When lwIP creates a incoming connection socket of a listen socket, it
sets its recv callback to one which discards incoming data. We set
proper callback only in accept() call, when we allocate Python-level
socket where we can queue incoming data. So, in lwIP accept callback
be sure to set recv callback to one which tells lwIP to not discard
incoming data.
Upon start-up, _boot module is executed from frozen files to do early
initialization, e.g. create and mount the flash filesystem. Then
"boot.py" is executed if it exists in the filesystem. Finally, "main.py"
is executed if exists to allow start-on-boot user applications.
This allows a user to make a custom boot file or startup application
without recompiling the firmware, while letting to do early initialization
in Python code.
Based on RFC https://github.com/micropython/micropython/issues/1955.
Will call underlying C virtual methods of stream interface. This isn't
intended to be added to every stream object (it's not in CPython), but
is convenient way to expose extra operation on Python side without
adding bunch of Python-level methods.
This is strange asymmetry which is sometimes needed, e.g. for WebREPL: we
want to process only available input and no more; but for output, we want
to get rid of all of it, because there's no other place to buffer/store
it. This asymmetry is akin to CPython's asyncio asymmetry, where reads are
asynchronous, but writes are synchronous (asyncio doesn't expect them to
block, instead expects there to be (unlimited) buffering for any sync write
to completely immediately).
With .rodata being in FlashROM now, gap can be much smaller now. InstRAM
can be max 32K, and with segment headers, that already makes it more than
32K. Then there's some .data still, and the next Flash page boundary is
0x9000. That figure should be more or less future-proof.
TODO: Refactor makeimg to take FlashROM segment offset from file name.
This was originally used for non-event based REPL processing. Then it
was unused when event-based processing was activated. But now that event
based is disabled, and non-event based is back, there has been new ring
buffer code to process the chars.
Event-driven loop (push-style) is still supported and default (controlled
by MICROPY_REPL_EVENT_DRIVEN setting, as expected).
Dedicated loop worked even without adding ets_loop_iter(), though that
needs to be revisited later.
Before this change, if REPL blocked executing some code, it was possible
to still input new statememts and excuting them, all leading to weird,
and portentially dangerous interaction.
TODO: Current implementation may have issues processing input accumulated
while REPL was blocked.
The idea is following: underlying interrupt-driven or push-style data source
signals that more data is available for dupterm processing via call to
mp_hal_signal_dupterm_input(). This triggers a task which pumps data between
actual dupterm object (which may perform additional processing on data from
low-level data source) and input ring buffer.
But now it's generic ring buffer implemented via ringbuf.h, and is intended
for any type of input, including dupterm's, not just UART. The general
process work like this: an interrupt-driven input source puts data into
input_buf, and then signals new data available via call to
mp_hal_signal_input().
Features inline get/put operations for the highest performance. Locking
is not part of implementation, operation should be wrapped with locking
externally as needed.
When taking the logarithm of the float to determine the exponent, there
are some edge cases that finish the log loop too large. Eg for an
input value of 1e32-epsilon, this is actually less than 1e32 from the
log-loop table and finishes as 10.0e31 when it should be 1.0e32. It
is thus rendered as :e32 (: comes after 9 in ascii).
There was the same problem with numbers less than 1.
See https://github.com/micropython/micropython/issues/1736 for the
list of complications. This workaround instead of duplicating REPL
to another stream, switches to it, because read(STDIN) we use otherwise
is blocking call, so it and custom REPL stream can't be used together.
PWM implementation uses a timer and interrupts (FRC1), taken from
Espressif's/NodeMCU's implementation and adapted for our use.
8 channels are supported, on pins 0, 2, 4, 5, 12, 13, 14, 15.
Usage:
import machine
pwm0 = machine.PWM(machine.Pin(0))
pwm0.freq(1000)
pwm0.duty(500)
Frequency is shared (ie the same) for all channels. Frequency is
between 1 and 1000. Duty is between 0 and 1023.
Per POSIX http://pubs.opengroup.org/onlinepubs/9699919799/functions/send.html :
"If space is not available at the sending socket to hold the message to be
transmitted, and the socket file descriptor does not have O_NONBLOCK set,
send() shall block until space is available. If space is not available at the
sending socket to hold the message to be transmitted, and the socket file
descriptor does have O_NONBLOCK set, send() shall fail [with EAGAIN]."
Previous to this patch, the "**b" in "a**b" had its own parse node with
just one item (the "b"). Now, the "b" is just the last element of the
power parse-node. This saves (a tiny bit of) RAM when compiling.
Previous to this patch, all qemu-arm tests were running in the same
session, and global variables could be left over from the previous test.
This patch makes it so that the heap and runtime are reinitialised at
the start of each test.
All tests in basics/ directory can now run and pass using 64-bit unix
port with only a 16k heap (./run-tests --heapsize 16k). Tests in this
directory should remain small so they can be used for ports with a
small heap.
Passing an mp_uint_t to a %d printf format is incorrect for builds where
mp_uint_t is larger than word size (eg a nanboxing build). This patch
adds some simple casting to int in these cases.
The code is based on Damien George's implementation for esp8266 port,
avoids use of global variables and associated re-entrancy issues, and
fixes returning stale data in some cases.
This implementation provides the same interface and uses the same
datastructures as used by BootROM, i.e. is a drop-in replacement for it.
But it offers one advantage: it allows to run single iteration of
event-pumping loop.
Original BootROM function are renamed, prefixed with underscore. There's
a switch which allows to use forward calls to them, for compatibility
testing.
The implementation also includes workarounds for hardware timer handler,
and these workarounds may be SDK version specific.
Allows to set (in case keyword args are given) or query (in case a single
"symbolic keyword" (a string, value is the same as keyword)) arbitrary
interface paramters (i.e. extensible and adaptable to various hardware).
Example usage:
ap_if = network.WLAN(1)
ap_if.config(essid="MicroPython on Air")
print(ap_if.config("essid"))
Allows to up/down interface when called with a boolean, or query current
state if called without args. This per-interface method is intended to
supersede adhoc network.wifi_mode() function.
On ESP8266, there're 2 different interfaces. Pretending it's not the case
desn't make sense. So, network.WLAN() now takes interface id, and returns
interface object. Individual operations are then methods of interface
object. Some operations require i/f of specific type (e.g. .connect()
makes sense only for STA), other are defined for any (e.g. .ifconfig(),
.mac()).
Building in 32-bit mode was only to reduce binary size on 64-bit machines
and is otherwise not needed. Having it forced to 32-bit meant an
unnecessary dependency on 32-bit libraries that is now removed.
It can happen that a socket gets closed while the pbuf is not completely
drained by the application. It can also happen that a new pbuf comes in
via the recv callback, and then a "peer closed" event comes via the same
callback (pbuf=NULL) before the previous event has been handled. In both
cases the socket is closed but there is remaining data. This patch makes
sure such data is passed to the application.
If the heap is locked, or memory allocation fails, then calling a bound
method will still succeed by allocating the argument state on the stack.
The new code also allocates less stack than before if less than 4
arguments are passed. It's also a tiny bit smaller in code size.
This was done as part of the ESA project.
tools/pydfu.py is now the recommended way of deploying a DFU file. Old
behaviour of dfu-util can be obtained by passing USE_PYDFU=0 when invoking
make.
The main README.md file has been updated to reflect this change.
None of the other ports do, since introduction of mp_state_ctx_t. In
the case of current esp8266 port, heap is inside BSS, so scanning it
picked up a lot of dead pointers.
NameError may either include offending name or not. Unfortunately, this
change makes test float-dependent. And using integer division leads to
different error message than CPython.
Enabling standard assert() (by removing -DNDEBUG) produces non-bootable
binary (because all messages go to .rodata which silently overflows).
So, for once-off debugging, have a custom _assert().
Initialize RTC period coefficients, etc. if RTC RAM doesn't contain valid
values. time.time() then will return number of seconds since power-on, unless
set to different timebase.
This reuses MEM_MAGIC for the purpose beyond its initial purpose (but the whole
modpybrtc.c need to be eventually reworked completely anyway).
For some reason, Travis now has Google Chrome PPA included in the builder
image, that lacks i386 arch, that leads to apt-get update error. So, ignore
it (this is not ideal as may lead to actual repo update failures to be missed,
leading to installation of old package, leading to weird errors; let's keep
that in mind).
This new compile-time option allows to make the bytecode compiler
configurable at runtime by setting the fields in the mp_dynamic_compiler
structure. By using this feature, the compiler can generate bytecode
that targets any MicroPython runtime/VM, regardless of the host and
target compile-time settings.
Options so far that fall under this dynamic setting are:
- maximum number of bits that a small int can hold;
- whether caching of lookups is used in the bytecode;
- whether to use unicode strings or not (lexer behaviour differs, and
therefore generated string constants differ).
Reduces code size by 112 bytes on Thumb2 arch, and makes assembler faster
because comparison can be a simple equals instead of a string compare.
Not all ops have been converted, only those that were simple to convert
and reduced code size.
The chunks of memory that the parser allocates contain parse nodes and
are pointed to from many places, so these chunks cannot be relocated
by the memory manager. This patch makes it so that when a chunk is
shrunk to fit, it is not relocated.
Properly calculate the period and the prescaler, this now allows to
set the PWM frequency down to 5Hz. Make Timer IDs go from 0 to 3.
Add the trigger definitions for the channel IRQ.
These can be used to insert arbitrary checks, polling, etc into the VM.
They are left general because the VM is a highly tuned loop and it should
be up to a given port how that port wants to modify the VM internals.
One common use would be to insert a polling check, but only done after
a certain number of opcodes were executed, so as not to slow down the VM
too much. For example:
#define MICROPY_VM_HOOK_COUNT (30)
#define MICROPY_VM_HOOK_INIT static uint vm_hook_divisor = MICROPY_VM_HOOK_COUNT
#define MICROPY_VM_HOOK_POLL if (--vm_hook_divisor == 0) { \
vm_hook_divisor = MICROPY_VM_HOOK_COUNT;
extern void vm_hook_function(void);
vm_hook_function();
}
#define MICROPY_VM_HOOK_LOOP MICROPY_VM_HOOK_POLL
#define MICROPY_VM_HOOK_RETURN MICROPY_VM_HOOK_POLL
If None was returned for such requests (which likely means that user simply
didn't handle them), it means successful init and default sector size of 512
bytes respectively. This makes only BP_IOCTL_SEC_COUNT a mandatory request,
and thus re-establishes parity with old interface, where only .count() is
mandatory().
This implements OO interface based on existing fsusermount code and with
minimal changes to it, to serve as a proof of concept of OO interface.
Examle of usage:
bdev = RAMFS(48)
uos.VfsFat.mkfs(bdev)
vfs = uos.VfsFat(bdev, "/ramdisk")
f = vfs.open("foo", "w")
f.write("hello!")
f.close()
This patch adds support to fsusermount for multiple block devices
(instead of just one). The maximum allowed is fixed at compile time by
the size of the fs_user_mount array accessed via MP_STATE_PORT, which
in turn is set by MICROPY_FATFS_VOLUMES.
With this patch, stmhal (which is still tightly coupled to fsusermount)
is also modified to support mounting multiple devices And the flash and
SD card are now just two block devices that are mounted at start up if
they exist (and they have special native code to make them more
efficient).
You can now create (singleton) objects representing the flash and SD
card, using:
flash = pyb.Flash()
sdcard = pyb.SDCard()
These objects provide the block protocol.
This enables MICROPY_HW_HAS_FLASH which got missed.
The HW has UART2 on the 401 connected to the STLINK procesor
which exposes it as USB serial. This connects that up so that
you can get a REPL using the USB serial.
