart_irq_disable(network_ppp_obj_t *self) {
if (self->stream == mp_const_none) {
return;
}
// Disable UART IRQ.
mp_obj_t dest[3];
mp_load_method(self->stream, MP_QSTR_irq, dest);
dest[2] = mp_const_none;
mp_call_method_n_kw(1, 0, dest);
}
static void network_ppp_status_cb(ppp_pcb *pcb, int err_code, void *ctx) {
network_ppp_obj_t *self = ctx;
switch (err_code) {
case PPPERR_NONE:
#if CONFIG_LWIP_IPV6
self->connected = (pppif->ip_addr.u_addr.ip4.addr != 0);
#else
self->connected = (pppif->ip_addr.addr != 0);
#endif // CONFIG_LWIP_IPV6
self->state = STATE_CONNECTED;
break;
case PPPERR_USER:
self->clean_close = true;
break;
case PPPERR_CONNECT:
self->connected = false;
if (self->state >= STATE_ERROR) {
// Indicate that we are no longer connected and thus
// only need to free the PPP PCB, not close it.
self->state = STATE_ACTIVE;
}
// Clean up the PPP PCB.
network_ppp___del__(MP_OBJ_FROM_PTR(self));
break;
default:
self->state = STATE_ERROR;
self->error_code = err_code;
break;
}
}
static mp_obj_t ppp_make_new(mp_obj_t stream) {
static mp_obj_t network_ppp_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) {
mp_arg_check_num(n_args, n_kw, 1, 1, false);
mp_obj_t stream = all_args[0];
if (stream != mp_const_none) {
mp_get_stream_raise(stream, MP_STREAM_OP_READ | MP_STREAM_OP_WRITE);
}
ppp_if_obj_t *self = mp_obj_malloc_with_finaliser(ppp_if_obj_t, &ppp_if_type);
network_ppp_obj_t *self = mp_obj_malloc_with_finaliser(network_ppp_obj_t, type);
self->state = STATE_INACTIVE;
self->stream = stream;
self->active = false;
self->connected = false;
self->clean_close = false;
self->client_task_handle = NULL;
self->pcb = NULL;
return MP_OBJ_FROM_PTR(self);
}
MP_DEFINE_CONST_FUN_OBJ_1(esp_network_ppp_make_new_obj, ppp_make_new);
#if ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(5, 4, 0)
static u32_t ppp_output_callback(ppp_pcb *pcb, const void *data, u32_t len, void *ctx)
#else
static u32_t ppp_output_callback(ppp_pcb *pcb, u8_t *data, u32_t len, void *ctx)
#endif
{
ppp_if_obj_t *self = ctx;
static mp_obj_t network_ppp___del__(mp_obj_t self_in) {
network_ppp_obj_t *self = MP_OBJ_TO_PTR(self_in);
if (self->state >= STATE_ACTIVE) {
if (self->state >= STATE_ERROR) {
// Still connected over the stream.
// Force the connection to close, with nocarrier=1.
self->state = STATE_INACTIVE;
pppapi_close(self->pcb, 1);
}
network_ppp_stream_uart_irq_disable(self);
// Free PPP PCB and reset state.
