Taking the address of a local variable leads to increased stack usage, so
the mp_decode_uint_skip() function is added to reduce the need for taking
addresses. The changes in this patch reduce stack usage of a Python call
by 8 bytes on ARM Thumb, by 16 bytes on non-windowing Xtensa archs, and by
16 bytes on x86-64. Code size is also slightly reduced on most archs by
around 32 bytes.
This adds description of implied AbstractNIC base class, which should be
"subclasses" and implemented by a particular network device class.
This is just an initial step in that direction, the API and description
will be elabotated further.
The list starts with the simplest functionality - GPIO, proceeds to
communication interfaces (UART, SPI, I2C), the to time(r) related
things, then everything else.
For a couple of ports, there was information which directory is set
as current after boot. This information doesn't belong to "uos" module,
and is moved to boards' references (which actually already contained
information on which directory is chosen for boot, even if without
explicit mentioning that it becomes current directory, which is now
done).
The implementation is taken from stmhal/input.c, with code added to handle
ctrl-C. This built-in is controlled by MICROPY_PY_BUILTINS_INPUT and is
disabled by default. It uses readline() to capture input but this can be
overridden by defining the mp_hal_readline macro.
This method isn't implemented in any port. It seemed to have originated
in cc3200 port, but actually never was implemented there either. In
general case, it's impossible to implement this method (for example, for
a perfect GPO, which has only output latch without any feedback look
into a CPU).
For make v3.81, using "make -B" can set $? to empty and in this case the
auto-qstr generation needs to pass all args (ie $^) to cpp. The previous
fix for this (which was removed in 23a693ec2d)
used if statements in the shell command, which gave very long lines that
didn't work on certain systems (eg cygwin).
The fix in this patch is to use an $if(...) expression, which will evaluate
to $? (only newer prerequisites) if it's non empty, otherwise it will use
$^ (all prerequisites).
Previous to this patch the mp_emit_bc_adjust_stack_size function would
adjust the current stack size but would not increase the maximum stack size
if the current size went above it. This meant that certain Python code
(eg a try-finally block with no statements inside it) would not have enough
Python stack allocated to it.
This patch fixes the problem by always checking if the current stack size
goes above the maximum, and adjusting the latter if it does.
This patch fixes a regression introduced by
71a3d6ec3b
Previous to this patch the n_state variable was referring to that computed
at the very start of the mp_execute_bytecode function. This patch fixes it
so that n_state is recomputed when the code_state changes.
For consistent Pin/Signal class hierarchy. With it, Signal is a proper
(while still ducktyped) subclass of a Pin, and any (direct) usage of Pin
can be replace with Signal.
As stmhal's class is reused both as machine.Pin and legacy pyb.Pin,
high/low methods actually retained there.
Both aren't part of generic Hardware API: It's impossible to implement
.id() method in a generic case (e.g., when Pin is instantiated by the
underlying OS/RTOS). .board attribute is an obvious space hog which
instead can be implemented on Python level if needed.
Working on a build with PY_IO enabled (for PY_UJSON support) but PY_SYS_STDFILES disabled (no filesystem). There are multiple references to mp_sys_stdout_obj that should only be enabled if both PY_IO and PY_SYS_STDFILES are enabled.
There're a lot of changes and fixes in 1.8 regarding IP stack,
incompatible with previous Zephyr versions, so supporting them
doesn't make sense.
This is the last commit which should build with Zephyr 1.7.
Tests for an issue with line continuation failing in paste mode due to the
lexer only checking for \n in the "following" character position, before
next_char() has had a chance to convert \r and \r\n to \n.
This ensures that mpy-cross is automatically built (and is up-to-date) for
ports that use frozen bytecode. It also makes sure that .mpy files are
re-built if mpy-cross is changed.
VfsFat no longer has the listdir() method. Rather, if listdir()
functionality is needed then one should use uos.listdir() which will call
VfsFat.ilistdir().
Now consistently uses the EOL processing ("\r" and "\r\n" convert to "\n")
and EOF processing (ensure "\n" before EOF) provided by next_char().
In particular the lexer can now correctly handle input that starts with CR.
Prior to this patch only 'q' and 'Q' type arrays could store big-int
values. With this patch any big int that is stored to an array is handled
by the big-int implementation, regardless of the typecode of the array.
This allows arrays to work with all type sizes on all architectures.
This will lead to crash like:
FATAL: uncaught NLR 80a5420
On x86_32, the minimum heap size is smaller, but not 2 times, so just
use value which works for x86_64.
This patch allows mounting of VFS objects right at the root directory, eg
os.mount(vfs, '/'). It still allows VFS's to be mounted at a path within
the root, eg os.mount(vfs, '/flash'), and such mount points will override
any paths within a VFS that is mounted at the root.
Versions prior to v14.0 have a bug in parsing item functions when used
within a condition: https://github.com/Microsoft/msbuild/issues/368.
Since commit [db9c2e3] this results in an error when building MicroPython
with for example VS2013.
Fix this by creating an intermediate property.
fmode.c should only be included for builds targetting 'pure' windows, i.e.
msvc or mingw builds but not when using msys or cygwin's gcc (see #2298).
Just checking if the OS is windows and UNAME doesn't have msys stil leaves
the gate open for builds with cygwin's gcc since UNAME there is e.g.
CYGWIN_NT-6.1-WOW.
Fix this by checking for 'mingw' explicitly in the compiler version; both
gcc and clang have the -dumpmachine flag so the check should be ok for
all platforms.
The with semantics of this function is close to
pkg_resources.resource_stream() function from setuptools, which
is the canonical way to access non-source files belonging to a package
(resources), regardless of what medium the package uses (e.g. individual
source files vs zip archive). In the case of MicroPython, this function
allows to access resources which are frozen into the executable, besides
accessing resources in the file system.
This is initial stage of the implementation, which actually doesn't
implement "package" part of the semantics, just accesses frozen resources
from "root", or filesystem resource - from current dir.
Do not raise SIGPIPE, instead return EPIPE. Otherwise, e.g. writing
to peer-closed socket will lead to sudden termination of MicroPython
process. SIGPIPE is particularly nasty, because unix shell doesn't
print anything for it, so the above looks like completely sudden and
silent termination for unknown reason. Ignoring SIGPIPE is also what
CPython does. Note that this may lead to problems using MicroPython
scripts as pipe filters, but again, that's what CPython does. So,
scripts which want to follow unix shell pipe semantics (where SIGPIPE
means "pipe was requested to terminate, it's not an error"), should
catch EPIPE themselves.
Peer-closed socket is both readable and writable: read will return EOF,
write - error. Without this poll will hang on such socket.
Note that we don't return POLLHUP, based on argumentation in
http://www.greenend.org.uk/rjk/tech/poll.html that it should apply to
deeper disconnects, for example for networking, that would be link layer
disconnect (e.g. WiFi went down).
Make qstr generation depend on modifications in mpconfigport.h, mpconfig.h
and makeqstrdata.py and if any of those change scan all source files for
qstrs again since they might have changed (for example typcially when
enabling new features in mpconfig.h).
This fixes#2982 for msvc builds.
The standard preprocessor definition to differentiate debug and non-debug
builds is NDEBUG, not DEBUG, so don't rely on the latter:
- just delete the use of it in objint_longlong.c as it has been stale code
for years anyway (since commit [c4029e5]): SUFFIX isn't used anywhere.
- replace DEBUG with MICROPY_DEBUG_NLR in nlr.h: it is rarely used anymore
so can be off by default
This patch allows the following code to run without allocating on the heap:
super().foo(...)
Before this patch such a call would allocate a super object on the heap and
then load the foo method and call it right away. The super object is only
needed to perform the lookup of the method and not needed after that. This
patch makes an optimisation to allocate the super object on the C stack and
discard it right after use.