If MICROPY_FATFS_MAX_SS is defined to power of 2 value between 1024 and
4096, support for dynamic sector size in FatFs will be enabled. Note
that FatFs reserves static buffer of MICROPY_FATFS_MAX_SS size for each
filesystem in use, so that value should be set sparingly.
Initial patch provided by @pfalcon.
The new block protocol is:
- readblocks(self, n, buf)
- writeblocks(self, n, buf)
- ioctl(self, cmd, arg)
The new ioctl method handles the old sync and count methods, as well as
a new "get sector size" method.
The old protocol is still supported, and used if the device doesn't have
the ioctl method.
Per the previously discussed plan. mount() still stays backward-compatible,
and new mkfs() is rought and takes more args than needed. But is a step
in a forward direction.
This allows you to pass a number (being an address) to a viper function
that expects a pointer, and also allows casting of integers to pointers
within viper functions.
This was actually the original behaviour, but it regressed due to native
type identifiers being promoted to 4 bits in width.
If MICROPY_VFS_FAT is defined, mp_type_fileio & mp_type_textio won't be
defined, as these may be alredy defined elsewhere. The idea is to have
compartmentalized VFS FatFs class, which can work in parallel with some
other "main" filesystem. E.g., for unix port, mp_type_fileio, etc. will
be defined for the main POSIX filesystem, while stmhal/file.c will be
a self-contained VFS file class.
Move definition of mp_builtin_open_obj to a separate module, then file.c
becomes more or less compartmentalized FatFs file class, which can be used
together with file class implementations for other (V)FSes.
This function computes (x**y)%z in an efficient way. For large arguments
this operation is otherwise not computable by doing x**y and then %z.
It's currently not used, but is added in case it's useful one day.
For these 3 bitwise operations there are now fast functions for
positive-only arguments, and general functions for arbitrary sign
arguments (the fast functions are the existing implementation).
By default the fast functions are not used (to save space) and instead
the general functions are used for all operations.
Enable MICROPY_OPT_MPZ_BITWISE to use the fast functions for positive
arguments.
Before this patch, the native types for uint and ptr/ptr8/ptr16/ptr32
all overlapped and it was possible to make a mistake in casting. Now,
these types are all separate and any coding mistakes will be raised
as runtime errors.
Eg: '{:{}}'.format(123, '>20')
@pohmelie was the original author of this patch, but @dpgeorge made
significant changes to reduce code size and improve efficiency.
Previous to this patch the DMA was setup and then the I2C address sent.
If the I2C address sending failed (eg no I2C device on the bus) then the
DMA was left in an inconsistent state.
This patch moves the DMA setup to after a successful sending of the I2C
address(es).
See issue #1765.
USB CDC no longer needs TIM3 (which was originally used for LED(4) PWM)
and so TIM3 has been freed for general purpose use by the user. Hence
LED(4) lost its PWM capabilities.
This patch reinstates the PWM capabilities using a semi-generic piece
of code which allows to configure a timer and PWM channel to use for any
LED. But the PWM capability is only configured if the LED is set to an
intensity between 1 and 254 (ie only when needed). In that case the
relevant timer is configured for PWM. It's up to the user to make sure
the timers are not used if PWM is active.
This patch also makes sure that PWM LEDs are turned off using standard
GPIO when calling led.off() or led.intensity(0), instead of just setting
the PWM counter to zero.
TIM3 is no longer used by USB CDC for triggering outgoing data, so we
can now make it available to the user.
PWM fading on LED(4) is now gone, but will be reinstated in a new way.
Previous to this patch the USB CDC driver used TIM3 to trigger the
sending of outgoing data over USB serial. This patch changes the
behaviour so that the USB SOF interrupt is used to trigger the processing
of the sending. This reduces latency and increases bandwidth of outgoing
data.
Thanks to Martin Fischer, aka @hoihu, for the idea and initial prototype.
See PR #1713.
For single prec, exponents never get larger than about 37. For double
prec, exponents can be larger than 99 and need 3 bytes to format. This
patch makes the number of bytes needed configurable.
Addresses issue #1772.
Calling it from mp_init() is too late for some ports (like Unix), and leads
to incomplete stack frame being captured, with following GC issues. So, now
each port should call mp_stack_ctrl_init() on its own, ASAP after startup,
and taking special precautions so it really was called before stack variables
get allocated (because if such variable with a pointer is missed, it may lead
to over-collecting (typical symptom is segfaulting)).
When using newer glibc's the compiler automatically sets
_FORTIFY_SOURCE when building with -O1 and this causes
a special inlined version of printf to be declared which
then bypasses our version of printf.
MP_BC_NOT was removed and the "not" operation made a proper unary
operator, and the opcode format table needs to be updated to reflect
this change (but actually the change is only cosmetic).
Functions added are:
- randint
- randrange
- choice
- random
- uniform
They are enabled with configuration variable
MICROPY_PY_URANDOM_EXTRA_FUNCS, which is disabled by default. It is
enabled for unix coverage build and stmhal.
SHA1 is used in a number of protocols and algorithm originated 5 years ago
or so, in other words, it's in "wide use", and only newer protocols use
SHA2.
The implementation depends on axTLS enabled. TODO: Make separate config
option specifically for sha1().
micropython.stack_use() returns an integer being the number of bytes used
on the stack.
micropython.heap_lock() and heap_unlock() can be used to prevent the
memory manager from allocating anything on the heap. Calls to these are
allowed to be nested.
This allows FROZEN_DIR=some-directory to be specified on the make
command line, which will then add all of the files contained within
the indicated frozen directory as frozen files in the image.
There is no change in flash/ram usage if not using the feature.
This is especially useful on smaller MCUs (like the 401) which only
has 64K flash file system.
Seedable and reproducible pseudo-random number generator. Implemented
functions are getrandbits(n) (n <= 32) and seed().
The algorithm used is Yasmarang by Ilya Levin:
http://www.literatecode.com/yasmarang
this allows python code to use property(lambda:..., doc=...) idiom.
named versions for the fget, fset and fdel arguments are left out in the
interest of saving space; they are rarely used and easy to enable when
actually needed.
a test case is included.
The first argument to the type.make_new method is naturally a uPy type,
and all uses of this argument cast it directly to a pointer to a type
structure. So it makes sense to just have it a pointer to a type from
the very beginning (and a const pointer at that). This patch makes
such a change, and removes all unnecessary casting to/from mp_obj_t.
This patch changes the type signature of .make_new and .call object method
slots to use size_t for n_args and n_kw (was mp_uint_t. Makes code more
efficient when mp_uint_t is larger than a machine word. Doesn't affect
ports when size_t and mp_uint_t have the same size.
Minimal support code for a Cortex-M CPU is added, along with set-up
code for an STM32F4xx MCU, including a UART for a REPL. Tested on
a pyboard. Code size is 77592 bytes.
Constant folding in the parser can now operate on big ints, whatever
their representation. This is now possible because the parser can create
parse nodes holding arbitrary objects. For the case of small ints the
folding is still efficient in RAM because the folded small int is stored
inplace in the parse node.
Adds 48 bytes to code size on Thumb2 architecture. Helps reduce heap
usage because more constants can be computed at compile time, leading to
a smaller parse tree, and most importantly means that the constants don't
have to be computed at runtime (perhaps more than once). Parser will now
be a little slower when folding due to calls to runtime to do the
arithmetic.
Before this patch, (x+y)*z would be parsed to a tree that contained a
redundant identity parse node corresponding to the parenthesis. With
this patch such nodes are optimised away, which reduces memory
requirements for expressions with parenthesis, and simplifies the
compiler because it doesn't need to handle this identity case.
A parenthesis parse node is still needed for tuples.
Note that even though wrapped in MICROPY_CPYTHON_COMPAT, it is not
fully compatible because the modifications to the dictionary do not
propagate to the actual instance members.
Only types whose iterator instances still fit in 4 machine words have
been changed to use the polymorphic iterator.
Reduces Thumb2 arch code size by 264 bytes.
Previously, mark operation weren't logged at all, while it's quite useful
to see cascade of marks in case of over-marking (and in other cases too).
Previously, sweep was logged for each block of object in memory, but that
doesn't make much sense and just lead to longer output, harder to parse
by a human. Instead, log sweep only once per object. This is similar to
other memory manager operations, e.g. an object is allocated, then freed.
Or object is allocated, then marked, otherwise swept (one log entry per
operation, with the same memory address in each case).
The default bahaviour for debug builds is to show dialog boxes for asserts
and invalid parameter handling. This is not so nice in general and causes
the Appveyor debug builds to hang because the io\file_seek.py test passes
a closed file descriptor to lseek. Disable this behaviour by printing
assert messages to the output instead of showing the dialog, and by
disabling 'invalid' parameter handling which causes the affected functions
to just return an error and set errno appropriately.
Map indicies are most commonly a qstr, and adding a fast-path for hashing
of a qstr increases overall performance of the runtime.
On pyboard there is a 4% improvement in the pystone benchmark for a cost
of 20 bytes of code size. It's about a 2% improvement on unix.
When looking up and extracting an attribute of an instance, some
attributes must bind self as the first argument to make a working method
call. Previously to this patch, any attribute that was callable had self
bound as the first argument. But Python specs require the check to be
more restrictive, and only functions, closures and generators should have
self bound as the first argument
Addresses issue #1675.
This is a convenience function similar to pyexec_file. It should be used
instead of raw mp_parse_compile_execute because the latter does not catch
and report exceptions.
POSIX doesn't guarantee something like that to work, but it works on any
system with careful signal implementation. Roughly, the requirement is
that signal handler is executed in the context of the process, its main
thread, etc. This is true for Linux. Also tested to work without issues
on MacOSX.
Adds a lot of code, makes IRQs a bit less efficient, but is very useful
for debugging. Usage: pyb.irq_stats() returns a memory view that can be
read and written, eg:
list(pyb.irq_stats())
pyb.irq_stats()[0]
pyb.irq_stats()[0] = 0
The patch provides general IRQ_ENTER() and IRQ_EXIT() macros that can be
modified to provide further IRQ statistics if desired.
This builds upon the changes made in 2195046365. Using signal() does not
produce reliable results so SetConsoleCtrlHandler is used, and the handler
is installed only once during initialization instead of removing it in
mp_hal_set_interrupt_char when it is not strictly needed anymore, since
removing it might lead to Ctrl-C events being missed because they are
fired on a seperate thread which might only become alive after the handler
was removed.
Everyone loves to names similar things the same, then there're conflicts
between different libraries. The namespace prefix used is "CRYAL_", which
is weird, and that's good, as that minimizes chance of another conflict.
This makes all tests pass again for 64bit windows builds which would
previously fail for anything printing ranges (builtin_range/unpack1)
because they were printed as range( ld, ld ).
This is done by reusing the mp_vprintf implementation for MICROPY_OBJ_REPR_D
for 64bit windows builds (both msvc and mingw-w64) since the format specifier
used for 64bit integers is also %lld, or %llu for the unsigned version.
Note these specifiers used to be fetched from inttypes.h, which is the
C99 way of working with printf/scanf in a portable way, but mingw-w64
wants to be backwards compatible with older MS C runtimes and uses
the non-portable %I64i instead of %lld in inttypes.h, so remove the use
of said header again in mpconfig.h and define the specifiers manually.
Appveyor is like Travis, but for Windows builds. The appveyor.yml configuration
will build the msvc port in all configuration/platform conbinations,
and run the tests for each of those.
This basically introduces the MICROPY_MACHINE_MEM_GET_READ_ADDR
and MICROPY_MACHINE_MEM_GET_WRITE_ADDR macros. If one of them is
not defined, then a default identity function is provided.
Ideally we'd use %zu for size_t args, but that's unlikely to be supported
by all runtimes, and we would then need to implement it in mp_printf.
So simplest and most portable option is to use %u and cast the argument
to uint(=unsigned int).