self->state = STATE_INACTIVE;
pppapi_free(self->pcb);
self->pcb = NULL;
}
return mp_const_none;
}
static MP_DEFINE_CONST_FUN_OBJ_1(network_ppp___del___obj, network_ppp___del__);
static mp_obj_t network_ppp_poll(size_t n_args, const mp_obj_t *args) {
network_ppp_obj_t *self = MP_OBJ_TO_PTR(args[0]);
if (self->state <= STATE_ERROR) {
return MP_OBJ_NEW_SMALL_INT(-MP_EPERM);
}
mp_int_t total_len = 0;
mp_obj_t stream = self->stream;
if (stream == mp_const_none) {
return 0;
}
int err;
return mp_stream_rw(stream, (void *)data, len, &err, MP_STREAM_RW_WRITE);
}
static void pppos_client_task(void *self_in) {
ppp_if_obj_t *self = (ppp_if_obj_t *)self_in;
uint8_t buf[256];
int len = 0;
while (ulTaskNotifyTake(pdTRUE, len <= 0) == 0) {
mp_obj_t stream = self->stream;
if (stream == mp_const_none) {
len = 0;
} else {
int err;
len = mp_stream_rw(stream, buf, sizeof(buf), &err, 0);
if (len > 0) {
pppos_input_tcpip(self->pcb, (u8_t *)buf, len);
}
}
}
self->client_task_handle = NULL;
vTaskDelete(NULL);
for (;;) {
}
}
static mp_obj_t ppp_active(size_t n_args, const mp_obj_t *args) {
ppp_if_obj_t *self = MP_OBJ_TO_PTR(args[0]);
if (n_args > 1) {
if (mp_obj_is_true(args[1])) {
if (self->active) {
return mp_const_true;
}
self->pcb = pppapi_pppos_create(&self->pppif, ppp_output_callback, ppp_status_cb, self);
if (self->pcb == NULL) {
mp_raise_msg(&mp_type_RuntimeError, MP_ERROR_TEXT("init failed"));
}
self->active = true;
} else {
if (!self->active) {
return mp_const_false;
}
if (self->client_task_handle != NULL) { // is connecting or connected?
// Wait for PPPERR_USER, with timeout
pppapi_close(self->pcb, 0);
uint32_t t0 = mp_hal_ticks_ms();
while (!self->clean_close && mp_hal_ticks_ms() - t0 < PPP_CLOSE_TIMEOUT_MS) {
mp_hal_delay_ms(10);
}
// Shutdown task
xTaskNotifyGive(self->client_task_handle);
t0 = mp_hal_ticks_ms();
while (self->client_task_handle != NULL && mp_hal_ticks_ms() - t0 < PPP_CLOSE_TIMEOUT_MS) {
mp_hal_delay_ms(10);
}
}
// Release PPP
pppapi_free(self->pcb);
self->pcb = NULL;
self->active = false;
self->connected = false;
self->clean_close = false;
}
}
return mp_obj_new_bool(self->active);
}
static MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(ppp_active_obj, 1, 2, ppp_active);
static mp_obj_t ppp_connect_py(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
enum { ARG_authmode, ARG_username, ARG_password };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_authmode, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = PPPAUTHTYPE_NONE} },
{ MP_QSTR_username, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
{ MP_QSTR_password, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
};
mp_arg_val_t parsed_args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, parsed_args);
ppp_if_obj_t *self = MP_OBJ_TO_PTR(args[0]);
if (!self->active) {
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("must be active"));
}
if (self->client_task_handle != NULL) {
mp_raise_OSError(MP_EALREADY);
}
switch (parsed_args[ARG_authmode].u_int) {
case PPPAUTHTYPE_NONE:
case PPPAUTHTYPE_PAP:
case PPPAUTHTYPE_CHAP:
while (stream != mp_const_none) {
uint8_t buf[256];
int err;
mp_uint_t len = mp_stream_rw(stream, buf, sizeof(buf), &err, 0);
if (len == 0) {
break;
default:
mp_raise_ValueError(MP_ERROR_TEXT("invalid auth"));
}
if (parsed_args[ARG_authmode].u_int != PPPAUTHTYPE_NONE) {
const char *username_str = mp_obj_str_get_str(parsed_args[ARG_username].u_obj);
const char *password_str = mp_obj_str_get_str(parsed_args[ARG_password].u_obj);
pppapi_set_auth(self->pcb, parsed_args[ARG_authmode].u_int, username_str, password_str);
}
if (pppapi_set_default(self->pcb) != ESP_OK) {