Changes in code size due to this patch are:
bare-arm: +128
minimal: +232
unix x64: +416
unix nanbox: +364
stmhal: +184
esp8266: +340
cc3200: +128
This patch refactors the handling of the special super() call within the
compiler. It removes the need for a global (to the compiler) state variable
which keeps track of whether the subject of an expression is super. The
handling of super() is now done entirely within one function, which makes
the compiler a bit cleaner and allows to easily add more optimisations to
super calls.
Changes to the code size are:
bare-arm: +12
minimal: +0
unix x64: +48
unix nanbox: -16
stmhal: +4
cc3200: +0
esp8266: -56
Prior to making this a config option it was previously available on these
(and all other) ports, and it makes sense to keep it enabled for mpy-cross
as well as ports that have a decent amount of space for the code.
With this optimisation enabled the compiler optimises the if-else
expression within a return statement. The optimisation reduces bytecode
size by 2 bytes for each use of such a return-if-else statement. Since
such a statement is not often used, and costs bytes for the code, the
feature is disabled by default.
For example the following code:
def f(x):
return 1 if x else 2
compiles to this bytecode with the optimisation disabled (left column is
bytecode offset in bytes):
00 LOAD_FAST 0
01 POP_JUMP_IF_FALSE 8
04 LOAD_CONST_SMALL_INT 1
05 JUMP 9
08 LOAD_CONST_SMALL_INT 2
09 RETURN_VALUE
and to this bytecode with the optimisation enabled:
00 LOAD_FAST 0
01 POP_JUMP_IF_FALSE 6
04 LOAD_CONST_SMALL_INT 1
05 RETURN_VALUE
06 LOAD_CONST_SMALL_INT 2
07 RETURN_VALUE
So the JUMP to RETURN_VALUE is optimised and replaced by RETURN_VALUE,
saving 2 bytes and making the code a bit faster.
Otherwise the type of parse-node and its kind has to be re-extracted
multiple times. This optimisation reduces code size by a bit (16 bytes on
bare-arm).
Add definitions/source files for features which work on the windows
ports but weren't yet enabled.
UTIME related lines are moved a couple of lines up to make comparision
with unix/mpconfigport.h easier in the future.
Sometimes when setting a channel callback the callback fires immediately,
even if the compare register is set to a value far into the future. This
happens when the free running counter has previously been equal to what
happens to be in the compare register.
This patch make sure that there is no pending interrupt when setting a
callback.
It controls the character that's used to (asynchronously) raise a
KeyboardInterrupt exception. Passing "-1" allows to disable the
interception of the interrupt character (as long as a port allows such a
behaviour).
This aligns the I2C class to match the standard machine.I2C API.
Note that this is a (small) breaking change to the existing cc3200 API.
The original API just returned the size of the input buffer so there's no
information lost by this change. To update scripts users should just use
the size of the buffer passed to these functions to get the number of bytes
that are read/written.
This is a user-facing change to the cc3200's API, to make it conform to the
new machine hardware API. The changes are:
- change I2C constructor to: I2C(id=0, *, freq=100000, scl=None, sda=None)
- change I2C init to: init(*, freq, scl, sda)
- removal of machine.I2C.MASTER constant
- I2C str/repr no longer prints I2C.MASTER
To update existing code it should be enough to just remove the I2C.MASTER
constant from contructor/init for I2C.
If we got a CRASH result, return early, similar to SKIP. This is important
because previous refactor changed branching logic a bit, so CRASH now gets
post-processed into CRASH\n, which broke remote hardware tests.
A shorter name takes less code size, less room in scripts and is faster to
type at the REPL.
Tests and HW-API examples are updated to reflect the change.
As Zephyr currently doesn't handle MTU itself (ZEP-1998), limit amount
of data we send on our side.
Also, if we get unsuccessful result from net_nbuf_append(), calculate
how much data it has added still. This works around ZEP-1984.
If a finaliser raises an exception then it must not propagate through the
GC sweep function. This patch protects against such a thing by running
finaliser code via the mp_call_function_1_protected call.
This patch also adds scheduler lock/unlock calls around the finaliser
execution to further protect against any possible reentrancy issues: the
memory manager is already locked when doing a collection, but we also don't
want to allow any scheduled code to run, KeyboardInterrupts to interupt the
code, nor threads to switch.
The common cases for inheritance are 0 or 1 parent types, for both built-in
types (eg built-in exceptions) as well as user defined types. So it makes
sense to optimise the case of 1 parent type by storing just the type and
not a tuple of 1 value (that value being the single parent type).
This patch makes such an optimisation. Even though there is a bit more
code to handle the two cases (either a single type or a tuple with 2 or
more values) it helps reduce overall code size because it eliminates the
need to create a static tuple to hold single parents (eg for the built-in
exceptions). It also helps reduce RAM usage for user defined types that
only derive from a single parent.
Changes in code size (in bytes) due to this patch:
bare-arm: -16
minimal (x86): -176
unix (x86-64): -320
unix nanbox: -384
stmhal: -64
cc3200: -32
esp8266: -108
This implements the orginal idea is that Signal is a subclass of Pin, and
thus can accept all the same argument as Pin, and additionally, "inverted"
param. On the practical side, it allows to avoid many enclosed parenses for
a typical declararion, e.g. for Zephyr:
Signal(Pin(("GPIO_0", 1))).
Of course, passing a Pin to Signal constructor is still supported and is the
most generic form (e.g. Unix port will only support such form, as it doesn't
have "builtin" Pins), what's introduces here is just practical readability
optimization.
"value" kwarg is treated as applying to a Signal (i.e. accounts for possible
inversion).
This buffer is used to allocate objects temporarily, and such objects
require that their underlying memory be correctly aligned for their data
type. Aligning for mp_obj_t should be sufficient for emergency exceptions,
but in general the memory buffer should aligned to the maximum alignment of
the machine (eg on a 32-bit machine with mp_obj_t being 4 bytes, a double
may not be correctly aligned).
This patch fixes a bug for certain nan-boxing builds, where mp_obj_t is 8
bytes and must be aligned to 8 bytes (even though the machine is 32 bit).
Changes made are:
- Use the time module in place of the pyb module for delays.
- Use spi.read/spi.write instead of spi.send/spi.receive.
- Drop some non-portable parameters to spi and pin initialization.
Thanks to @deshipu for the original patch.
Internal structure of k_fifo changed between 1.7 and 1.8, so we need
to abstract it away. This adds more functions than currently used, for
future work.
This allows to execute a command and communicate with its stdin/stdout
via pipes ("exec") or with command-created pseudo-terminal ("execpty"),
to emulate serial access. Immediate usecase is controlling a QEMU process
which emulates board's serial via normal console, but it could be used
e.g. with helper binaries to access real board over other hadware
protocols, etc.
An example of device specification for these cases is:
--device exec:../zephyr/qemu.sh
--device execpty:../zephyr/qemu2.sh
Where qemu.sh contains long-long qemu startup line, or calls another
command. There's a special support in this patch for running the command
in a new terminal session, to support shell wrappers like that (without
new terminal session, only wrapper script would be terminated, but its
child processes would continue to run).
Without this, if there's a large chunk of data coming from hardware (e.g.
clipboard paste, or fed programmatically from the other side of the console),
there's a behavior of initial mass fill-in of the buffer without any
consumption, which starts much later and doesn't catch up with further
filling, leading to buffer overflow.
MONO_xxx is much easier to read if you're not familiar with the code.
MVLSB is deprecated but kept for backwards compatibility, for the time
being.
This patch also updates the associated docs and tests.
This should be a little more efficient (since we anyway scan the input
packet for the interrupt char), and it should also fix any non-atomic read
issues with the buffer state being changed during an interrupt.
Throughput tests show that RX rate is unchanged by this patch.
The previous timeout value of 150ms could lead to data being lost (ie never
received by the host) in some rare cases, eg when the host is under load.
A value of 500ms is quite conservative and allows the host plenty of time
to read our data.