Note: reason for the change is that UINT_FMT can be %llu (size suitable
for mp_uint_t) which is wider than size_t and prints incorrect results.
MICROPY_ENABLE_COMPILER can be used to enable/disable the entire compiler,
which is useful when only loading of pre-compiled bytecode is supported.
It is enabled by default.
MICROPY_PY_BUILTINS_EVAL_EXEC controls support of eval and exec builtin
functions. By default they are only included if MICROPY_ENABLE_COMPILER
is enabled.
Disabling both options saves about 40k of code size on 32-bit x86.
To let unix port implement "machine" functionality on Python level, and
keep consistent naming in other ports (baremetal ports will use magic
module "symlinking" to still load it on "import machine").
Fixes#1701.
This solves long-standing non-deterministic bug, which manifested itself
on x86 32-bit (at least of reported cases) - segfault on Ctrl+C (i.e.
SIGINT).
For builds where mp_uint_t is larger than size_t, it doesn't make
sense to use such a wide type for qstrs. There can only be as many
qstrs as there is address space on the machine, so size_t is the correct
type to use.
Saves about 3000 bytes of code size when building unix/ port with
MICROPY_OBJ_REPR_D.
size_t is the correct type to use to count things related to the size of
the address space. Using size_t (instead of mp_uint_t) is important for
the efficiency of ports that configure mp_uint_t to larger than the
machine word size.
Similar to recently added feature in unix port: if event triggers for an
objects, its polling flags are automatically reset, so it won't be polled
until they are set again explicitly.
ilistdir() returns iterator which yields triples of (name, type, ino)
where ino is inode number for entry's data, type of entry (file/dir/etc.),
and name of file/dir. listdir() can be easily implemented in terms of this
iterator (which is otherwise more efficient in terms of memory use and may
save expensive call to stat() for each returned entry).
CPython has os.scandir() which also returns an iterator, but it yields
more complex objects of DirEntry type. scandir() can also be easily
implemented in terms of ilistdir().
This allows to have single itertaor type for various internal iterator
types (save rodata space by not having repeating almost-empty type
structures). It works by looking "iternext" method stored in particular
object instance (should be first object field after "base").
Previously, SPI was configured by a board defining MICROPY_HW_ENABLE_SPIx
to 0 or 1. Now, the board should define MICROPY_HW_SPIx_SCK, MISO, MOSI
and NSS. This makes it the same as how I2C is configured.
This allows multiple versions (e.g. Debug/Release, x86/x64) of micropython.exe
to co-exist instead and also solves potential problems where msbuild does not
completely rebuild the output and/or pdb files when switching between builds,
which in turn can cause linker errors in dependent projects.
By default exe/map/... files go in windows/build/$(Configuration)$(Platform)
After each build micropython.exe is still copied from the above directory to
the windows directory though, as that is consistent with the other ports and
the test runner by default uses that location as well.
Also rename env.props -> path.props which is a clearer name,
and add ample documentation in the affected build files.
(also see discussion in #1538)
After an I/O event is triggered for fd, event flags are automatically reset,
so no further events are reported until new event flags are set. This is
an optimization for uasyncio, required to account for coroutine semantics:
each coroutine issues explicit read/write async call, and once that trigger,
no events should be reported to coroutine, unless it again explicitly
requests it. One-shot mode saves one linear scan over the poll array.
Fixes#1684 and makes "not" match Python semantics. The code is also
simplified (the separate MP_BC_NOT opcode is removed) and the patch saves
68 bytes for bare-arm/ and 52 bytes for minimal/.
Previously "not x" was implemented as !mp_unary_op(x, MP_UNARY_OP_BOOL),
so any given object only needs to implement MP_UNARY_OP_BOOL (and the VM
had a special opcode to do the ! bit).
With this patch "not x" is implemented as mp_unary_op(x, MP_UNARY_OP_NOT),
but this operation is caught at the start of mp_unary_op and dispatched as
!mp_obj_is_true(x). mp_obj_is_true has special logic to test for
truthness, and is the correct way to handle the not operation.
Oftentimes, libc, libm, etc. don't come compiled with CPU compressed code
option (Thumb, MIPS16, etc.), but we may still want to use such compressed
code for MicroPython itself.
Previously, sizeof() blindly assumed LAYOUT_NATIVE and tried to align
size even for packed LAYOUT_LITTLE_ENDIAN & LAYOUT_BIG_ENDIAN. As sizeof()
is implemented on a strucuture descriptor dictionary (not an structure
object), resolving this required passing layout type around.
This is refactoring to enable support for the two USB PHYs available on
some STM32F4 processors to be used at the same time. The F405/7 & F429
have two USB PHYs, others such as the F411 only have one PHY.
This has been tested separately on a pyb10 (USB_FS PHY) and F429DISC
(USB_HS PHY) to be able to invoke a REPL/USB. I have modified a PYBV10
to support two PHYs.
The long term objective is to support a 2nd USB PHY to be brought up as a
USB HOST, and possibly a single USB PHY to be OTG.
Currently nlr_jump_fail prints that there was an uncaught exception
but nothing about the exception.
This patch causes nlr_jump_failed to try to print the exception.
Given that printf was called on the line above, I think that
the call to mp_obj_print_exception has about as much likelyhood
of succeeding as the printf does.
When you use the USER button to perform a filesystem reset
at boot time then it wipes out the filesystem and creates
a new boot.py and main.py. With this patch these files are
executed after formatting, ensuring that pyb and machine modules
get imported.
Per CPython docs, "Registering a file descriptor that’s already registered
is not an error, and has the same effect as registering the descriptor
exactly once."
https://docs.python.org/3/library/select.html#select.poll.register
That's somewhat ambiguous, what's implemented here is that if fd si not
yet registered, it is registered. Otherwise, the effect is equivalent to
modify() method.
Usually this checking is done by VM on jump instructions, but for linear
sequences of instructions and builtin functions this won't happen. Particular
target of this change is long-running builtin functions like time.sleep().
This is a hack to free up TIM3 so that it can be used by the user.
Instead we use the PVD irq to call the USB VCP polling function, and
trigger it from SysTick (so SysTick itself does not do any processing).
The feature is enabled for pyboard lite only, since it lacks timers.
Consider the following scenario: SD card is being read by pyboard; USB
irq comes in for MSC read request; SD card needs to be read from within
USB irq while SD read is already ongoing. Such contention needs to be
avoided.
This patch provides a simple solution, to raise the irq priority above
that of the USB irq during SD DMA transfers. Pyboard and PC can now
read from the SD card at the same time (well, reads are interleaved).
As set by signal handler. This assumes that exception will be raised
somewhere else, which so far doesn't happen for single function call.
Still, it makes sense to handle that in some common place.
In non-blocking mode (timeout=0), uart.write() can now transmit all of its
data without raising an exception. uart.read() also works correctly in
this mode.
As part of this patch, timout_char now has a minimum value which is long
enough to transfer 1 character.
Addresses issue #1533.
To use, put the following in mpconfigport.h:
#define MICROPY_OBJ_REPR (MICROPY_OBJ_REPR_D)
#define MICROPY_FLOAT_IMPL (MICROPY_FLOAT_IMPL_DOUBLE)
typedef int64_t mp_int_t;
typedef uint64_t mp_uint_t;
#define UINT_FMT "%llu"
#define INT_FMT "%lld"
Currently does not work with native emitter enabled.
This allows the mp_obj_t type to be configured to something other than a
pointer-sized primitive type.
This patch also includes additional changes to allow the code to compile
when sizeof(mp_uint_t) != sizeof(void*), such as using size_t instead of
mp_uint_t, and various casts.
THis is required to deal well with signals, signals being the closest
analogue of hardware interrupts for POSIX. This is also CPython 3.5
compliant behavior (PEP 475).
The main problem implementing this is to figure out how much time was
spent in waiting so far/how much is remaining. It's well-known fact that
Linux updates select()'s timeout value when returning with EINTR to the
remaining wait time. Here's what POSIX-based standards say about this:
(http://pubs.opengroup.org/onlinepubs/9699919799/functions/pselect.html):
"Upon successful completion, the select() function may modify the object
pointed to by the timeout argument."
I.e. it allows to modify timeout value, but doesn't say how exactly it is
modified. And actually, it allows such modification only "upon successful
completion", which returning with EINTR error hardly is.
POSIX also allows to request automatic EINTR restart for system calls using
sigaction call with SA_RESTART flag, but here's what the same document says
about it:
"If SA_RESTART has been set for the interrupting signal, it is
implementation-defined whether the function restarts or returns with
[EINTR]."
In other words, POSIX doesn't leave room for both portable and efficient
handling of this matter, so the code just allows to manually select
Linux-compatible behavior with MICROPY_SELECT_REMAINING_TIME option,
or otherwise will just raise OSError. When systems with non-Linux behavior
are found, they can be handled separately.
With these you can now do things like:
stm.mem32[0x20000000] = 0x80000000
and read 32-bit values. You can also read all the way to the end
of memory using either stm.mem32[0xfffffffc] or stm.mem32[-4].
IRQs shouldn't use mem32 at all since they'd fail if the top 2 bits
weren't equal, so IRQs should be using 16-bit I/O.
The STMCube examples define both USE_USB_HS and USE_USB_HS_IN_FS when they
use the HS in FS mode.
The STM32F401 doesn't have a USB_HS at all, so the USB_OTG_HS instance
doesn't even exist.
The UARTs have no FIFOs, so if interrupts are disabled
for more than a character time (10 usec at 1 Mbit/sec)
then characters get dropped.
The overhead for handling a UART ISR is about 0.5 usec,
so even at baud rates of 1 Mbit/sec this only corresponds
to about 5% of the CPU. Lower baud rates will have less
of an impact.
uwTick can only change in the SysTick IRQ so this IRQ function does not
need to take special care with this variable. It's important to make
this IRQ function as efficient as possible.
Using SysTick to do the counting and dispatch of the flash storage idle
handler is more efficient than requiring a dedicated hardware timer.
No new counter is needed, just the existing uwTick variable. The
processing is not actually done in the SysTick IRQ, it is deferred to
the flash IRQ (which runs at lower priority).
- add mp_int_t/mp_uint_t typedefs in mpconfigport.h
- fix integer suffixes/formatting in mpconfig.h and mpz.h
- use MICROPY_NLR_SETJMP=1 in Makefile since the current nlrx64.S
implementation causes segfaults in gc_free()
- update README
The BSD stuff is a copy from the unix makefile but at least there it
makes some sense, a windows makefile on BSD doesn't.
The -lmman flag is probably for mmap functions but there is no other build
support for it on windows so just that flag won't cut it anyway.
Turning on each DMA block increases the current consumption
by about 8 mA. This code adds an idle timer for each DMA
block and turns off the clocks when no streams are in use
for 128 msec. Having a small timeout allows for improved
performance when back-to-back transfers are being performed.
The 128 msec is basically a guess.
- added some comments to explain the priority/sub-priority.
- adds an entry for SDIO (to be used in a later patch)
- increases DMA priority above USB so that DMA can be used
for sdcard I/O when using USB Mass Storage.
If RTC is already running at boot then it's left alone. Otherwise, RTC is
started at boot but startup function returns straight away. RTC startup
is then finished the first time it is used. Fallback to LSI if LSE fails
to start in a certain time.
Also included:
MICROPY_HW_CLK_LAST_FREQ
hold pyb.freq() parameters in RTC backup reg
MICROPY_HW_RTC_USE_US
option to present datetime sub-seconds in microseconds
MICROPY_HW_RTC_USE_CALOUT
option to enable RTC calibration output
CLK_LAST_FREQ and RTC_USE_CALOUT are enabled for PYBv1.0.