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("set default failed"));
}
ppp_set_usepeerdns(self->pcb, true);
if (pppapi_connect(self->pcb, 0) != ESP_OK) {
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("connect failed"));
}
if (xTaskCreatePinnedToCore(pppos_client_task, "ppp", 2048, self, 1, (TaskHandle_t *)&self->client_task_handle, MP_TASK_COREID) != pdPASS) {
mp_raise_msg(&mp_type_RuntimeError, MP_ERROR_TEXT("failed to create worker task"));
}
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_KW(ppp_connect_obj, 1, ppp_connect_py);
static mp_obj_t ppp_delete(mp_obj_t self_in) {
ppp_if_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_obj_t args[] = {self, mp_const_false};
ppp_active(2, args);
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_1(ppp_delete_obj, ppp_delete);
static mp_obj_t ppp_ifconfig(size_t n_args, const mp_obj_t *args) {
ppp_if_obj_t *self = MP_OBJ_TO_PTR(args[0]);
if (n_args == 1) {
// get
const ip_addr_t *dns;
if (self->pcb != NULL) {
dns = dns_getserver(0);
struct netif *pppif = ppp_netif(self->pcb);
mp_obj_t tuple[4] = {
netutils_format_ipv4_addr((uint8_t *)&pppif->ip_addr, NETUTILS_BIG),
netutils_format_ipv4_addr((uint8_t *)&pppif->gw, NETUTILS_BIG),
netutils_format_ipv4_addr((uint8_t *)&pppif->netmask, NETUTILS_BIG),
netutils_format_ipv4_addr((uint8_t *)dns, NETUTILS_BIG),
};
return mp_obj_new_tuple(4, tuple);
} else {
mp_obj_t tuple[4] = { mp_const_none, mp_const_none, mp_const_none, mp_const_none };
return mp_obj_new_tuple(4, tuple);
}
} else {
ip_addr_t dns;
mp_obj_t *items;
mp_obj_get_array_fixed_n(args[1], 4, &items);
#if CONFIG_LWIP_IPV6
netutils_parse_ipv4_addr(items[3], (uint8_t *)&dns.u_addr.ip4, NETUTILS_BIG);
#else
netutils_parse_ipv4_addr(items[3], (uint8_t *)&dns, NETUTILS_BIG);
#endif // CONFIG_LWIP_IPV6
dns_setserver(0, &dns);
return mp_const_none;
#if PPP_TRACE_IN_OUT
mp_printf(&mp_plat_print, "ppp_in(n=%u,data=", len);
for (size_t i = 0; i < len; ++i) {
mp_printf(&mp_plat_print, "%02x:", buf[i]);
}
mp_printf(&mp_plat_print, ")\n");
#endif
pppos_input(self->pcb, (u8_t *)buf, len);
total_len += len;
}
return MP_OBJ_NEW_SMALL_INT(total_len);
}
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(ppp_ifconfig_obj, 1, 2, ppp_ifconfig);
static MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(network_ppp_poll_obj, 1, 2, network_ppp_poll);
static mp_obj_t ppp_ipconfig(size_t n_args, const mp_obj_t *args, mp_map_t *kwargs) {
if (kwargs->used == 0) {
ppp_if_obj_t *self = MP_OBJ_TO_PTR(args[0]);
if (self->pcb == NULL) {
mp_raise_ValueError(MP_ERROR_TEXT("PPP not active"));
}
struct netif *netif = ppp_netif(self->pcb);
// Get config value
if (n_args != 2) {
mp_raise_TypeError(MP_ERROR_TEXT("must query one param"));
}
switch (mp_obj_str_get_qstr(args[1])) {
case MP_QSTR_addr4: {
mp_obj_t tuple[2] = {
netutils_format_ipv4_addr((uint8_t *)&netif->ip_addr, NETUTILS_BIG),
netutils_format_ipv4_addr((uint8_t *)&netif->netmask, NETUTILS_BIG),
};
return mp_obj_new_tuple(2, tuple);
}
case MP_QSTR_gw4: {
return netutils_format_ipv4_addr((uint8_t *)&netif->gw, NETUTILS_BIG);
}
default: {
mp_raise_ValueError(MP_ERROR_TEXT("unexpected key"));
break;
}
}
return mp_const_none;
} else {
mp_raise_TypeError(MP_ERROR_TEXT("setting properties not supported"));
static void network_ppp_stream_uart_irq_enable(network_ppp_obj_t *self) {
if (self->stream == mp_const_none) {
return;
}
return mp_const_none;
}
static MP_DEFINE_CONST_FUN_OBJ_KW(ppp_ipconfig_obj, 1, ppp_ipconfig);
static mp_obj_t ppp_status(mp_obj_t self_in) {
return mp_const_none;
// Enable UART IRQ to call PPP.poll() when incoming data is ready.