Hashing of float and complex numbers that are exact (real) integers should
return the same integer hash value as hashing the corresponding integer
value. Eg hash(1), hash(1.0) and hash(1+0j) should all be the same (this
is how Python is specified: if x==y then hash(x)==hash(y)).
This patch implements the simplest way of doing float/complex hashing by
just converting the value to int and returning that value.
Split this setting from MICROPY_CPYTHON_COMPAT. The idea is to be able to
keep MICROPY_CPYTHON_COMPAT disabled, but still pass more of regression
testsuite. In particular, this fixes last failing test in basics/ for
Zephyr port.
The first memmove now copies less bytes in some cases (because len_adj <=
slice_len), and the memcpy is replaced with memmove to support the
possibility that dest and slice regions are overlapping.
The foundation of recv() support is per-socket queue of incoming packets,
implemented using Zephyr FIFO object. This patch implements just recv()
for UDP, because TCP recv() requires much more fine-grained control of
network fragments and handling other issues, like EOF condition, etc.
This follows the pattern of how all other headers are now included, and
makes it explicit where the header file comes from. This patch also
removes -I options from Makefile's that specify the mp-readline/timeutils/
netutils directories, which are no longer needed.
Such constants are MCU specific so shouldn't be specified in the board
config file (else it leads to too much duplication of code).
This patch also adds I2C timing values for the F767/F769 for 100k, 400k
and 1MHz I2C bus frequencies.
By default the SDIO (F4) or SDMMC1 (L4, F7) is used as the SD card
peripheral, but if a board config defines MICROPY_HW_SDMMC2_CK and other
pins then the SD card driver will use SDMMC2.
Build happens in 3 stages:
1. Zephyr config header and make vars are generated from prj.conf.
2. libmicropython is built using them.
3. Zephyr is built and final link happens.
Allows to get event time for a head item in the queue. The usecase
if waiting for the next event *OR* I/O completion. I/O completion may
happen before event triggers, and then wait should continue for the
remaining event time (or I/O completion may schedule another earlier
event altogether).
The new function has a strongly provisional status - it may be converted
to e.g. peek() function returning all of the event fields, not just time.
With the existing timeout of 100ms the transfer would end prematurely if
the baudrate was low and the number of bytes to send was high. This patch
fixes the problem by making the timeout proportional to the number of bytes
that are being transferred.
This patch changes mp_uint_t to size_t for the len argument of the
following public facing C functions:
mp_obj_tuple_get
mp_obj_list_get
mp_obj_get_array
These functions take a pointer to the len argument (to be filled in by the
function) and callers of these functions should update their code so the
type of len is changed to size_t. For ports that don't use nan-boxing
there should be no change in generate code because the size of the type
remains the same (word sized), and in a lot of cases there won't even be a
compiler warning if the type remains as mp_uint_t.
The reason for this change is to standardise on the use of size_t for
variables that count memory (or memory related) sizes/lengths. It helps
builds that use nan-boxing.
With this patch all illegal assignments are reported as "can't assign to
expression". Before the patch there were special cases for a literal on
the LHS, and for augmented assignments (eg +=), but it seems a waste of
bytes (and there are lots of bytes used in error messages) to spend on
distinguishing such errors which a user will rarely encounter.
By removing the 'E' code from the operator token encoding mini-language the
tokenising can be simplified. The 'E' code was only used for the !=
operator which is now handled as a special case; the optimisations for the
general case more than make up for the addition of this single, special
case. Furthermore, the . and ... operators can be handled in the same way
as != which reduces the code size a little further.
This simplification also removes a "goto".
Changes in code size for this patch are (measured in bytes):
bare-arm: -48
minimal x86: -64
unix x86-64: -112
unix nanbox: -64
stmhal: -48
cc3200: -48
esp8266: -76
The self variable may be closed-over in the function, and in that case the
call to super() should load the contents of the closure cell using
LOAD_DEREF (before this patch it would just load the cell directly).
Previous to this patch, if the result of the round function overflowed a
small int, or was inf or nan, then a garbage value was returned. With
this patch the correct big-int is returned if necessary and exceptions are
raised for inf or nan.
The C nearbyint function has exactly the semantics that Python's round()
requires, whereas C's round() requires extra steps to handle rounding of
numbers half way between integers. So using nearbyint reduces code size
and potentially eliminates any source of errors in the handling of half-way
numbers.
Also, bare-metal implementations of nearbyint can be more efficient than
round, so further code size is saved (and efficiency improved).
nearbyint is provided in the C99 standard so it should be available on all
supported platforms.
Previous to this patch, if the result of the trunc/ceil/floor functions
overflowed a small int, or was inf or nan, then a garbage value was
returned. With this patch the correct big-int is returned if necessary,
and exceptions are raised for inf or nan.
It improves readability of code and reduces the chance to make a mistake.
This patch also fixes a bug with nan-boxing builds by rounding up the
calculation of the new NSLOTS variable, giving the correct number of slots
(being 4) even if mp_obj_t is larger than the native machine size.
Instead of having the PlatformToolset property hardcoded to a specific
version just set it to the value of DefaultPlatformToolset: this gets
defined according to the commandline environment in which the build was
started.
Instead of just supporting VS2015 the project can now be built by any
version from VS2013 to VS2017 and normally future versions as well, without
quirks like VS asking whether you want to upgrade the project to the latest
version (as was the case when opening the project in VS2017) or not being
able to build at all (as was the case when opening the project in VS2013).
Also adjust the .gitignore file to ignore any artefacts from VS2017.
The -ansi flag is used for C dialect selection and it is equivalent to -std=c90.
Because it goes right before -std=gnu99 it is ignored as for conflicting flags
GCC always uses the last one.
Now, passing a keyword argument that is not expected will correctly report
that fact. If normal or detailed error messages are enabled then the name
of the unexpected argument will be reported.
This patch decreases the code size of bare-arm and stmhal by 12 bytes, and
cc3200 by 8 bytes. Other ports (minimal, unix, esp8266) remain the same in
code size. For terse error message configuration this is because the new
message is shorter than the old one. For normal (and detailed) error
message configuration this is because the new error message already exists
in py/objnamedtuple.c so there's no extra space in ROM needed for the
string.
GIL behaviour should be handled by the port. And ports probably want to
define sleep_us so that it doesn't release the GIL, to improve timing
accuracy.
We can actually handle interrupts during a thread switch (because we always
have a valid stack), but only if those interrupts don't access any of the
thread state (because the state may not correspond to the stack pointer).
So to be on the safe side we disable interrupts during the very short
period of the thread state+stack switch.
The scheduler being locked general means we are running a scheduled
function, and switching to another thread violates that, so don't switch in
such a case (even though we technically could).
And if we are running a scheduled function then we want to finish it ASAP,
so we shouldn't switch to another thread.
Furthermore, ports with threading enabled will lock the scheduler during a
hard IRQ, and this patch to the VM will make sure that threads are not
switched during a hard IRQ (which would crash the VM).
All arguments to pin.irq are converted from keyword-only to positional, and
can still be specified by keyword so it's a backwards compatible change.
The default value for the "trigger" arg is changed from 0 (no trigger)
to rising+falling edge.
ExtInt, Timer and CAN IRQ callbacks are made to work with the scheduler.
They are still hard IRQs by default, but one can now call
micropython.schedule within the hard IRQ to schedule a soft callback.
Instead of always reporting some object cannot be implicitly be converted
to a 'str', even when it is a 'bytes' object, adjust the logic so that
when trying to convert str to bytes it is shown like that.
This will still report bad implicit conversion from e.g. 'int to bytes'
as 'int to str' but it will not result in the confusing
'can't convert 'str' object to str implicitly' anymore for calls like
b'somestring'.count('a').
* Fix mis-spelling of `ticks_add` in code examples.
* Be consistent about parentheses after function names.