This takes previous IEEE-754 single precision float implementation, and
converts it to fully portable parametrizable implementation using C99
functions like signbit(), isnan(), isinf(). As long as those functions
are available (they can be defined in adhoc manner of course), and
compiler can perform standard arithmetic and comparison operations on a
float type, this implementation will work with any underlying float type
(including types whose mantissa is larger than available intergral integer
type).
In other words, unix port now uses overriden printf(), instead of using
libc's. This should remove almost all dependency on libc stdio (which
is bloated).
Return tuple of (address_family, net_addr, [port, [extra_data]]). net_addr
is still raw network address as bytes object, but suitable for passing to
inet_ntop() function. At the very least, sockaddr() will separate address
family value from binary socket address (and currently, only AF_INET family
is decoded).
This change makes the code behave how it was supposed to work when first
written. The avail_slot variable is set to the first free slot when
looking for a key (which would come from deleting an entry). So it's
more efficient (for subsequent lookups) to insert a new key into such a
slot, rather than the very last slot that was searched.
In new hardware API, these classes implement master modes of interfaces,
and "mode" parameter is not accepted. Trying to implement new HW API
in terms of older pyb module leaves variuos corner cases:
In new HW API, I2C(1) means "I2C #1 in master mode" (? depends on
interpretation), while in old API, it means "I2C #1, with no settings
changes".
For I2C class, it's easy to make mode optional, because that's last
positional param, but for SPI, there's "baudrate" after it (which
is inconsistent with I2C, which requires "baudrate" to be kwonly-arg).
MICROPY_PERSISTENT_CODE must be enabled, and then enabling
MICROPY_PERSISTENT_CODE_LOAD/SAVE (either or both) will allow loading
and/or saving of code (at the moment just bytecode) from/to a .mpy file.
Main changes when MICROPY_PERSISTENT_CODE is enabled are:
- qstrs are encoded as 2-byte fixed width in the bytecode
- all pointers are removed from bytecode and put in const_table (this
includes const objects and raw code pointers)
Ultimately this option will enable persistence for not just bytecode but
also native code.
This makes select.poll() interface fully compatible with CpYthon. Also, make
their numeric values of these options compatible with Linux (and by extension,
with iBCS2 standard, which jopefully means compatibility with other Unices too).
- A single ffcon.h file to configure fatfs settings across ports.
- A single diskio.h file with common drive definitions.
- Removed now reduntand ffconf_template.h.
Now, if we build for an architecture which doesn't have dedicated support
for getting registers for GC scanning, fallback to setjmp-based method
automatically. It's still possible to force setjmp-based implementation
on archs with dedicated support (e.g. for testing, or for peculiar calling
conventions/optimizations).
Currently, the only place that clears the bit is in gc_collect.
So if a block with a finalizer is allocated, and subsequently
freed, and then the block is reallocated with no finalizer then
the bit remains set.
This could also be fixed by having gc_alloc clear the bit, but
I'm pretty sure that free is called way less than alloc, so doing
it in free is more efficient.
This patch allows you to stop auto-indent by pressing enter on a second
blank line. Easier than having to use backspace, and prevents new users
from getting stuck in auto-indent mode.
This patch adds/subtracts a constant from the 30-bit float representation
so that str/qstr representations are favoured: they now have all the high
bits set to zero. This makes encoding/decoding qstr strings more
efficient (and they are used more often than floats, which are now
slightly less efficient to encode/decode).
Saves about 300 bytes of code space on Thumb 2 arch.
The default setting of using the "highest" method available doesn't
work with some servers like Microsoft Azure. TLSV1 seems to work with
pretty much any server.
I left memzip in for the time being, so you can choose in
the Makefile whether to USE_FROZEN or USE_MEMZIP.
It looks like using frozen saves about 2472 bytes (using my
set of 15 python files), mostly due to overheads in the
zip file format.
- use correct 'mingw-w64' package name
- small grammar fixes
- modify Cygwin build instructions to use that same compiler as well: the
original mingw is stuck at gcc v4.7 and does not seem to be updated anymore
- make it clear thet uPy also builds using Visual Studio versions > 2013
Ubuntu's mingw32 has gcc 4.2.1, which is rather old and has incorrect
non-initialized variable analysis which produces warnings, which
per MicroPython default settings get turned into errors.
Contains implementation of ?: (non-capturing groups), ?? (non-greedy ?),
as well as much improved robustness, and edge cases and error handling by
Amir Plivatsky (@ampli).
py/mphal.h contains declarations for generic mp_hal_XXX functions, such
as stdio and delay/ticks, which ports should provide definitions for. A
port will also provide mphalport.h with further HAL declarations.
This makes format specifiers ~ fully compatible with CPython.
Adds 24 bytes for stmhal port (because previosuly we had to catch and report
it's unsupported to user).
This is the case already when using just subprocess.check_output, but in
the special cases (cmdline, meminfo, ...) the carriage return gets lost
during output processing so restore it in the end.
This fixes the micropython/meminfo.py test on Windows.
This prevents the loss of RTC time when exiting from standby mode, since
the RTC is paused while it is being re-inited and this loses about 120ms.
Thanks to @chuckbook for the patch.
This file is actually port-generic and should be moved out of stmhal/ .
Other ports already use it, and thus it should use mp_hal_ticks_ms()
right away.
These MPHAL functions are intended to replace previously used HAL_Delay(),
HAL_GetTick() to provide better naming and MPHAL separation (they are
fully equivalent otherwise).
Also, refactor extmod/modlwip to use them.
Also make sleep.c self-contained by moving initialization code,
instead of having part of the code in init.c, and add a header file
to accomodate this.
msec_sleep() now uses the usleep() implementation as well.
Scenario: module1 depends on some common file from lib/, so specifies it
in its SRC_MOD, and the same situation with module2, then common file
from lib/ eventually ends up listed twice in $(OBJ), which leads to link
errors.
Make is equipped to deal with such situation easily, quoting the manual:
"The value of $^ omits duplicate prerequisites, while $+ retains them and
preserves their order." So, just use $^ consistently in all link targets.
This is required to properly select among overloaded methods. It however
relies on java.lang.Object-overloaded method to come last, which appears
to be the case for OpenJDK.
If VT100 support is not available then a given implementation of
mp_hal_erase_line_from_cursor might need to know the number of characters
to erase.
This patch does not change generated code when VT100 is supported, since
compiler can optimise away the argument.
This saves around 1000 bytes (Thumb2 arch) because in repr "C" it is
costly to check and extract a qstr. So making such check/extract a
function instead of a macro saves lots of code space.
This new object representation puts floats into the object word instead
of on the heap, at the expense of reducing their precision to 30 bits.
It only makes sense when the word size is 32-bits.
Instead of return 0, which means EOF. There's no good way to detect EOF on
continuously active bus like UART, and treat timeout as just temporary
unvailability of data. .read() method of UART object will return None in
this case (instead of 0, which again measn EOF). This is fully compliant
with unix port.
Another function (like stat) which is problematic to deal with on ABI level
(FFI), as struct statvfs layout may differ unpredictably between OSes and
even different versions of a same OS. So, implement it in C, returning a
10-element tuple of f_bsize, f_frsize, f_blocks, f_bfree, f_bavail, f_files,
f_ffree, f_favail, f_flag, f_namemax. This is exactly the order described
in Python3 docs, https://docs.python.org/3/library/os.html#os.statvfs
(but note that os.statvfs() should make these values available as
attributes).
This allows to build libffi from source together with micropython, and is
useful for cross-compilation. Support for this was already merged
previously, to use:
make libffi
make MICROPY_STANDALONE=1
(To both commands appropriate cross-compilition flags can be added).
Cortex-M0, M0+ and M1 only have ARMv6-M Thumb/Thumb2 instructions. M3,
M4 and M7 have a superset of these, named ARMv7-M. This patch adds a
config option to enable support of the superset of instructions.
These are currently not intended to run with the rest of testsuite, as
they require dependencies and special environment setup anyway (drafted
in tests/jni/README).
This patch allows to configure the DAC resolution in the constructor and
in the init function, eg:
dac = DAC(1, bits=12).
The default resolution is 8 bits for backwards compatibility. The bits
sets the maximum value accepted by write and write_timed methods, being
2**bits - 1.
When using write_timed with 12-bit resolution, the input buffer is
treated as an unsigned half-word array, typecode 'H'.
See PR #1130 for discussion.
As we dn't export constants for TCSANOW, etc., zero makes a good "don't
care" param, and now it will work also under Android Bionic and any other
libc.
It makes much more sense to do constant folding in the parser while the
parse tree is being built. This eliminates the need to create parse
nodes that will just be folded away. The code is slightly simpler and a
bit smaller as well.
Constant folding now has a configuration option,
MICROPY_COMP_CONST_FOLDING, which is enabled by default.
Use CTRL-E to enter paste mode. Prompt starts with "===" and accepts
all characters verbatim, echoing them back. Only control characters are
CTRL-C which cancels the input and returns to normal REPL, and CTRL-D
which ends the input and executes it. The input is executed as though
it were a file. The input is not added to the prompt history.
This fix adds PIDs 9801 and 9802 to the pybcdc.inf file.
When in CDC only mode, it presents itself as a Communcations
device rather than as a composite device. Presenting as a
composite device with only the CDC interface seems to confuse
windows.
To test and make sure that the correct pybcdc.inf was being used,
I used USBDeview from http://www.nirsoft.net/utils/usb_devices_view.html
to uninstall any old pyboard drivers (Use Control-F and search
for pyboard). I found running USBDeview as administrator worked best.
Installing the driver in CDC+MSC mode first is recommended (since the
pybcdc.inf file in on the internal flash drive). Then when you switch
modes everything seems to work properly.
I used https://github.com/dhylands/upy-examples/blob/master/boot_switch.py
to easily switch the pyboard between the various USB modes for testing.
With this patch parse nodes are allocated sequentially in chunks. This
reduces fragmentation of the heap and prevents waste at the end of
individually allocated parse nodes.
Saves roughly 20% of RAM during parse stage.
This patch adds more fine grained error message control for errors when
parsing integers (now has terse, normal and detailed). When detailed is
enabled, the error now escapes bytes when printing them so they can be
more easily seen.
This fixes errors like these ones:
modffi.c: In function 'return_ffi_value':
modffi.c:143:29: error: cast to pointer from integer of different size
[-Werror=int-to-pointer-cast]
const char *s = (const char *)val;
^
modffi.c:162:20: error: cast to pointer from integer of different size
[-Werror=int-to-pointer-cast]
return (mp_obj_t)val;
^
modffi.c: In function 'ffifunc_call':
modffi.c:358:25: error: cast from pointer to integer of different size
[-Werror=pointer-to-int-cast]
values[i] = (ffi_arg)a;
^
modffi.c:373:25: error: cast from pointer to integer of different size
[-Werror=pointer-to-int-cast]
values[i] = (ffi_arg)s;
^
modffi.c:381:25: error: cast from pointer to integer of different size
[-Werror=pointer-to-int-cast]
values[i] = (ffi_arg)bufinfo.buf;
^
modffi.c:384:25: error: cast from pointer to integer of different size
[-Werror=pointer-to-int-cast]
values[i] = (ffi_arg)p->func;
^
These errors can be highlighted when building micropython from MIPS64
n32 because ffi_arg is 64-bit wide and the pointers on MIPS64 n32 are
32-bit wide, so it's trying to case an integer to a pointer (or
vice-versa) of a different size. We should cast first the pointer (or the
integer) to a pointer sized integer (intptr_t) to fix that problem.
Signed-off-by: Vicente Olivert Riera <Vincent.Riera@imgtec.com>
There is an issue sending 1 byte on the SPI bus using DMA, but it only
occurs when the transmit is done for the first time after initialising
the SPI and DMA peripherals. All other cases (sending 2 or more bytes,
doing send_recv, doing recv first) work okay. We sidestep this issue by
using polling (not DMA) for all 1 byte transfers. This is fine because
a 1 byte transfer can't be interrupted and doesn't need the benefits of
DMA (and using polling for this case is more efficient).