mp_obj_t dest[4];
mp_load_method(self->stream, MP_QSTR_irq, dest);
dest[2] = mp_obj_new_bound_meth(MP_OBJ_FROM_PTR(&network_ppp_poll_obj), MP_OBJ_FROM_PTR(self));
dest[3] = mp_load_attr(self->stream, MP_QSTR_IRQ_RXIDLE);
mp_call_method_n_kw(2, 0, dest);
}
static MP_DEFINE_CONST_FUN_OBJ_1(ppp_status_obj, ppp_status);
static mp_obj_t ppp_isconnected(mp_obj_t self_in) {
ppp_if_obj_t *self = MP_OBJ_TO_PTR(self_in);
return mp_obj_new_bool(self->connected);
}
static MP_DEFINE_CONST_FUN_OBJ_1(ppp_isconnected_obj, ppp_isconnected);
static mp_obj_t ppp_config(size_t n_args, const mp_obj_t *args, mp_map_t *kwargs) {
static mp_obj_t network_ppp_config(size_t n_args, const mp_obj_t *args, mp_map_t *kwargs) {
if (n_args != 1 && kwargs->used != 0) {
mp_raise_TypeError(MP_ERROR_TEXT("either pos or kw args are allowed"));
}
ppp_if_obj_t *self = MP_OBJ_TO_PTR(args[0]);
network_ppp_obj_t *self = MP_OBJ_TO_PTR(args[0]);
if (kwargs->used != 0) {
for (size_t i = 0; i < kwargs->alloc; i++) {
@@ -345,7 +198,13 @@ static mp_obj_t ppp_config(size_t n_args, const mp_obj_t *args, mp_map_t *kwargs
if (kwargs->table[i].value != mp_const_none) {
mp_get_stream_raise(kwargs->table[i].value, MP_STREAM_OP_READ | MP_STREAM_OP_WRITE);
}
if (self->state >= STATE_ACTIVE) {
network_ppp_stream_uart_irq_disable(self);
}
self->stream = kwargs->table[i].value;
if (self->state >= STATE_ACTIVE) {
network_ppp_stream_uart_irq_enable(self);
}
break;
}
default:
@@ -384,28 +243,260 @@ static mp_obj_t ppp_config(size_t n_args, const mp_obj_t *args, mp_map_t *kwargs
return val;
}
static MP_DEFINE_CONST_FUN_OBJ_KW(ppp_config_obj, 1, ppp_config);
static MP_DEFINE_CONST_FUN_OBJ_KW(network_ppp_config_obj, 1, network_ppp_config);
static const mp_rom_map_elem_t ppp_if_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_active), MP_ROM_PTR(&ppp_active_obj) },
{ MP_ROM_QSTR(MP_QSTR_connect), MP_ROM_PTR(&ppp_connect_obj) },
{ MP_ROM_QSTR(MP_QSTR_isconnected), MP_ROM_PTR(&ppp_isconnected_obj) },
{ MP_ROM_QSTR(MP_QSTR_status), MP_ROM_PTR(&ppp_status_obj) },
{ MP_ROM_QSTR(MP_QSTR_config), MP_ROM_PTR(&ppp_config_obj) },
{ MP_ROM_QSTR(MP_QSTR_ifconfig), MP_ROM_PTR(&ppp_ifconfig_obj) },
{ MP_ROM_QSTR(MP_QSTR_ipconfig), MP_ROM_PTR(&ppp_ipconfig_obj) },
{ MP_ROM_QSTR(MP_QSTR___del__), MP_ROM_PTR(&ppp_delete_obj) },
static mp_obj_t network_ppp_status(mp_obj_t self_in) {
network_ppp_obj_t *self = MP_OBJ_TO_PTR(self_in);
if (self->state == STATE_ERROR) {
return MP_OBJ_NEW_SMALL_INT(-self->error_code);
} else {
return MP_OBJ_NEW_SMALL_INT(self->state);
}
}
static MP_DEFINE_CONST_FUN_OBJ_1(network_ppp_status_obj, network_ppp_status);
#if ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(5, 4, 0)
static u32_t network_ppp_output_callback(ppp_pcb *pcb, const void *data, u32_t len, void *ctx)
#else
static u32_t network_ppp_output_callback(ppp_pcb *pcb, u8_t *data, u32_t len, void *ctx)
#endif
{
network_ppp_obj_t *self = ctx;
#if PPP_TRACE_IN_OUT
mp_printf(&mp_plat_print, "ppp_out(n=%u,data=", len);