* Be consistent about formatting of function, variable and constant names.
* Be consistent about spaces and punctuation.
* Fix some language errors (missing or wrong words, wrong word order).
* Keep line length under 90 chars.
Signed-off-by: Christopher Arndt <chris@chrisarndt.de>
Instead of caching data that is constant (code_info, const_table and
n_state), store just a pointer to the underlying function object from which
this data can be derived.
This helps reduce stack usage for the case when the mp_code_state_t
structure is stored on the stack, as well as heap usage when it's stored
on the heap.
The downside is that the VM becomes a little more complex because it now
needs to derive the data from the underlying function object. But this
doesn't impact the performance by much (if at all) because most of the
decoding of data is done outside the main opcode loop. Measurements using
pystone show that little to no performance is lost.
This patch also fixes a nasty bug whereby the bytecode can be reclaimed by
the GC during execution. With this patch there is always a pointer to the
function object held by the VM during execution, since it's stored in the
mp_code_state_t structure.
This allows to test the PYBV11 target as well as the network drivers
without adding another rule. It also removes the need to use -B,
side-stepping the issue of whether or not -B works with qstr auto
generation.
When make is passed "-B" it seems that everything is considered out-of-date
and so $? expands to all prerequisites. Thus there is no need for a
special check to see if $? is emtpy.
The 'S' typecode is a uPy extension so it should be grouped with the other
extension (namely 'O' typecode). Testing 'S' needs uctypes which is an
extmod module and not always available, so this test is made optional and
will only be run on ports that have (u)struct and uctypes. Otherwise it
will be silently skipped.
Some stack is allocated to format ints, and when the int implementation uses
long-long there should be additional stack allocated compared with the other
cases. This patch uses the existing "fmt_int_t" type to determine the
amount of stack to allocate.
This patch refactors the error handling in the lexer, to simplify it (ie
reduce code size).
A long time ago, when the lexer/parser/compiler were first written, the
lexer and parser were designed so they didn't use exceptions (ie nlr) to
report errors but rather returned an error code. Over time that has
gradually changed, the parser in particular has more and more ways of
raising exceptions. Also, the lexer never really handled all errors without
raising, eg there were some memory errors which could raise an exception
(and in these rare cases one would get a fatal nlr-not-handled fault).
This patch accepts the fact that the lexer can raise exceptions in some
cases and allows it to raise exceptions to handle all its errors, which are
for the most part just out-of-memory errors during construction of the
lexer. This makes the lexer a bit simpler, and also the persistent code
stuff is simplified.
What this means for users of the lexer is that calls to it must be wrapped
in a nlr handler. But all uses of the lexer already have such an nlr
handler for the parser (and compiler) so that doesn't put any extra burden
on the callers.
For example, if the current directory is the root dir then this patch
allows one to do uos.listdir('mnt'), where 'mnt' is a valid mount point.
Previous to this patch such a thing would not work, on needed to do
uos.listdir('/mnt') instead.
Minimal config can be now build with:
./make-minimal BOARD=...
This is required because of Makefile.exports magic, which in its turn depends
on PROJ_CONF to be set correctly at the beginning of Makefile parsing at all
times. Instead of adding more and more workarounds for that, it's better to
just move minimal support to a separate wrapper.
Also, remove Zephyr 1.5 era cruft from Makefile, and add support for Zephyr's
"run" target which supercedes older "qemu" target in upstream.
This is a typical problem with make: we want to trigger rebuilds only
if file actually changed, not if its timestamp changed. In this case,
it's aggravated by the fact that prj.conf depends on the value of
BOARD variable, so we need to do some tricks anyway. We still don't
try to detect if just BOARD changed, just try to generate new
prj.conf.tmp every time (quick), but do actual replacement of prj.conf
only if its content changed.
This is so that the filename of the test doesn't clash with the module name
itself (being "websocket"), and lead to potential problems executing the
test.
MICROPY_LONGINT_IMPL_LONGLONG doesn't have overflow detection, so just
parsing a large number won't give an error, we need to print it out
to check that the whole number was parsed.
These short unit tests test the base uPy methods as well as parts of the
websocket protocol, as implemented by uPy.
@dpgeorge converted the original socket based tests by @hosaka to ones
that only require io.BytesIO.
This test just tests that the basic functions/methods can be called with
the appropriate arguments. There is no real test of underlying
functionality.
Thanks to @hosaka for the initial implementation of this test.
Mostly intended to ease experimentation, no particular plans for APIs
so far (far less their stability), is_preempt_thread() provided is
mostly an example.
By adding back monotonically increasing field in addition to time field.
As heapsort is not stable, without this, among entried added and readded
at the same time instant, some might be always selected, and some might
never be selected, leading to scheduling starvation.
I.e. they don't run successfully with MICROPY_LONGINT_IMPL_NONE
and MICROPY_LONGINT_IMPL_LONGLONG (the problem is that they generate
different output than CPython, TODO to fix that).
The use of large literal numbers is a big no-no when it comes to writing
programs which work with different int representations. Also, some checks
are pretty adhoc (e.g using struct module to check for 64-bitness). This
change bases entire detection on sys.maxsize and integer operarions, and
thus more correct, even if longer.
Note that this change doesn't mean that any of these tests can pass with
anything but MPZ - even despite checking for various int representations,
the tests aren't written to be portable among them.
INT_MAX used previosly is indeed max value for int, whereas on LP64
platforms, long is used for mp_int_t. Using MP_SMALL_INT_MAX is the
correct way to do it anyway.
Each threads needs to have its own private references to its current
locals/globals dicts, otherwise functions running within different
contexts (eg imported from different files) can behave very strangely.
Tests which don't work with small ints are suffixed with _intbig.py. Some
of these may still work with long long ints and need to be reclassified
later.
There were 2 bugs, now fixed by this patch:
- after deleting an element the len of the dict did not decrease by 1
- after deleting an element searching through the dict could lead to
a seg fault due to there being an MP_OBJ_SENTINEL in the ordered array
The renames are:
HAL_Delay -> mp_hal_delay_ms
sys_tick_udelay -> mp_hal_delay_us
sys_tick_get_microseconds -> mp_hal_ticks_us
And mp_hal_ticks_ms is added to provide the full set of timing functions.
Also, a separate HAL_Delay function is added which differs slightly from
mp_hal_delay_ms and is intended for use only by the ST HAL functions.
User can override PYTHON executable before running script,
gen-cpydiff.py works only with Python3 and most systems register
its executable as 'python3'.
In this case, raise an exception without a message.
This would allow to shove few code bytes comparing to currently used
mp_raise_msg(..., "") pattern. (Actual savings depend on function code
alignment used by a particular platform.)
In MicroPython, the path separator is guaranteed to be "/", extra unneeded
things take precious code space (in the port which doesn't have basic things
like floating-port support).
The parser was originally written to work without raising any exceptions
and instead return an error value to the caller. But it's now required
that a call to the parser be wrapped in an nlr handler, so we may as well
make use of that fact and simplify the parser so that it doesn't need to
keep track of any memory errors that it had. The parser anyway explicitly
raises an exception at the end if there was an error.
This patch simplifies the parser by letting the underlying memory
allocation functions raise an exception if they fail to allocate any
memory. And if there is an error parsing the "<id> = const(<val>)" pattern
then that also raises an exception right away instead of trying to recover
gracefully and then raise.
Previous to this patch any non-interned str/bytes objects would create a
special parse node that held a copy of the str/bytes data. Then in the
compiler this data would be turned into a str/bytes object. This actually
lead to 2 copies of the data, one in the parse node and one in the object.
The parse node's copy of the data would be freed at the end of the compile
stage but nevertheless it meant that the peak memory usage of the
parse/compile stage was higher than it needed to be (by an amount equal to
the number of bytes in all the non-interned str/bytes objects).