Resolves#1456.
When creating constant mpz's, the length of the mpz must be exactly how
many digits are used (not allocated) otherwise these numbers are not
compatible with dynamically allocated numbers.
Addresses issue #1448.
4 spaces are added at start of line to match previous indent, and if
previous line ended in colon.
Backspace deletes 4 space if only spaces begin a line.
Configurable via MICROPY_REPL_AUTO_INDENT. Disabled by default.
This optimises (in speed and code size) for the common case where the
binary op for the bool object is supported. Unsupported binary ops
still behave the same.
Function annotations are only needed when the native emitter is enabled
and when the current scope is emitted in viper mode. All other times
the annotations can be skipped completely.
Fetch the current usb mode and return a string representation when
pyb.usb_mode() is called with no args. The possible string values are interned
as qstr's. None will be returned if an incorrect mode is set.
Linking against local libffi (and other libs in future) is triggered by
"make MICROPY_STANDALONE=1". Before that, dependent libs should be built
with "make deplibs".
Indeed, this flag efectively selects architecture target, and must
consistently apply to all compiles and links, including 3rd-party
libraries, unlike CFLAGS, which have MicroPython-specific setting.
unix-cpy was originally written to get semantic equivalent with CPython
without writing functional tests. When writing the initial
implementation of uPy it was a long way between lexer and functional
tests, so the half-way test was to make sure that the bytecode was
correct. The idea was that if the uPy bytecode matched CPython 1-1 then
uPy would be proper Python if the bytecodes acted correctly. And having
matching bytecode meant that it was less likely to miss some deep
subtlety in the Python semantics that would require an architectural
change later on.
But that is all history and it no longer makes sense to retain the
ability to output CPython bytecode, because:
1. It outputs CPython 3.3 compatible bytecode. CPython's bytecode
changes from version to version, and seems to have changed quite a bit
in 3.5. There's no point in changing the bytecode output to match
CPython anymore.
2. uPy and CPy do different optimisations to the bytecode which makes it
harder to match.
3. The bytecode tests are not run. They were never part of Travis and
are not run locally anymore.
4. The EMIT_CPYTHON option needs a lot of extra source code which adds
heaps of noise, especially in compile.c.
5. Now that there is an extensive test suite (which tests functionality)
there is no need to match the bytecode. Some very subtle behaviour is
tested with the test suite and passing these tests is a much better
way to stay Python-language compliant, rather than trying to match
CPy bytecode.
- add SEEK_XXX definitions, this fixes missing definition in py/stream.c
- move R_OK from realpath.c and add W_OK/F_OK defintions
- move STDXXX_FILENO definitions from mpconfigport for consistency
Key is always entered as a string, but if security is WEP, the key
is converted automatically to hex before connecting or configuring
the device as an AP.
Changes are based on this post:
https://github.com/micropython/micropython/issues/876#issuecomment-115255551
The constructor can optionally take the same params of iwconfig in
order to configure WiFi when creating the object. Params are
keyworkd only. The WiPy accepts:
- mode (int -> WLAN.AP or WLAN.STA)
- ssdi (string)
- security (int -> WLAN.OPEN, WLAN.WEP, WLAN.WPA, WLAN.WPA2)
- key (string)
- channel (int (1-11))
- antenna (int -> WLAN.INTERNAL, WLAN.EXTERNAL)
- subprocess.check_output can only handle strings on windows, not bytes,
so convert the arguments as such
- the pty module is for posix systems only so skip the tests needing it
in case it is not available
The DFU bootloader on the ST32F7 chip changes the clocksource
for various possible boot sources (UART1, UART3, I2C1-3).
This commit resets those clock sources back to their cold
reset values.
USB serial is now working for F7.
Internal file storage is now working for F7. The flash is laid out a bit
differently to the F4 - 4 x 32K, 1 x 128K with the rest 256K, so the
internal storage is 96K.
Added more pind definitions for STM32F7DISC board. Made USART1 be the
default HWUART repl. The STLINK usb connector also looks like a USB
serial port which is attached to USART1 on the STM32F7DISC.
Extracted GPIO clock enable logic into mp_hal_gpio_clock_enable
and called from anyplace which might need to use GPIO functions
on ports other than A-D.
Thanks to Dave Hylands for the patch.
All files were converted to linux line endings.
All trailing whitespace was removed using:
for f in f7/inc/* f7/src/*; do sed --in-place 's/[[:space:]]\+$//' $f; done
All non-ascii chars in comments were replaced with ascii equivalents or
removed.
This is how the names will be printed on the sticker that goes on top
of the EMI shield. The shorter names also help saving a few bytes of
RAM and ROM.
Previous to this patch there were some cases where line numbers for
errors were 0 (unknown). Now the compiler attempts to give a better
line number where possible, in some cases giving the line number of the
closest statement, and other cases the line number of the inner-most
scope of the error (eg the line number of the start of the function).
This helps to give good (and sometimes exact) line numbers for
ViperTypeError exceptions.
This patch also makes sure that the first compile error (eg SyntaxError)
that is encountered is reported (previously it was the last one that was
reported).
When looking to see if the REPL input needs to be continued on the next
line, don't look inside strings for unmatched ()[]{} ''' or """.
Addresses issue #1387.
ViperTypeError now includes filename and function name where the error
occurred. The line number is the line number of the start of the
function definition, which is the best that can be done without a lot
more work.
Partially addresses issue #1381.
The adapter class "TelnetToSerial" is used to access the Telnet
connection using the same API as with the serial connection. The
function pyboard.run-test() has been removed to made the module
generic and because this small test is no longer needed.
When looking for chars to indicate raw repl is active, look for the full
string of chars to improve reliability of entering raw repl correctly.
Previous to this patch there was the possibility that raw repl was
entered in a dirty state, where not all input chars from previous
invocation were drained.
This allows the DAC to use a user-specified Timer for the triggering
(instead of the default Timer(6)), while still supporting original
behaviour.
Addresses issues #1129 and #1388.
Only those files which are needed by the stmhal port are added.
Also includes a dummy file (stm32f2xx_hal_pcd_ex.c) to keep the build
system the same for f4 and f2 MCU series.
This is in preparation for supporting other MCU series, such as
STM32F2xx. Directory structure for the HAL is now hal/f4/{inc,src},
where "f4" will in the future be different for other series.
HAL source/header files that are not use are removed to reduce the size
of the code.
This patch makes configurable, via MICROPY_QSTR_BYTES_IN_HASH, the
number of bytes used for a qstr hash. It was originally fixed at 2
bytes, and now defaults to 2 bytes. Setting it to 1 byte will save
ROM and RAM at a small expense of hash collisions.
Previous to this patch all interned strings lived in their own malloc'd
chunk. On average this wastes N/2 bytes per interned string, where N is
the number-of-bytes for a quanta of the memory allocator (16 bytes on 32
bit archs).
With this patch interned strings are concatenated into the same malloc'd
chunk when possible. Such chunks are enlarged inplace when possible,
and shrunk to fit when a new chunk is needed.
RAM savings with this patch are highly varied, but should always show an
improvement (unless only 3 or 4 strings are interned). New version
typically uses about 70% of previous memory for the qstr data, and can
lead to savings of around 10% of total memory footprint of a running
script.
Costs about 120 bytes code size on Thumb2 archs (depends on how many
calls to gc_realloc are made).
inet_pton supports both ipv4 and ipv6 addresses. Interface is also extensible
for other address families, but underlying libc inet_pton() function isn't
really extensible (e.g., it doesn't return length of binary address, i.e. it's
really hardcoded to AF_INET and AF_INET6). But anyway, on Python side, we could
extend it to support other addresses.
sendto() turns out to be mandatory function to work with UDP. It may seem
that connect(addr) + send() would achieve the same effect, but what connect()
appears to do is to set source address filter on a socket to its argument.
Then everything falls apart: socket sends to a broad-/multi-cast address,
but reply is sent from real peer address, which doesn't match filter set
by connect(), so local socket never sees a reply.
This requires root access. And on recent Linux kernels, with
CONFIG_STRICT_DEVMEM option enabled, only address ranges listed in
/proc/iomem can be accessed. The above compiled-time option can be
however overriden with boot-time option "iomem=relaxed".
This also removed separate read/write paths - there unlikely would
be a case when they're different.
I checked the entire codebase, and every place that vstr_init_len
was called, there was a call to mp_obj_new_str_from_vstr after it.
mp_obj_new_str_from_vstr always tries to reallocate a new buffer
1 byte larger than the original to store the terminating null
character.
In many cases, if we allocated the initial buffer to be 1 byte
longer, we can prevent this extra allocation, and just reuse
the originally allocated buffer.
Asking to read 256 bytes and only getting 100 will still cause
the extra allocation, but if you ask to read 256 and get 256
then the extra allocation will be optimized away.
Yes - the reallocation is optimized in the heap to try and reuse
the buffer if it can, but it takes quite a few cycles to figure
this out.
Note by Damien: vstr_init_len should now be considered as a
string-init convenience function and used only when creating
null-terminated objects.
Previous to this patch, if "abcd" and "ab" were possible completions
to tab-completing "a", then tab would expand to "abcd" straight away
if this identifier appeared first in the dict.
The TimeoutError is useful for some modules, specially the the
socket module. TimeoutError can then be alised to socket.timeout
and then Python code can differentiate between socket.error and
socket.timeout.
When "micropython -m pkg.mod" command was used, relative imports in pkg.mod
didn't work, because pkg.mod.__name__ was set to __main__, and the fact that
it's a package submodule was missed. This is an original workaround to this
issue. TODO: investigate and compare how CPython deals with this issue.
When enabled this allows the internal storage to be split over 2
contiguous regions of flash (two segments), and so the storage can be
increased.
This option is disabled by default, giving original behaviour.
Previous to this patch each time a bytes object was referenced a new
instance (with the same data) was created. With this patch a single
bytes object is created in the compiler and is loaded directly at execute
time as a true constant (similar to loading bignum and float objects).
This saves on allocating RAM and means that bytes objects can now be
used when the memory manager is locked (eg in interrupts).
The MP_BC_LOAD_CONST_BYTES bytecode was removed as part of this.
Generated bytecode is slightly larger due to storing a pointer to the
bytes object instead of the qstr identifier.
Code size is reduced by about 60 bytes on Thumb2 architectures.
The --pyboard param has been replaced by --target which defaults to
'unix'. Possible values at this moment are 'unix', 'pyboard' and
'wipy'. Now is also possible to select the baud rate of the serial
device when calling the script.
This removes hard-coded DMA init params from dma_init(), instead defining
these parameters in a DMA_InitTypeDef struct that gets passed as an
argument to dma_init()
This makes dma_init more generic so it can be used for I2S and SD Card,
which require different initialization parameters.
This script is used by Jenkins to update the WiPy with the newly
built firmware before running the tests. It's not placed in the
common tools folder because it is very WiPy specific.
The do_str() function is provided essentially as documentation to show
how to compile and execute a string. This patch makes do_str take an
extra arg to specify how the string should be interpreted: either as a
single line (ie from a REPL) or as multiple lines (ie from a file).
Previous to this patch a call such as list.append(1, 2) would lead to a
seg fault. This is because list.append is a builtin method and the first
argument to such methods is always assumed to have the correct type.
Now, when a builtin method is extracted like this it is wrapped in a
checker object which checks the the type of the first argument before
calling the builtin function.
This feature is contrelled by MICROPY_BUILTIN_METHOD_CHECK_SELF_ARG and
is enabled by default.
See issue #1216.