for (size_t i = 0; i < len; ++i) {
mp_printf(&mp_plat_print, "%02x:", ((const uint8_t *)data)[i]);
}
mp_printf(&mp_plat_print, ")\n");
#endif
mp_obj_t stream = self->stream;
if (stream == mp_const_none) {
return 0;
}
int err;
// The return value from this output callback is the number of bytes written out.
// If it's less than the requested number of bytes then lwIP will propagate out an error.
return mp_stream_rw(stream, (void *)data, len, &err, MP_STREAM_RW_WRITE);
}
static mp_obj_t network_ppp_connect(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
enum { ARG_security, ARG_user, ARG_key, ARG_authmode, ARG_username, ARG_password };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_security, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_user, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
{ MP_QSTR_key, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
// Deprecated arguments for backwards compatibility
{ MP_QSTR_authmode, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = PPPAUTHTYPE_NONE} },
{ MP_QSTR_username, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
{ MP_QSTR_password, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
};
mp_arg_val_t parsed_args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, parsed_args);
// Use deprecated arguments as defaults
if (parsed_args[ARG_security].u_int == -1) {
parsed_args[ARG_security].u_int = parsed_args[ARG_authmode].u_int;
}
if (parsed_args[ARG_user].u_obj == mp_const_none) {
parsed_args[ARG_user].u_obj = parsed_args[ARG_username].u_obj;
}
if (parsed_args[ARG_key].u_obj == mp_const_none) {
parsed_args[ARG_key].u_obj = parsed_args[ARG_password].u_obj;
}
network_ppp_obj_t *self = MP_OBJ_TO_PTR(args[0]);
if (self->state == STATE_INACTIVE) {
self->pcb = pppapi_pppos_create(&self->netif, network_ppp_output_callback, network_ppp_status_cb, self);
if (self->pcb == NULL) {
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("pppos_create failed"));
}
self->state = STATE_ACTIVE;
network_ppp_stream_uart_irq_enable(self);
}
if (self->state == STATE_CONNECTING || self->state == STATE_CONNECTED) {
mp_raise_OSError(MP_EALREADY);
}
switch (parsed_args[ARG_security].u_int) {
case PPPAUTHTYPE_NONE:
case PPPAUTHTYPE_PAP:
case PPPAUTHTYPE_CHAP:
break;
default:
mp_raise_ValueError(MP_ERROR_TEXT("invalid auth"));
}
if (parsed_args[ARG_security].u_int != PPPAUTHTYPE_NONE) {
const char *user_str = mp_obj_str_get_str(parsed_args[ARG_user].u_obj);
const char *key_str = mp_obj_str_get_str(parsed_args[ARG_key].u_obj);
pppapi_set_auth(self->pcb, parsed_args[ARG_security].u_int, user_str, key_str);
}
if (pppapi_set_default(self->pcb) != ERR_OK) {
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("ppp_set_default failed"));
}
ppp_set_usepeerdns(self->pcb, true);
if (pppapi_connect(self->pcb, 0) != ERR_OK) {
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("ppp_connect failed"));
}
self->state = STATE_CONNECTING;
// Do a poll in case there is data waiting on the input stream.