This patch changes the behaviour so that str/bytes objects are created
directly in the parser and the object stored in a const-object parse node
(which already exists for bignum, float and complex const objects). This
reduces peak RAM usage of the parse/compile stage, simplifies the parser
and compiler, and reduces code size by about 170 bytes on Thumb2 archs,
and by about 300 bytes on Xtensa archs.
This patch allows uPy consts to be bignums, eg:
X = const(1 << 100)
The infrastructure for consts to be a bignum (rather than restricted to
small integers) has been in place for a while, ever since constant folding
was upgraded to allow bignums. It just required a small change (in this
patch) to enable it.
socket.timeout is a subclass of OSError, and using the latter is more
efficient than having a dedicated class. The argument of OSError is
ETIMEDOUT so the error can be distinguished from other kinds of
OSErrors. This follows how the esp8266 port does it.
Since we recently replaced the OSError string messages with simple error
codes, having the uerrno module gets back some user friendly error
messages. The total code size (after removing strings, replacing with
uerrno module) is decreased.
It's configured by MICROPY_PY_UERRNO_ERRORCODE and enabled by default
(since that's the behaviour before this patch).
Without this dict the lookup of errno codes to strings must use the
uerrno module itself.
ftp.c is the only user of this function so making it static in that file
allows it to be inlined. Also, reusing unichar_toupper means we no longer
depend on the C stdlib for toupper, saving about 300 bytes of code space.
This patch introduces the a small framework to track differences between
uPy and CPython. The framework consists of:
- A set of "tests" which test for an individual feature that differs between
uPy and CPy. Each test is like a normal uPy test in the test suite, but
has a special comment at the start with some meta-data: a category (eg
syntax, core language), a human-readable description of the difference, a
cause, and a workaround. Following the meta-data there is a short code
snippet which demonstrates the difference. See tests/cpydiff directory
for the initial set of tests.
- A program (this patch) which runs all the tests (on uPy and CPy) and
generates nicely-formated .rst documenting the differences.
- Integration into the docs build so that everything is automatic, and the
differences appear in a way that is easy for users to read/reference (see
latter commits).
The idea with using this new framework is:
- When a new difference is found it's easy to write a short test for it,
along with a description, and add it to the existing ones. It's also easy
for contributors to submit tests for differences they find.
- When something is no longer different the tool will give an error and
difference can be removed (or promoted to a proper feature test).
These tests are intended to fail, as they provide a programatic record of
differences between uPy and CPython. They also contain a special comment
at the start of the file which has meta-data describing the difference,
including known causes and known workarounds.
Since VS2015 update 2 .db files are used for storing browsing info,
instead of .sdf files. If users don't specify a location for these files
excplicitly they end up in the project directory so ignore them.
It's much more efficient in RAM and code size to do implicit literal string
concatenation in the lexer, as opposed to the compiler.
RAM usage is reduced because the concatenation can be done right away in the
tokeniser by just accumulating the string/bytes literals into the lexer's
vstr. Prior to this patch adjacent strings/bytes would create a parse tree
(one node per string/bytes) and then in the compiler a whole new chunk of
memory was allocated to store the concatenated string, which used more than
double the memory compared to just accumulating in the lexer.
This patch also significantly reduces code size:
bare-arm: -204
minimal: -204
unix x64: -328
stmhal: -208
esp8266: -284
cc3200: -224
Previous to this patch there was an explicit check for errors with line
continuation (where backslash was not immediately followed by a newline).
But this check is not necessary: if there is an error then the remaining
logic of the tokeniser will reject the backslash and correctly produce a
syntax error.
Since the table of keywords is sorted, we can use strcmp to do the search
and stop part way through the search if the comparison is less-than.
Because all tokens that are names are subject to this search, this
optimisation will improve the overall speed of the lexer when processing
a script.
The change also decreases code size by a little bit because we now use
strcmp instead of the custom str_strn_equal function.
Keywords only needs to be searched for if the token is a MP_TOKEN_NAME, so
we can move the seach to the part of the code that does the tokenising for
MP_TOKEN_NAME.
Grammar rules have 2 variants: ones that are attached to a specific
compile function which is called to compile that grammar node, and ones
that don't have a compile function and are instead just inspected to see
what form they take.
In the compiler there is a table of all grammar rules, with each entry
having a pointer to the associated compile function. Those rules with no
compile function have a null pointer. There are 120 such rules, so that's
120 words of essentially wasted code space.
By grouping together the compile vs no-compile rules we can put all the
no-compile rules at the end of the list of rules, and then we don't need
to store the null pointers. We just have a truncated table and it's
guaranteed that when indexing this table we only index the first half,
the half with populated pointers.
This patch implements such a grouping by having a specific macro for the
compile vs no-compile grammar rules (DEF_RULE vs DEF_RULE_NC). It saves
around 460 bytes of code on 32-bit archs.
Allows to iterate over the following without allocating on the heap:
- tuple
- list
- string, bytes
- bytearray, array
- dict (not dict.keys, dict.values, dict.items)
- set, frozenset
Allows to call the following without heap memory:
- all, any, min, max, sum
TODO: still need to allocate stack memory in bytecode for iter_buf.
This patch changes the threading implementation from simple round-robin
with busy waits on mutexs, to proper scheduling whereby threads that are
waiting on a mutex are only scheduled when the mutex becomes available.
This improves efficiency of GIL release within the VM, by only doing the
release after a fixed number of jump-opcodes have executed in the current
thread.
It's more efficient using the system mutexs instead of synthetic ones with
a busy-wait loop. The system can do proper scheduling and blocking of the
threads waiting on the mutex.
Depending on the thread scheduler, a busy-wait loop can hog the CPU and
make the tests very slow. So convert such loops to loops that have an
explicit sleep, allowing the worker threads to do their job.
This allows using the test runner for other scenarios than just
testing uPy itself.
The principle of comparing either to CPython or else to a .exp
file is really handy but to be able to test custom modules not
built into micropython.exe one needs to be able to specify the
module search path a.k.a MICROPYPATH.
MicroPython guarantees '/' to be a path separator, so extra constant taking
precious ROM space are not needed. MicroPython never had such constant, only
one vendor port had it (now unmaintained).
Just one sample is updated with on()/off() for now, there should be
remaining sample(s) showing .value() use (but more can be converted later,
as long as 1 or so good samples of .value() remains).
ipoll() allows to poll streams without allocating any memory: this method
returns an iterator (a poll object itself), and the iterator yields
preallocated "callee-owned tuple" with polling results for each active
stream. The only operation a caller is allowed to do with this tuple is
extracting values from it (storing the tuple as a whole somewhere is
not allowed).
Previous to this patch, for large chunks of bytecode that originated from
a single source-code line, the bytecode-line mapping would generate
something like (for 42 bytecode bytes and 1 line):
BC_SKIP=31 LINE_SKIP=1
BC_SKIP=11 LINE_SKIP=0
This would mean that any errors in the last 11 bytecode bytes would be
reported on the following line. This patch fixes it to generate instead:
BC_SKIP=31 LINE_SKIP=0
BC_SKIP=11 LINE_SKIP=1
This patch implements support for class methods __delattr__ and __setattr__
for customising attribute access. It is controlled by the config option
MICROPY_PY_DELATTR_SETATTR and is disabled by default.
If the mounted object doesn't have a "mount" method then assume it's a
block device and try to detect the filesystem. Since we currently only
support FAT filesystems, the behaviour is to just try and create a VfsFat
object automatically, using the given block device.
Each method asserts and deasserts signal respectively. They are equivalent
to .value(1) and .value(0) but conceptually simpler (and may help to avoid
confusion with inverted signals, where "asserted" state means logical 0
output).
The aapcs-linux ABI is not required, instead the default aapcs ABI is
enough. And using the default ABI means that the provided libgcc will now
link with the firmware without warnings about variable vs fixed enums.