In raw REPL ">" indicates the prompt. We originally read this character
upon entering the raw REPL, and after reading the last bit of the
output. This patch changes the logic so the ">" is read only just
before trying to send the next command. To make this work (and as an
added feature) the input buffer is now flushed upon entering raw REPL.
The main reason for this change is so that pyboard.py recognises the EOF
when sys.exit() is called on the pyboard. Ie, if you run pyboard.py
with a script that calls sys.exit(), then pyboard.py will exit after
the sys.exit() is called.
MicroPython "network" module interface requires it to contains classes
to instantiate. But as we have a static network interace, make WLAN()
"constructor" just return module itself, and just make all methods
module-global functions.
mpconfigport.mk contains configuration options which affect the way
MicroPython is linked. In this regard, it's "stronger" configuration
dependency than even mpconfigport.h, so if we rebuild everything on
mpconfigport.h change, we certianly should of that on mpconfigport.mk
change too.
If heap allocation for the Python-stack of a function fails then we may
as well allocate the Python-stack on the C stack. This will allow to
run more code without using the heap.
If IRQs are disabled then the USB CDC buffer will never be
drained/filled and the sys-tick timer will never increase, so we should
not busy wait in this case.
Now address comes first, and args related to struct type are groupped next.
Besides clear groupping, should help catch errors eagerly (e.g. forgetting
to pass address will error out).
Also, improve args number checking/reporting overall.
This allows to do "ar[i]" and "ar[i] = val" in viper when ar is a Python
object and i and/or val are native viper types (eg ints).
Patch also includes tests for this feature.
With network.server_timeout(secs) the timeout can be changed.
The default value is 300 secs. Minimmum accpeted is 5 secs.
Without params the function returns the current configured timeout.
MicroPython doesn't come with standard library included, so it is important
to be able to easily install needed package in a seamless manner. Bundling
package manager (upip) inside an executable solves this issue.
upip is bundled only with standard executable, not "minimal" or "fast"
builds.
Pasting more or less sizable text into ESP8266 REPL leads to random chars
missing in the received input. Apparent cause is that using RTOS messages
to pass individual chars one by one is to slow and leads to UART FIFO
overflow. So, instead of passing chars one by one, use RTOS msg to signal
that input data is available in FIFO, and then let task handler to read
data directly from FIFO.
With this change, lost chars problem is gone, but the pasted text is
truncated after some position. At least 500 chars can be pasted reliably
(at 115200 baud), but 1K never pastes completely.
This patch converts Q(abc) to "Q(abc)" to protect the abc from the
C preprocessor, then converts back after the preprocessor is finished.
So now we can safely put includes in mpconfig(port).h, and also
preprocess qstrdefsport.h (latter is now done also in this patch).
Addresses issue #1252.
1. Updated linker script, now user app appears to contain exception vector
table and oesn't work (faults) without it.
2. Commened out support for GPIO pulldown, which was removed in this SDK
version without clear explanation, but apparently because it was released
without proper validation, and now turns out it doesn't work as expected,
or there's a different function there.
I document as much as I could guess from experiments and reading the
code for the ``esp`` module for the ESP8266 port of Micropython.
For now the tag has to be set manually with -t option when building,
when we have properly split documentation, there will be a separate
config file for esp8266 with that the tag "port_esp8266" set.
To build use:
make SPHINXOPTS="-t port_esp8266" html
Using MICROPY_PY_SYS_PATH_DEFAULT macro define. A usecase is building a
distribution package, which should not have user home path by default in
sys.path. In such case, MICROPY_PY_SYS_PATH_DEFAULT can be defined on
make command-line (using CFLAGS_EXTRA).
C's printf will pad nan/inf differently to CPython. Our implementation
originally conformed to C, now it conforms to CPython's way.
Tests for this are also added in this patch.
This gets uPy readline working with unix port, with tab completion and
history. GNU readline is still supported, configure using
MICROPY_USE_READLINE variable.
In general the changes are:
1. Peripheral (UART, SPI, ADC, I2C, Timer) IDs start from 1, not zero.
2. Make I2C and SPI require the ID even when there's only one bus.
3. Make I2C and SPI accept 'mode' parameter even though only MASTER
is supported.
In particular, dates prior to Mar 1, 2000 are screwed up.
The easiest way to see this is to do:
>>> import time
>>> time.localtime(0)
(2000, 1, 1, 0, 0, 0, 5, 1)
>>> time.localtime(1)
(2000, 1, 2, 233, 197, 197, 6, 2)
With this patch, we instead get:
>>> import time
>>> time.localtime(1)
(2000, 1, 1, 0, 0, 1, 5, 1)
Doh - In C % is NOT a modulo operator, it's a remainder operator.
This drops the size of unicode_isxdigit from 0x1e + 0x02 filler to
0x14 bytes (so net code reduction of 12 bytes) and will make
unicode_is_xdigit perform slightly faster.
This allows using (almost) the same code for printing floats everywhere,
removes the dependency on sprintf and uses just snprintf and
applies an msvc-specific fix for snprintf in a single place so
nan/inf are now printed correctly.
When entering the interrupt handler of a given GPIO port, more than
one pin could have pending interrupts, therefore care must be taken
to service each interrupt one by one before leaving.
mp_obj_get_int_truncated will raise a TypeError if the argument is not
an integral type. Use mp_obj_int_get_truncated only when you know the
argument is a small or big int.
Hashing is now done using mp_unary_op function with MP_UNARY_OP_HASH as
the operator argument. Hashing for int, str and bytes still go via
fast-path in mp_unary_op since they are the most common objects which
need to be hashed.
This lead to quite a bit of code cleanup, and should be more efficient
if anything. It saves 176 bytes code space on Thumb2, and 360 bytes on
x86.
The only loss is that the error message "unhashable type" is now the
more generic "unsupported type for __hash__".
Unfortunately, MP_OBJ_STOP_ITERATION doesn't have means to pass an associated
value, so we can't optimize StopIteration exception with (non-None) argument
to MP_OBJ_STOP_ITERATION.
When generator raises exception, it is automatically terminated (by setting
its code_state.ip to 0), which interferes with this check.
Triggered in particular by CPython's test_pep380.py.
Exceptions in .close() should be ignored (dumped to sys.stderr, not
propagated), but in uPy, they are propagated. Fix would require
nlr-wrapping .close() call, which is expensive. Bu on the other hand,
.close() is not called often, so maybe that's not too bad (depends,
if it's finally called and that causes stack overflow, there's nothing
good in that). And yet on another hand, .close() can be implemented to
catch exceptions on its side, and that should be the right choice.
The code was apparently broken after 9988618e0e
"py: Implement full func arg passing for native emitter.". This attempts to
propagate those changes to ARM emitter.
The function and corresponding command-line option are only enabled for
the coverage build. They are used to exercise uPy features that can't
be properly tested by Python scripts.
upip is a simple and light-weight package manager for MicroPython modules,
offering subset of pip functionality. upip is part of micropython-lib
project: https://github.com/micropython/micropython-lib/tree/master/upip
This script bootstraps upip by downloading and unpacking it directly from
PyPI repository, with all other packages to be installed with upip itself.
As user_init() is not a true main functions, the stack pointer captured within
is not pointing at the base of the stack. This caused gc_collect being called
with sp being higher than stack_end, causing integer overflow and crashing as
gc tried to scan almost the entire address space.
esp8266 port now has working raw and friendly REPL, as well as working
soft reset (CTRL-D at REPL, or raise SystemExit).
tools/pyboard.py now works with esp8266 port.
User instances are hashable by default (using __hash__ inherited from
"object"). But if __eq__ is defined and __hash__ not defined in particular
class, instance is not hashable.
Having NotImplemented as MP_OBJ_SENTINEL turned out to be problematic
(it needs to be checked for in a lot of places, otherwise it'll crash
as would pass MP_OBJ_IS_OBJ()), so made a proper singleton value like
Ellipsis, both of them sharing the same type.
From https://docs.python.org/3/library/constants.html#NotImplemented :
"Special value which should be returned by the binary special methods
(e.g. __eq__(), __lt__(), __add__(), __rsub__(), etc.) to indicate
that the operation is not implemented with respect to the other type;
may be returned by the in-place binary special methods (e.g. __imul__(),
__iand__(), etc.) for the same purpose. Its truth value is true."
Some people however appear to abuse it to mean "no value" when None is
a legitimate value (don't do that).
* UDP currently not supported
* As there is no way (that I know of) the espconn_regist_connectcb()
callback can recognize on which socket has the connection arrived,
only one listening function at a time is supported
Remove unused and unneeded functions, also create Pin.get_config() that
returns the whole configuration of the pin.
This reduces code size by ~500 bytes.
- by default look for a user.props in the msvc directory, which is more convenient
than the built-in way of looking for such file in the user's home directory
- make git ignore the file
While in STA mode isconnected() returns True when connected to an AP
and the IP has been acquired. In AP mode, WLAN.isconnected() returns
True if at least one connected station is present.
Can complete names in the global namespace, as well as a chain of
attributes, eg pyb.Pin.board.<tab> will give a list of all board pins.
Costs 700 bytes ROM on Thumb2 arch, but greatly increases usability of
REPL prompt.
Each result is displayed like this:
ssid='MySSID', bssid=b'\xc0J\x00z.\xcc', security=2, channel=None, rssi=-74
The CC3200 doesn't provide channel info, that why is 'None'.
This is actually a workaround Ter Term's issue of not obeying to the
telnet options that the server is sending. Therefore, we must buffer
chars until either a '\r' or the max length of the username/password
is received.
This doesn't handle case fo enclosed except blocks, but once again,
sys.exc_info() support is a workaround for software which uses it
instead of properly catching exceptions via variable in except clause.
The implementation is very basic and non-compliant and provided solely for
CPython compatibility. The function itself is bad Python2 heritage, its
usage is discouraged.
Before this patch a "with" block needed to create a bound method object
on the heap for the __exit__ call. Now it doesn't because we use
load_method instead of load_attr, and save the method+self on the stack.
This fixes a long standing problem that viper code generation gave
terrible error messages, and actually no errors on pyboard where
assertions are disabled.
Now all compile-time errors are raised as proper Python exceptions, and
are of type ViperTypeError.
Addresses issue #940.
The bootloader needs string0.c because of memset, memcpy and others,
without string0.c it magically links, but calling any of those
functions results in a hard fault.
In debug mode, modpyb needs printf, and including stdio.h leads to
conflicts due to the redefinitions made in the simplelink drivers.
Adds support for the following Thumb2 VFP instructions, via the option
MICROPY_EMIT_INLINE_THUMB_FLOAT:
vcmp
vsqrt
vneg
vcvt_f32_to_s32
vcvt_s32_to_f32
vmrs
vmov
vldr
vstr
vadd
vsub
vmul
vdiv
To build:
make BOARD=ESPRUINO_PICO
To deploy: short the BOOT0/BTN contact on the back of the board (eg by
drawing over it with a graphite pencil), then hold down BTN while
inserting the board into the USB port. The board should then enter DFU
mode, and the firmware can be downloaded using:
make BOARD=ESPRUINO_PICO deploy
Each board now needs an mpconfigboard.mk file which defines AF_FILE and
LD_FILE.
Also moved stm32f405.ld to boards/ directory to keep things organised.
Previous to this patch the printing mechanism was a bit of a tangled
mess. This patch attempts to consolidate printing into one interface.
All (non-debug) printing now uses the mp_print* family of functions,
mainly mp_printf. All these functions take an mp_print_t structure as
their first argument, and this structure defines the printing backend
through the "print_strn" function of said structure.
Printing from the uPy core can reach the platform-defined print code via
two paths: either through mp_sys_stdout_obj (defined pert port) in
conjunction with mp_stream_write; or through the mp_plat_print structure
which uses the MP_PLAT_PRINT_STRN macro to define how string are printed
on the platform. The former is only used when MICROPY_PY_IO is defined.