network_ppp_poll(1, args);
return mp_const_none;
}
static MP_DEFINE_CONST_FUN_OBJ_KW(network_ppp_connect_obj, 1, network_ppp_connect);
static mp_obj_t network_ppp_disconnect(mp_obj_t self_in) {
network_ppp_obj_t *self = MP_OBJ_TO_PTR(self_in);
if (self->state == STATE_CONNECTING || self->state == STATE_CONNECTED) {
// Initiate close and wait for PPPERR_USER callback.
pppapi_close(self->pcb, 0);
}
return mp_const_none;
}
static MP_DEFINE_CONST_FUN_OBJ_1(network_ppp_disconnect_obj, network_ppp_disconnect);
static mp_obj_t network_ppp_isconnected(mp_obj_t self_in) {
network_ppp_obj_t *self = MP_OBJ_TO_PTR(self_in);
return mp_obj_new_bool(self->state == STATE_CONNECTED);
}
static MP_DEFINE_CONST_FUN_OBJ_1(network_ppp_isconnected_obj, network_ppp_isconnected);
static mp_obj_t network_ppp_ifconfig(size_t n_args, const mp_obj_t *args) {
network_ppp_obj_t *self = MP_OBJ_TO_PTR(args[0]);
if (n_args == 1) {
// get
const ip_addr_t *dns;
if (self->pcb != NULL) {
dns = dns_getserver(0);
struct netif *pppif = ppp_netif(self->pcb);
mp_obj_t tuple[4] = {
netutils_format_ipv4_addr((uint8_t *)&pppif->ip_addr, NETUTILS_BIG),
netutils_format_ipv4_addr((uint8_t *)&pppif->gw, NETUTILS_BIG),
netutils_format_ipv4_addr((uint8_t *)&pppif->netmask, NETUTILS_BIG),
netutils_format_ipv4_addr((uint8_t *)dns, NETUTILS_BIG),
};
return mp_obj_new_tuple(4, tuple);
} else {
mp_obj_t tuple[4] = { mp_const_none, mp_const_none, mp_const_none, mp_const_none };
return mp_obj_new_tuple(4, tuple);
}
} else {
ip_addr_t dns;
mp_obj_t *items;
mp_obj_get_array_fixed_n(args[1], 4, &items);
#if CONFIG_LWIP_IPV6
netutils_parse_ipv4_addr(items[3], (uint8_t *)&dns.u_addr.ip4, NETUTILS_BIG);
#else
netutils_parse_ipv4_addr(items[3], (uint8_t *)&dns, NETUTILS_BIG);
#endif // CONFIG_LWIP_IPV6
dns_setserver(0, &dns);
return mp_const_none;
}
}
static MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(network_ppp_ifconfig_obj, 1, 2, network_ppp_ifconfig);
static mp_obj_t network_ppp_ipconfig(size_t n_args, const mp_obj_t *args, mp_map_t *kwargs) {
network_ppp_obj_t *self = MP_OBJ_TO_PTR(args[0]);
if (kwargs->used == 0) {
if (self->pcb == NULL) {
mp_raise_ValueError(MP_ERROR_TEXT("PPP not active"));
}
struct netif *netif = ppp_netif(self->pcb);
// Get config value
if (n_args != 2) {
mp_raise_TypeError(MP_ERROR_TEXT("must query one param"));
}
switch (mp_obj_str_get_qstr(args[1])) {
case MP_QSTR_addr4: {
mp_obj_t tuple[2] = {
netutils_format_ipv4_addr((uint8_t *)&netif->ip_addr, NETUTILS_BIG),
netutils_format_ipv4_addr((uint8_t *)&netif->netmask, NETUTILS_BIG),
};
return mp_obj_new_tuple(2, tuple);
}
case MP_QSTR_gw4: {
return netutils_format_ipv4_addr((uint8_t *)&netif->gw, NETUTILS_BIG);
}
default: {