Although the binary size increases by about 1k, RAM usage is slightly
decreased. And libgcc may prove useful in the future for things like
long-long division.
It seems that the gcc toolchain on the RaspberryPi
likes %progbits instead of @progbits. I verified that
%progbits also works under x86, so this should
fix#2848 and fix#2842
I verified that unix and mpy-cross both compile
on my RaspberryPi and on my x64 machine.
The internal map/set functions now use size_t exclusively for computing
addresses. size_t is enough to reach all of available memory when
computing addresses so is the right type to use. In particular, for
nanbox builds it saves quite a bit of code size and RAM compared to the
original use of mp_uint_t (which is 64-bits on nanbox builds).
For archs that have 16-bit pointers, the asmxtensa.h file can give compiler
warnings about left-shift being greater than the width of the type (due to
the inline functions in this header file). Explicitly casting the
constants to uint32_t stops these warnings.
SPI needs to be fast, and calling the EVENT_POLL_HOOK every byte makes it
unusable for ports that need to do non-trivial work in the EVENT_POLL_HOOK
call. And individual SPI transfers should be short enough in time that
EVENT_POLL_HOOK doesn't need to be called.
If something like this proves to be needed in practice then we will need
to introduce separate event hook macros, one for "slow" loops (eg
select/poll) and one for "fast" loops (eg software I2C, SPI).
A few tests still fail on PYBLITE, and that's due to differences in the
available peripheral block numbers on the different MCUs (eg I2C(2)
exists on one, but it's I2C(3) on the other).
This new function controls what happens on a hard-fault:
- debugging disabled: board will do a reset
- debugging enabled: board will print registers and stack and flash LEDs
The default is disabled, ie to do a reset. This is different to previous
behaviour which flashed the LEDs and waited indefinitely.
The port now uses the common mp_utime_ticks_{ms,us,cpu,add,diff} functions
from extmod/utime_mphal.c.
The mp_utime_sleep_XXX functions are still cc3200-specific because they
handle the GIL differently to the ones in extmod.
The files misc/mpsystick.[ch] have been removed because they contain 2
unused functions, and the other remaining function is renamed to
mp_hal_ticks_us and moved to hal/cc3200_hal.c.
machine.time_pulse_us() is intended to provide very fine timing, including
while working with signal bursts, where each transition is tracked in row.
Throwing and handling an exception may take too much time and "signal loss".
So instead, in case of a timeout, just return negative value. Cases of
timeout while waiting for initial signal stabilization, and during actual
timing, are recognized.
The documentation is updated accordingly, and rewritten somewhat to clarify
the function behavior.
This patch fixes two main things:
- dicts can be printed directly using '%s' % dict
- %-formatting should not crash when passed a non-dict to, eg, '%(foo)s'
Updated modbuiltin.c to add conditional support for 3-arg calls to
pow() using MICROPY_PY_BUILTINS_POW3 config parameter. Added support in
objint_mpz.c for for optimised implementation.
This patch brings the _thread module to stmhal/pyboard. There is a very
simple round-robin thread scheduler, which is disabled if there is only
one thread (for efficiency when threading is not used).
The scheduler currently switches threads at a rate of 250Hz using the
systick timer and the pend-SV interrupt.
The GIL is disabled so one must be careful to use lock objects to prevent
concurrent access of objects.
The threading is disabled by default, one can enabled it with the config
option MICROPY_PY_THREAD to test it out.
The first partition is mounted as "/sd" and subsequent partitions are
mounted as "/sd<part_num>". This is backwards compatible with the previous
behaviour, which just mounted the first partition on "/sd".
At this point, only FatFs filesystems are mounted.
A signal is like a pin, but ca also be inverted (active low). As such, it
abstracts properties of various physical devices, like LEDs, buttons,
relays, buzzers, etc. To instantiate a Signal:
pin = machine.Pin(...)
signal = machine.Signal(pin, inverted=True)
signal has the same .value() and __call__() methods as a pin.
Based on the following statistics:
$ git log docs |grep Author | sort | uniq -c | sort -n -r
175 Author: Paul Sokolovsky
135 Author: Damien George
31 Author: Daniel Campora
26 Author: danicampora
14 Author: Peter Hinch
git blame stats script from http://stackoverflow.com/a/13687302/496009:
$ sh git-authors docs
9977 author Damien George
2679 author Paul Sokolovsky
1699 author Daniel Campora
1580 author danicampora
1286 author Peter Hinch
282 author Shuning Bian
249 author Dave Hylands
Total lines per this script: 18417, my contribution is 14.5%.
This patch makes the following configuration changes:
- MICROPY_FSUSERMOUNT is disabled, removing old mounting infrastructure
- MICROPY_VFS is enabled, giving new VFS sub-system
- MICROPY_VFS_FAT is enabled, giving uos.VfsFat type
- MICROPY_FATFS_OO is enabled, to use new ooFatFs lib, R0.12b
User facing API should be almost unchanged. Most notable changes are
removal of os.mkfs (use os.VfsFat.mkfs instead) and pyb.mount doesn't
allow unmounting by passing None as the device.
This provides mp_vfs_XXX functions (eg mount, open, listdir) which are
agnostic to the underlying filesystem type, and just require an object with
the relevant filesystem-like methods (eg .mount, .open, .listidr) which can
then be mounted.
These mp_vfs_XXX functions would typically be used by a port to implement
the "uos" module, and mp_vfs_open would be the builtin open function.
This feature is controlled by MICROPY_VFS, disabled by default.
If MICROPY_VFS_FAT is enabled by a port then the port must switch to using
MICROPY_FATFS_OO. Otherwise a port can continue to use the FatFs code
without any changes.
Previous to this patch the qemu-arm tests were compiled with is_relp=true
meaning that the __repl_print__ function was called for all lines of code
in the outer scope. This is not the right behaviour for scripts that are
executed as though they were a file (eg tests).
With this fix the micropython/heapalloc_str.py test now works so it is
removed from the test blacklist.
In this, don't allocate copy, just return non-empty string. This helps
with a standard pattern of buffering data in case of short reads:
buf = b""
while ...:
s = f.read(...)
buf += s
...
For a typical case when single read returns all data needed, there won't
be extra allocation. This optimization helps uasyncio.
They are one-line functions and having them inline in mp_init/mp_deinit
eliminates the overhead of a function call, and matches how other state
is initialised in mp_init.
The order now follows that in py/mpconfig.h and is a bit cleaner and easier
to maintain. No options were changed/added/removed with this patch, it's
just a reordering.
To use this feature a port should define MICROPY_HW_SPIFLASH_SIZE_BITS
along with x_CS, x_SCK, x_MOSI, x_MISO (x=MICROPY_HW_SPIFLASH). This will
then use external SPI flash on those pins instead of the internal flash.
The SPI is done using the software implementation. There is currently only
support for standard SPI (ie not dual or quad mode).
stmhal will now be built by default with frozen bytecode from scripts
stored in the stmhal/modules/ directory. This can be disabled or
changed to another directory by overridding the make variable
FROZEN_MPY_DIR.
This is how CPython does it, and it's very useful to help users discover
the available modules for a given port, especially built-in and frozen
modules. The function does not list modules that are in the filesystem
because this would require a fair bit of work to do correctly, and is very
port specific (depending on the filesystem).
Ports should no longer use pyhelp_print_obj but instead should define
MICROPY_PY_BUILTINS_HELP to 1 and then specify their help text using
MICROPY_PY_BUILTINS_HELP_TEXT.
If result guaranteedly fits in a small int, it is handled in objint.c.
Otherwise, it is delegated to mp_obj_int_from_bytes_impl(), which should
be implemented by individual objint_*.c, similar to
mp_obj_int_to_bytes_impl().
If GeneratorExit is injected as a throw-value then that should lead to
the close() method being called, if it exists. If close() does not exist
then throw() should not be called, and this patch fixes this.