With this new scheme printing is generally more efficient (less layers
to go through, less arguments to pass), and, given an mp_print_t*
structure, one can call mp_print_str for efficiency instead of
mp_printf("%s", ...). Code size is also reduced by around 200 bytes on
Thumb2 archs.
When setting usb_mode to "HID", hid config object now has
polling-interval (in ms) as the 4th element. It mmust now be a 5-tuple
of the form:
(subclass, protocol, max_packet_len, polling_interval, report_desc)
The mouse and keyboard defaults have polling interval at 8ms.
In particular, numbers which are less than 1.0 but which
round up to 1.0.
This also makes those numbers which round up to 1.0 to
print with e+00 rather than e-00 for those formats which
print exponents.
Addresses issue #1178.
This simplifies the API for objects and reduces code size (by around 400
bytes on Thumb2, and around 2k on x86). Performance impact was measured
with Pystone score, but change was barely noticeable.
This has implications all over the place. I have to admit that
you can instantly see that usability improves, but it costs 3K.
At the same time I took the oportunity to rename the '/SFLASH'
drive to '/flash' which improves compatibility with the pyboard.
Fixes msvc linker warnings about mismatching sizes between the mp_obj_fdfile_t
struct defined in file.c and the mp_uint_t declarations found in modsys.c and modbuiltins.c
This patch gets full function argument passing working with native
emitter. Includes named args, keyword args, default args, var args
and var keyword args. Fully Python compliant.
It reuses the bytecode mp_setup_code_state function to do all the hard
work. This function is slightly adjusted to accommodate native calls,
and the native emitter is forced a bit to emit similar prelude and
code-info as bytecode.
splitlines() occurs ~179 times in CPython3 standard library, so was
deemed worthy to implement. The method has subtle semantic differences
from just .split("\n"). It is also defined as working for any end-of-line
combination, but this is currently not implemented - it works only with
LF line-endings (which should be OK for text strings on any platforms,
but not OK for bytes).
Reference MCU is dsPIC33J256GP506 with 256k ROM and 8k RAM, on the dsPIC
DSC Starter Kit board. The REPL works, GC works, pyb module has LED and
Switch objects. It passes some tests from the test suite (most it can't
run because it doesn't have the Python features enabled).
I.e. in this mode, C stack will never be used to call a Python function,
but if there's no free heap for a call, it will be reported as
RuntimeError (as expected), not MemoryError.
There are lots of cosmetic changes, but this release brings a very
important bug fix:
- Fixed f_unlink() does not remove cluster chain of the file.
With R0.10c if you try to write a file that is too large to fit in the
free space of the drive, the operation fails, you delete the incomplete
file, and it seems to be erased, but the space is not really freed,
because any subsequent write operations fail because the drive is
"still" full. The only way to recover from this is by formatting the
drive. I can confirm that R0.11 fixes the problem.
Increasing it from 1K to 2K gives more freedom to the callback
handlers, before this, simply nesting a function call into a
printf would cause a stack overflow.
When just the bytecode emitter is needed there is no need to have a
dynamic method table for the emitter back-end, and we can instead
directly call the mp_emit_bc_XXX functions. This gives a significant
reduction in code size and a very slight performance boost for the
compiler.
This patch saves 1160 bytes code on Thumb2 and 972 bytes on x86, when
native emitters are disabled.
Overall savings in code over the last 3 commits are:
bare-arm: 1664 bytes.
minimal: 2136 bytes.
stmhal: 584 bytes (it has native emitter enabled).
cc3200: 1736 bytes.
First pass for the compiler is computing the scope (eg if an identifier
is local or not) and originally had an entire table of methods dedicated
to this, most of which did nothing. With changes from previous commit,
this set of methods can be removed and the methods from the bytecode
emitter used instead, with very little modification -- this is what is
done in this commit.
This factoring has little to no impact on the speed of the compiler
(tested by compiling 3763 Python scripts and timing it).
This factoring reduces code size by about 270-300 bytes on Thumb2 archs,
and 400 bytes on x86.
Unfortunately, these timeouts are the only realiable way (for now), to
be able to detect broken connections due to half-open sockets. Such a
thing occurs when getting out of the WiFi coverage area or when
disconnecting from the AP (sometimes the client doesn't send the
disconnect packet).
mp_obj_t internal representation doesn't have to be a pointer to object,
it can be anything.
There's also a support for back-conversion in the form of MP_OBJ_UNCAST.
This is kind of optimization/status quo preserver to minimize patching the
existing code and avoid doing potentially expensive MP_OBJ_CAST over and
over. But then one may imagine implementations where MP_OBJ_UNCAST is very
expensive. But such implementations are unlikely interesting in practice.
Despite initial guess, this code factoring does not hamper performance.
In fact it seems to improve speed by a little: running pystone(1.2) on
pyboard (which gives a very stable result) this patch takes pystones
from 1729.51 up to 1742.16. Also, pystones on x64 increase by around
the same proportion (but it's much noisier).
Taking a look at the generated machine code, stack usage with this patch
is unchanged, and call is tail-optimised with all arguments in
registers. Code size decreases by about 50 bytes on Thumb2 archs.
"Base" should rather refer to "base type"."Base object for attribute
lookup" should rather be just "object".
Also, a case of common subexpression elimination.
Given that there's already support for "fixed table" maps, which are
essentially ordered maps, the implementation of OrderedDict just extends
"fixed table" maps by adding an "is ordered" flag and add/remove
operations, and reuses 95% of objdict code, just making methods tolerant
to both dict and OrderedDict.
Some things are missing so far, like CPython-compatible repr and comparison.
OrderedDict is Disabled by default; enabled on unix and stmhal ports.
These allow to fine-tune the compiler to select whether it optimises
tuple assignments of the form a, b = c, d and a, b, c = d, e, f.
Sensible defaults are provided.
This allows to use the On-Chip retention registers for both the
RTC and to share notification flags between the bootloader and the
application. The two flags being shared right now are the "safe boot"
request and the WDT reset cause. we still have 2 more bits free for
future use.
Such functions are never used after MicroPython has started, and they
remain in RAM wasting space. Now they are placed in a special section
named "boot" which sits just before the heap, allowing us to extend
the effective heap area up to the new boot section. Right now, this
gives us back ~1K, but in the future, more functions might end up in
there as well.
This is rarely used feature which takes enough code to implement, so is
controlled by MICROPY_PY_ARRAY_SLICE_ASSIGN config setting, default off.
But otherwise it may be useful, as allows to update arbitrary-sized data
buffers in-place.
Slice is yet to implement, and actually, slice assignment implemented in
such a way that RHS of assignment should be array of the exact same item
typecode as LHS. CPython has it more relaxed, where RHS can be any sequence
of compatible types (e.g. it's possible to assign list of int's to a
bytearray slice).
Overall, when all "slice write" features are implemented, it may cost ~1KB
of code.
This makes exception traceback info self contained (ie doesn't rely on
list object, which was a bit of a hack), reduces code size, and reduces
RAM footprint of exception by eliminating the list object.
Addresses part of issue #1126.
The safe boot pin, when pulled high during reset rolls back the
firmware to the "factory" image and skips execution of 'boot.py'
and 'main.py'. This is useful to recover from a crash condition.
The system led is used mostly to signal errors.
In particular, make sure that the globals are all initialized
before enabling the interrupt, and also make sure that the timer
interrupt has been initialied before enabling the NVIC.
The implementation of these functions is very large (order 4k) and they
are rarely used, so we don't enable them by default.
They are however enabled in stmhal and unix, since we have the room.
I2C objects can be freed by the GC and a __del__ method is provided
in order to de-init the peripheral prior to being garbage collected.
UART objects are now added to a local list and this list is now part
of the VM_STATE.
Most of printing infrastructure now uses streams, but mp_obj_print() used
libc's printf(), which led to weird buffering issues in output. So, switch
mp_obj_print() to streams too, even though it may make sense to move it to
a separate file, as it is purely a debugging function now.
Relative imports are based of a package, so we're currently at a module
within a package, we should get to package first.
Also, factor out path travsering operation, but this broke testing for
boundary errors with relative imports. TODO: reintroduce them, together
with proper tests.
Traceback allocation for exception will now never lead to recursive
MemoryError exception - if there's no memory for traceback, it simply
won't be created.
Pushing same NLR record twice would lead to "infinite loop" in nlr_jump
(but more realistically, it will crash as soon as NLR record on stack is
overwritten).
Apparently the order of interface numbers should be sequential and
increasing in a config descriptor. So as to retain compatibility with
Windows drivers for the CDC+MSC and CDC+HID modes, we move the CDC
configs to the end of the descriptors, instead of changing the interface
numbers.
See PR #957 for background.
1082 Thrilled to support Damien's effort to put this together: there will no doubt be many applications for this effort and many enhancements and ports..
1083 Oddvar Lovaas
1090 BenScarb
1093 Www.qualnetics.com
1094 Manny Muro - Now Python can RULE from below as it does from above! PYTHON RULES!!! :)
1095 Michael Grazebrook
1098 Mark Shuttleworth, UK
1106 wyzzar
1110 Luca Zanetti
1112 Carl A Fagg
1115 Adam Klotblixt
1118 Breawn
1122 pippyisatruck
1124 Andrew "ClothBot" Plumb
1126 Realise the projects your heart beats for! Sven Wiebus (http://wiebus.tumblr.com)
1128 Citius Systems
1130 Benjamin & Reuben Fuller
1131 aglimme
1133 John Becker
1135 Mark Drummond
1138 JHProuty
1141 Lars Olsson Sweden
1144 daisuke, http://dkpyn.com
1145 Chris Pawley - http://www.pawley.co.uk/honey/
1147 Daniel from EzSBC.com
1149 New York Mortgage Exchange NYME.COM
1150 Herb Winters,USA,www.ecs87.com
1151 renttu
1159 Joe Rickerby
1160 john guthrie
1161 PUBLIC
1163 dobra-dobra
1164 Neil Reynolds, Staffordshire
1165 GEHoward
1166 Frank Delporte
1167 Bauer Brauner Enterprise
1168 Francisco Mardones
1169 Ryan Kirkpatrick, @rkirkpatnet, http://rkirkpat.net/
1170 Krister Svanlund
1174 Derek Patton Pearcy
1177 Roger Olsson, Sweden
1179 Jan-Niklas Braak
1180 Pete boy
1181 MilenX
1182 Ubbe Larsson
1183 Simon Freethy
1184 Daniel Andersson
1187 Daniele Procida
1190 Adrian Duke
1191 Pauline Middelink
1193 Ted Gueniche
1197 Craig Knott, University of Queensland, Australia
1198 Jamie Mackenzie - Australia
1199 ravenoak
1200 LucaP Luni Italy
1203 jacanterbury
1205 Bleachin, www.rhyspowell.com
1207 Supported by Andrew Maier via Kickstarter
1208 Rob, http://robjstanley.me.uk
1210 George Gingell
1213 Chris Elleman
1215 Jack Barham - @jackbarham - http://jackbarham.com
1221 Kyle Dausin
1222 Ben Lucker
1225 Gareth cheesewhisk Evans
1226 Jacob Forsyth
1227 Olof S - Germany
1231 Brasil
1233 glaslos
1234 Will Cooke - http://www.whizzy.org
1236 Andrew Wright - Canada
1239 Resourceful Robin
1240 Jay O'Neill @jayoneilluk
1241 Dennis G Daniels
1244 J. Peterson (www.saccade.com)
1245 Chipaca
1246 Nicko van Someren
1247 C. Cumbaa, Canada
1248 Gyro Gearloose was here
1249 Magnus Ericmats, Sweden
1253 Steve Wilson
1256 Adrian Bullock
1258 Sarevian & Longwall
1261 Skipp Savage
1265 Eric Nahon
1267 Stuart Dallas / 3ft9 Ltd
1270 USA
1271 Oliver
1277 jeffmcneill.com
1278 alnjxn
1283 Marc Liyanage
1285 Christian Lange
1286 Bryant Paul Umali from the Philippines
1290 W.B.Hill, Norwich, UK
1292 Michael Karliner
1293 Oli Larkin
1303 A. Pockberger
1304 dc - bagel
1305 Thadeus Arnel
1308 technoweenie
1309 Liam Welsh
1313 Per Thorell, Sweden
1314 peterlee
1316 Dustin Mierau
1317 tech-zen.tv
1320 Cheers from IDF :)
1322 www.a-d-k.de
1323 rixx
1324 @jlev
1325 e2e4
1328 Thomas J. Quinlan, London UK
1329 Don Bone
1331 Narayanamurthi
1333 PGS_Astra-ProjeX_Wilts
1337 Mark Schulz & Phillip Long, CEIT, The University of Queensland
1340 Tiegeng (Tim) Ren
1344 EMR_1344, DE
1348 Matt Ward, Nottingham
1351 Rupert
1352 Cory Li - http://cory.li
1354 Jim Davies, Brighton, UK
1355 Jon Watkins, UK
1356 Thomas, www.bitmix.de
1359 Markus Gritsch
1362 Carl H. Blomqvist
1371 Brian Green
1374 Ben Merryman
1375 O'Dea
1376 Josh Trujillo
1378 Daniel Halloran
1379 another_martin
1383 Thanks for innovating!
1385 CoderDojo Malahide
1397 Jacob Z
1398 Staffan Hillberg
1399 http://kim.ht
1402 Can't wait to plug it in!
1403 Márton Szinovszki
1405 sellorm says 'Hi!'