mp_raise_ValueError(MP_ERROR_TEXT("unexpected key"));
break;
}
}
return mp_const_none;
} else {
mp_raise_TypeError(MP_ERROR_TEXT("setting properties not supported"));
}
return mp_const_none;
}
static MP_DEFINE_CONST_FUN_OBJ_KW(network_ppp_ipconfig_obj, 1, network_ppp_ipconfig);
static mp_obj_t network_ppp_active(size_t n_args, const mp_obj_t *args) {
network_ppp_obj_t *self = MP_OBJ_TO_PTR(args[0]);
if (n_args > 1) {
if (mp_obj_is_true(args[1])) {
if (self->state >= STATE_ACTIVE) {
return mp_const_true;
}
self->pcb = pppapi_pppos_create(&self->netif, network_ppp_output_callback, network_ppp_status_cb, self);
if (self->pcb == NULL) {
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("pppos_create failed"));
}
self->state = STATE_ACTIVE;
network_ppp_stream_uart_irq_enable(self);
} else {
if (self->state < STATE_ACTIVE) {
return mp_const_false;
}
network_ppp___del__(MP_OBJ_FROM_PTR(self));
}
}
return mp_obj_new_bool(self->state >= STATE_ACTIVE);
}
static MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(network_ppp_active_obj, 1, 2, network_ppp_active);
static const mp_rom_map_elem_t network_ppp_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR___del__), MP_ROM_PTR(&network_ppp___del___obj) },
{ MP_ROM_QSTR(MP_QSTR_config), MP_ROM_PTR(&network_ppp_config_obj) },
{ MP_ROM_QSTR(MP_QSTR_status), MP_ROM_PTR(&network_ppp_status_obj) },
{ MP_ROM_QSTR(MP_QSTR_connect), MP_ROM_PTR(&network_ppp_connect_obj) },
{ MP_ROM_QSTR(MP_QSTR_disconnect), MP_ROM_PTR(&network_ppp_disconnect_obj) },
{ MP_ROM_QSTR(MP_QSTR_isconnected), MP_ROM_PTR(&network_ppp_isconnected_obj) },
{ MP_ROM_QSTR(MP_QSTR_ifconfig), MP_ROM_PTR(&network_ppp_ifconfig_obj) },
{ MP_ROM_QSTR(MP_QSTR_ipconfig), MP_ROM_PTR(&network_ppp_ipconfig_obj) },
{ MP_ROM_QSTR(MP_QSTR_poll), MP_ROM_PTR(&network_ppp_poll_obj) },
{ MP_ROM_QSTR(MP_QSTR_SEC_NONE), MP_ROM_INT(PPPAUTHTYPE_NONE) },
{ MP_ROM_QSTR(MP_QSTR_SEC_PAP), MP_ROM_INT(PPPAUTHTYPE_PAP) },
{ MP_ROM_QSTR(MP_QSTR_SEC_CHAP), MP_ROM_INT(PPPAUTHTYPE_CHAP) },
// Deprecated interface for backwards compatibility
{ MP_ROM_QSTR(MP_QSTR_active), MP_ROM_PTR(&network_ppp_active_obj) },
{ MP_ROM_QSTR(MP_QSTR_AUTH_NONE), MP_ROM_INT(PPPAUTHTYPE_NONE) },
{ MP_ROM_QSTR(MP_QSTR_AUTH_PAP), MP_ROM_INT(PPPAUTHTYPE_PAP) },
{ MP_ROM_QSTR(MP_QSTR_AUTH_CHAP), MP_ROM_INT(PPPAUTHTYPE_CHAP) },
};
static MP_DEFINE_CONST_DICT(ppp_if_locals_dict, ppp_if_locals_dict_table);
static MP_DEFINE_CONST_DICT(network_ppp_locals_dict, network_ppp_locals_dict_table);
MP_DEFINE_CONST_OBJ_TYPE(
ppp_if_type,
esp_network_ppp_lwip_type,
MP_QSTR_PPP,
MP_TYPE_FLAG_NONE,
locals_dict, &ppp_if_locals_dict
make_new, network_ppp_make_new,
locals_dict, &network_ppp_locals_dict
);
#endif