CPython 3.6 has a few changes that, when run on uPy's test suite, give a
different output to CPython 3.5. uPy currently officially supports the
3.4 language definition, but it's useful to be able to run the test suite
with 3.4/3.5/3.6 versions of CPython. This patch makes such changes to
support 3.6.
The commit d9047d3c8a introduced a bug
whereby "from a.b import c" stopped working for frozen packages. This is
because the path was not properly truncated and became "a//b". Such a
path resolves correctly for a "real" filesystem, but not for a search in
the list of frozen modules.
This effectively reverts the change that introduced this new constant.
The reason is so that users do not need to rebuild the filesystem on
their modules when upgrading the firmware.
Users can change RESERVED_SECS by hand if they need the feature, and in
future firmware it may default to a non-zero value.
This code is no longer pertinent for some time - since switchover to
SDK2.0, there must be correct flash size set for bootloader, or there's
a risk of flash data corruption. And indeed, the correct flash size is
by default auto-detected by esptool.py 1.2.
With caching of map lookups in the bytecode, frozen bytecode can still
work but must be stored in RAM, not ROM. This patch allows mpy-tool.py to
generate code that works with this optimisation, but it's not recommended
to use it on embedded targets (because of lack of RAM).
If sets are not enabled, set literals lead to SyntaxError during parsing,
so it requires feature_check. Set tests are skipped based on set_*.py
pattern.
Starting at esp.flash_user_start(), the reserved sectors are for general
purpose use, for example for native code generation. There is currently
one sector reserved as such.
The driver seems to be be enabling the pullup resistor in most places, but
not this one. Making this one little change allows onewire devices to be
used with no external pullup resistor.
This makes unix "uselect" compatible with baremetal "uselect". Previosuly,
unix version accepted file/socket objects, but internally converted that
to file descriptors, and that's what .poll() returned. To acheive new
behavior, file-like objects are stored internally in an array, in addition
to existing array of struct pollfd. This array is created only on first
case of file-like object being passed to .register(). If only raw fd's are
passed, there will be no additional memory used comparing to the original
implementation.
cc3200tool, https://github.com/ALLTERCO/cc3200tool is a (mostly, some
binary blobs present) open-source, Linux-friendly tool to flash a cc3200
devices. It's an alternative to fully proprietary, Windows-only Uniflash
from TI.
The provided make targets are for erasing flash, flashing the uPy
bootloader and firmware, and flashing vendor's WiFi firmware "servicepacks"
(the latter needs to be downloaded from vendor side, a link is present
inside Makefile).
Sys-tick resolution is 1ms and a value of 2 will give a delay between 1ms
and 2ms (whereas a value of 1 gives a delay between 0ms and 1ms, which is
too short).
The HAL_UART_Transmit function has changed in the latest HAL version such
that the Timeout is a timeout for the entire function, rather than a
timeout between characters as it was before. The HAL function also does
not allow one to reliably tell how many characters were sent before the
timeout (if a timeout occurred).
This patch provides a custom function to do UART transmission, completely
replacing the HAL version, to fix the above-mentioned issues.
UART REPL support was lost in os.dupterm() refactorings, etc. As
os.dupterm() is there, implement UART REPL support at the high level -
if MICROPY_STDIO_UART is set, make default boot.py contain os.dupterm()
call for a UART. This means that changing MICROPY_STDIO_UART value will
also require erasing flash on a module to force boot.py re-creation.
There is a minor functional change with this patch, that the GPIO are now
configured in fast mode, whereas they were in high speed mode before. But
the SDIO should still work because SD CK frequency is at most 25MHz.
They are the same as the existing raw constants (namely 0, 1, 2) but we
want to explicitly show that one can use the HAL's constants if necessary
(eg the mpconfigboard.h files do use the HAL's constants to define the
pull state of certain configurable pins).
Without this the timer will have random values for its State and Lock
entries. The object can then be in a locked state leading to some HAL
functions returning immediately with an error code (which is unchecked).
This patch fixes such a bug which did manifest itself as PWM not working
correctly for LEDs.
This check always fails (ie chr0 is never EOF) because the callers of this
function never call it past the end of the input stream. And even if they
did it would be harmless because 1) reader.readbyte must continue to
return an EOF char if the stream is exhausted; 2) next_char would just
count the subsequent EOF's as characters worth 1 column.
import utimeq, utime
# Max queue size, the queue allocated statically on creation
q = utimeq.utimeq(10)
q.push(utime.ticks_ms(), data1, data2)
res = [0, 0, 0]
# Items in res are filled up with results
q.pop(res)
This is required to avoid extra level of output "cooking" ("\r\r\n") and
make test infrastructure work. On the other hand, this breaks somewhat
Zephyr console abstraction.
Defining and initialising mp_kbd_exception is boiler-plate code and so the
core runtime can provide it, instead of each port needing to do it
themselves.
The exception object is placed in the VM state rather than on the heap.
mp_kbd_exception is now considered the standard variable name to hold the
singleton KeyboardInterrupt exception.
This patch also moves the creation of this object from pyb_usb_init() to
main().
Previous to this patch pyboard.py would open a new serial connection to
the target for each script that was run, and for any command that was run.
Apart from being inefficient, this meant that the board was soft-reset
between scripts/commands, which precludes scripts from accessing variables
set in a previous one.
This patch changes the behaviour of pyboard.py so that the connection to
the target is created only once, and it's not reset between scripts or any
command that is sent with the -c option.
When printing exceptions from files sent to a target by pyboard.py the
filename in the exception is <stdin>, which differs to when running the
script on the PC. So we strip out the filename to make the outputs the
same on all targets (see also misc/print_exception.py test).
sys.exit() is an important function to terminate a program. In particular,
the testsuite relies on it to skip tests (i.e. any other functionality may
be disabled, but sys.exit() is required to at least report that properly).
For all but the last pass the assembler only needs to count how much space
is needed for the machine code, it doesn't actually need to emit anything.
The dummy_data just uses unnecessary RAM and without it the code is not
any more complex (and code size does not increase for Thumb and Xtensa
archs).
This patch moves some common code from the individual inline assemblers to
the compiler, the code that calls the emit-glue to assign the machine code
to the functions scope.
This patch adds the MICROPY_EMIT_INLINE_XTENSA option, which, when
enabled, allows the @micropython.asm_xtensa decorator to be used.
The following opcodes are currently supported (ax is a register, a0-a15):
ret_n()
callx0(ax)
j(label)
jx(ax)
beqz(ax, label)
bnez(ax, label)
mov(ax, ay)
movi(ax, imm) # imm can be full 32-bit, uses l32r if needed
and_(ax, ay, az)
or_(ax, ay, az)
xor(ax, ay, az)
add(ax, ay, az)
sub(ax, ay, az)
mull(ax, ay, az)
l8ui(ax, ay, imm)
l16ui(ax, ay, imm)
l32i(ax, ay, imm)
s8i(ax, ay, imm)
s16i(ax, ay, imm)
s32i(ax, ay, imm)
l16si(ax, ay, imm)
addi(ax, ay, imm)
ball(ax, ay, label)
bany(ax, ay, label)
bbc(ax, ay, label)
bbs(ax, ay, label)
beq(ax, ay, label)
bge(ax, ay, label)
bgeu(ax, ay, label)
blt(ax, ay, label)
bnall(ax, ay, label)
bne(ax, ay, label)
bnone(ax, ay, label)
Upon entry to the assembly function the registers a0, a12, a13, a14 are
pushed to the stack and the stack pointer (a1) decreased by 16. Upon
exit, these registers and the stack pointer are restored, and ret.n is
executed to return to the caller (caller address is in a0).
Note that the ABI for the Xtensa emitters is non-windowing.
This patch allows esp8266 to use @micropython.native and
@micropython.viper function decorators. By default the executable machine
code is written to the space at the end of the iram1 region. The user can
call esp.set_native_code_location() to make the code go to flash instead.