1406 Thomas Provoost
1411 Clive Freeman
1412 Norman Thomas
1415 Javier Llopis
1417 Ho Man Fai
1418 Anders Helland
1421 Richard lavanture
1425 Alan Churley, UK
1426 Robert'); DROP TABLE Students;--unicode is fun!
1427 Go Illini!
1430 MicroPy FTW
1431 Bryan Morrissey, www.browninnovations.com
1436 Krzysztof Chomski, Poland
1437 WellAware (USA)
1441 Tomas Hau
1443 Paul Way
1444 Benjamin Anderson
1445 Andrew Bates
1446 Davide Di Blasi
1451 Mathias Fischer
1453 Drexore, NL
1454 Marek Mroz
1455 Mark Easley Jr. - USA
1457 Joshua Warren
1459 Rohan Menon
1460 Paul Sokolovsky
1461 Chris Foresman, @foresmac
1475 USI
1478 Chris Emerson
1479 Ph. Truillet, France, http://www.irit.fr/~Philippe.Truillet
1480 WAB3
1481 Lucidologia.pl
1482 Ed Hardebeck | www.hardebeck.us
1484 Ludovic Léau-Mercier, www.coriolys.org, France
1487 BLUEBOBO
1488 Berno Kneer, Germany
1491 Julian Eccli
1494 Batman
1495 Manuel Núñez Sánchez
1496 Millie and Sadie Smith
1499 Ronald Eddy
1500 SynShop Las Vegas
1503 This is really cool. - Jack Conway
1505 Victor Suarez, Argentina
1507 Renesas Electronics America
1509 Team
1513 A. Lamborn KD0ZFY
1514 olifink
1520 mike at sustainable-opportunities dot com
1521 luis almeida, Teresina - Brazil
1523 Muhammad Jamaludin
1524 Sdlion
1525 Charles Rogers
1526 Diego M. Aires, Brazil
1529 muwatt.com
1532 Proud supporter of microPython
1535 Jesus J. de Felipe
1536 slminneman.com -- Wow, an acknowledgement? ...really?
1538 Mike (Meski) Smith
1541 Piero Steinger
1545 Alex Rembish (https://rembish.org)
1551 Sergey [BuG2BuG] Sobko, Russia
1553 Serge Krier
1556 Luuk Derksen
1561 Jimmy Caille (CH)
1562 Jesús Leganés Combarro "piranna"
1564 Viacheslav Olegovich Savitskiy
1565 Jamie Whitehorn
1567 Bagge Carlson
1568 Milan Cermak
1569 Matthias Lemp
1570 BOFG
1571 Johan Elmerfjord, Sweden
1573 Matt Finch • fnch.io
1574 Jean-Francois Paris
1575 Florian Franzen, Germany
1576 doganowscy.com
1579 Stan Yamane
1580 William Cirillo
1583 David Dibben
1584 Nicolás, Amelia, Luli y alecu
1586 Alex W
1591 Livia Maria Dias Tavares
1593 d freymann chicago il & his australian shepherd jaldi
1594 Barnstorm Studio, LLC
1595 Sashi Penta
1597 tflhyl
1598 clacktronics
1599 j3hyde
1600 Rik Williams
1602 Valeriy Van, Ukraine, w7software.com
1603 Louis Taylor - https://github.com/kragniz
1606 What's the derivative of (6.022 x 10^23)x? That's A(n)mol
1611 Bailey & Brayden Yoong Policarpio
1613 William Bettridge-Radford
1617 Urbane Jackson
1618 Henius
1622 Alister Galpin, New Zealand
1623 Marco Bertoldi
1627 Julian Pistorius
1628 www.neotral.com
1632 ChrisB
1633 Norbini
1634 Eric Rand at Brownhatsecurity.com
1636 Benjamin Eberle
1637 MG Projects bvba, Geert Maertens, Belgium
1640 Robson dos Santos França (Brasil)
1642 Udine
1643 Simon Critchley
1644 Sven Haiges, Germany
1645 Yi Qing Sim
1646 "silicium" ("silicium_one", if "silicium" is busy)
1648 Andy O'Malia, @andyomalia
1650 RedCamelApps.com
1652 Christoph Heer
1653 AlisonW
1654 Yannick Allard (Belgium) supported this project.
1655 Andy Pointon, UK
1660 Diego Cantalapiedra
1664 Pepillou
1670 Sonny Cannon
1671 Rick W
1672 David Chan, USA
1674 Philip Rowlands
1675 dieresys
1676 T.R. Fullhart
1683 Oleg Sidorkin
1686 Tatsuro Yasukawa
1687 Brad Smith, Somerville MA, USA
1688 kristoffervikhansen.com
1690 Nice Project de W6AKB Alan Biocca
1691 Hiss Hisss Hissss Hiss Hiss Hissssssss
1692 Alan Kennedy
1698 ElChessu
1701 Flower Craswell
1702 David Fontenot
1707 To innovation & creativity. Tony J Winter
1708 Joakim Hentula
1711 Michael Schaefer
1713 Brody Radford ~ www.brodyradford.com
1714 Charles Durrant
1715 Rodrigo S.
1718 Dima Shylo
1719 Jiahao James Jian
1722 Helen Wilson, Christ's Hospital
1726 Martin Aule, http://hackest.org/
1727 İsmail Etem Tezcan, Rasteda
1728 Charlie "Blackfrog" Sizer
1729 Matloob Qureshi
1730 Travis Saul http://travissaul.com
1731 Michael Cavins
1733 Peter Köllensperger, Norway
1734 Anne Harrison
1736 Peter Bradeen
1739 Fredrik Luthander
1740 Nick LaRosa
1744 Aladuino
1745 dgrebb
1746 Truls Unstad
1748 Jesus Saves
1750 Andy Stannard (@rockmonkey)
1751 Daniel Atkinson
1755 John Potter
1758 Ian V
1760 David Leinbach
1761 nemec-automation.com
1765 Supported by JoW with Hardwired TCP/IP from www.WIZnet.eu
1767 misskniss, Boise Idaho. It is our responsibility to code the freedom we want to see in the world.
1768 Jeff Vahue - Knowlogic Software Corp.
1769 Pat Molloy
1770 Greg Maxwell gregmaxwell-at-mac-dot-com
1771 Rich Robinson
1773 Ken Corey @ flippinbits.com
1782 Acknowledged
1785 Optimized Tomfoolery
1791 Nontakan Nuntachit, Thailand
1794 Rasit Eskicioglu - Canada
1795 Simon Elliston Ball
1796 pfh
1798 John W. C. McNabb
1799 Frank Sanborn
1803 Morgan Hough
1804 Sorcha Bowler
1805 http://www.WayneKeenan.info
1806 HBEE, hbee.eu
1807 Deadlight
1809 www.danenet.org
1811 Sergey Nebolsin
1813 Threv
1817 dynsne
1818 David Wright
1819 John Warren
1821 I wanted Erlang! (╯°□°)╯︵ ┻━┻
1825 Howard R Hansen
1828 Kevin Schumacher
1833 Matthias Erll, Sweden
1836 Matt Graham
1837 thedawn
1838 Ruby Feinstein
1839 Gustavo Muñoz (timbergus)
1840 Ian Paczek
1841 Köteles Károly, Hungary
1843 Tobias Sette Ferreira
1846 x4FF3 <3 microPython
1847 Enrico Faulhaber (Germany)
1850 jolan00
1854 Red Harbinger Inc
1855 Noman
1858 @DerLinkshaender
1863 Jon Woodcock
1864 Elmo, hakkerikartano.fi
1865 Imaginals
1866 Sam Hathaway and Rachel Stevens
1874 Remo Sanges, SZN, Italy
1875 Devraj Mukherjee
1876 an Embedded fan
1877 Peter Huisers
1878 Kin-Wai Lee (Malaysia)
1879 Samuel Hawksby-Robinson
1881 R. Stock
1886 Randy of Capistrano street backed Damien's MicroPython!
1887 Rogério Bulha Siqueira - www.esd-talk.com - Brazil
1889 NickE is happy to support such a worthy project!
1892 John Boudreaux
1894 Riverfreeloader
1895 Jose Marcelino http://metavurt.net
1896 T Britto-Borges
1899 DannyWhitsonUSA
1904 José Iván Ferrer Ruiz.
1905 Tom Loredo
1906 Gregory Perry USA
1908 josephoberholtzer.com
1910 Michael Klos, USA
1912 Adam Mildenberger
1913 R Anderson
1914 Nikesh, USA
1915 Bogdan Chivoiu, Romania
1916 Scott C. Lemon, USA
1918 Konstantin Ufimtsev (@KestL)
1919 Benny Khoo
1922 Nicci Tofts
1925 Joshua Coxwell
1926 Franklin Hamilton
1928 Peter Korcz
1929 Leroy Douglas
1930 A ナルと fan from Nigeria who likes smileys, here's one for good measure :)
1931 Kimmo Lahtinen, Finland
1932 http://staybles.co.uk
1937 The Olivetti's: Emanuele Laura Nausicaa Sibilla Ettore
1940 Pascal Hirsch
1942 cbernander, Sweden
1944 Enrico M.
1947 Dinis Cruz
1949 Jonathan Greig, http://embroidermodder.github.io
BaseType_txTaskGenericCreate(TaskFunction_tpxTaskCode,constchar*constpcName,constuint16_tusStackDepth,void*constpvParameters,UBaseType_tuxPriority,TaskHandle_t*constpxCreatedTask,StackType_t*constpuxStackBuffer,constMemoryRegion_t*constxRegions)/*lint !e971 Unqualified char types are allowed for strings and single characters only. */
staticvoidprvInitialiseTCBVariables(TCB_t*constpxTCB,constchar*constpcName,UBaseType_tuxPriority,constMemoryRegion_t*constxRegions,constuint16_tusStackDepth)/*lint !e971 Unqualified char types are allowed for strings and single characters only. */
Some files were not shown because too many files have changed in this diff
Show More
Reference in New Issue
Block a user
Blocking a user prevents them from interacting with repositories, such as opening or commenting on pull requests or issues. Learn more about blocking a user.