If a port defines MP_PLAT_COMMIT_EXEC then this function is used to turn
RAM data into executable code. For example a port may want to write the
data to flash for execution. The function must return a pointer to the
executable data.
The 512k build recently overflowed because of the newly-enabled uselect
module. uselect is arguable more important than framebuf for small
devices so we disable framebuf to keep the 512k build within its limit.
This is a pure refactoring (and simplification) of code so that stmhal
uses the software SPI class provided in extmod, for the machine.SPI
implementation.
So long as a port defines relevant mp_hal_pin_xxx functions (and delay) it
can make use of this software SPI class without the need for additional
code.
Previous to this patch trying to construct, but not init, a UART that
didn't exist on the target board would actually succeed. Only when
initialising the UART would it then raise an exception that the UART does
not exist.
This patch adds an explicit check that the constructed UART does in fact
exist for the given board.
This follows the pattern of other peripherals (I2C, SPI) to specify the
pins using pin objects instead of a pair of GPIO port and pin number. It
makes it easier to customise the UART pins for a particular board.
These are basic drawing primitives. They work in a generic way on all
framebuf formats by calling the underlying setpixel or fill_rect C-level
primitives.
The STM32 F7 and L4 boards use significantly different code to the F4
boards so it's important to test them with CI. To keep CI build times
within a reasonable limit the STM32F4DISC board is no longer built, it's
anyway very similar to the standard F4 build for PYBv1.0.
If you have longish operations on the db (such as logging data) it may
be desirable to periodically sync the database to the disk. The added
btree.sync() method merely exposes the berkley __bt_sync function to the
user.
The constants MP_IOCTL_POLL_xxx, which were stmhal-specific, are moved
from stmhal/pybioctl.h (now deleted) to py/stream.h. And they are renamed
to MP_STREAM_POLL_xxx to be consistent with other such constants.
All uses of these constants have been updated.
If the destination of os.rename() exists then it will be overwritten if it
is a file. This is the POSIX behaviour, which is also the CPython
behaviour, and so we follow suit.
See issue #2598 for discussion.
Add 2 macros in mphalport.h that clean and invalidate data caches only on
STM32F7 MCUs. They are needed to ensure the cache coherency before/after
DMA transferts.
* MP_HAL_CLEANINVALIDATE_DCACHE cleans and invalidate the data cache. It
must be called before starting a DMA transfer from the peripheral to the
RAM memory.
* MP_HAL_CLEAN_DCACHE cleans the data cache. It must be called before
starting a DMA transfert from the RAM memory to the peripheral.
These macros are called in sdcard.c, before reading from and writing to
the SDCard, when DMA is used.
Fill is a very common operation (eg to clear the screen) and it is worth
optimising it, by providing a specialised fill_rect function for each
framebuffer format.
This patch improved the speed of fill by 10 times for a 16-bit display
with 160*128 pixels.
Rename FrameBuffer1 into FrameBuffer and make it handle different bit
depths via a method table that has getpixel and setpixel. Currently
supported formats are MVLSB (monochrome, vertical, LSB) and RGB565.
Also add blit() and fill_rect() methods.
The temperature sensor on F4 and F7 MCUs is mostly, but not always, on
channel 16. To retain compatibility across all these MCUs this patch
maps the user-facing channel 16 to the internal temperature sensor.
The "mask" parameter is used to select which pins the ADCAll constructor
will initialise to analog mode. It defaults to all pins (0xffffffff),
which is backwards compatible with previous behaviour.
These were inadvertently removed with a recent upgrade to CMSIS, where
those registers were no longer defined in the CMSIS headers, and hence
no longer extracted.
This allows one to construct an I2C object using ids that are specific
to the stmhal port, eg machine.I2C('X'). Right now the implementation
of I2C uses software I2C but the idea is to just change the C-level I2C
protocol functions to hardware implementations later on.
stdio.h was included in all HAL files only to provide
definition of NULL symbol
"stdio.h" includes "types.h" which contains some conflicting definitions
with "drivers/cc3000/inc/socket.h"
HAL Driver before v1.4.2 had a bug which caused clearing all pending
flags in MSR, TSR, RF0R and RF1R instead of only the requested one.
This is why micropython got away without explicitly clearing flags
in IRQ handler.
Current version of HAL drivers optimize IRQ handler by using precalculated
DMA register address and stream bitshift instead of calculating it on every interrupt.
Since we skip call to `HAL_DMA_Init` on reused DMA, fields StreamBaseAddress and StreamIndex
of DMA handle are not initialized and thus leads to SegFault in `DMA_IRQHandler`.
HAL_DMA_Init is a big routine and we do not need to call it on each use of DMA
(ex.: series of I2C operations) and DMA_CalcBaseAndBitshift is really small and
releasing it increases code size by only 8 bytes.
If a port defines MICROPY_READER_POSIX or MICROPY_READER_FATFS then
lexer.c now provides an implementation of mp_lexer_new_from_file using
the mp_reader_new_file function.
Implementations of persistent-code reader are provided for POSIX systems
and systems using FatFS. Macros to use these are MICROPY_READER_POSIX and
MICROPY_READER_FATFS respectively. If an alternative implementation is
needed then a port can define the function mp_reader_new_file.
It is split into 2 functions, one to make small ints and the other to make
a non-small-int leaf node. This reduces code size by 32 bytes on
bare-arm, 64 bytes on unix (x64-64) and 144 bytes on stmhal.
Per the latest HW API, "SPI" class implements only master side of the
protocol, so mode=SPI.MASTER (which was static for WiPy anyway) is not
required (or allowed). This change is required to correspond to updated
documentation of machine.SPI class which no longer lists "mode".
This includes StopIteration and thus are important to make Python-coded
iterables work with yield from/await.
Exceptions in Python send() are still not handled and left for future
consideration and optimization.
We allow 'exc.__traceback__ = None' assignment as a low-level optimization
of pre-allocating exception instance and raising it repeatedly - this
avoids memory allocation during raise. However, uPy will keep adding
traceback entries to such exception instance, so before throwing it,
traceback should be cleared like above.
'exc.__traceback__ = None' syntax is CPython compatible. However, unlike
it, reading that attribute or setting it to any other value is not
supported (and not intended to be supported, again, the only reason for
adding this feature is to allow zero-memalloc exception raising).
Its addition was due to an early exploration on how to add CPython-like
stream interface. It's clear that it's not needed and just takes up
bytes in all ports.
As required for further elaboration of uasyncio, like supporting baremetal
systems with wraparound timesources. This is not intended to be public
interface, and likely will be further refactored in the future.
If an I2C send/recv fails then the peripheral is now checked to see if
it's in a "stuck" state waiting for the stop bit, and if so then it is
reset so that the next I2C transaction can proceed.
This patch also de-inits the I2C peripheral in the init() method, before
init'ing it again.
New keyword option in constructor and init() method is "dma=<bool>".
DMA is now disabled by default for I2C transfers because it currently does
not handle I2C bus errors very well (eg if slave device doesn't ACK or
NACK correctly during a transfer).
The DMA state is always HAL_DMA_STATE_RESET because of the memset clearing
all the data, so prior to this patch HAL_DMA_DeInit was never called. Now
it is always called to make sure the DMA is properly reset.
The ESP SDK supports configuring the hostname that is
reported when doing a DHCP request in station mode. This commit
exposes that under network.WLAN(network.STA_IF).config('dhcp_hostname')
as a read/write value similar to other parameters.
With this patch one can now do "make FROZEN_MPY_DIR=../../frozen" to
specify a directory containing scripts to be frozen (as well as absolute
paths).
The compiled .mpy files are now stored in $(BUILD)/frozen_mpy/.
Now, to use frozen bytecode all a port needs to do is define
FROZEN_MPY_DIR to the directory containing the .py files to freeze, and
define MICROPY_MODULE_FROZEN_MPY and MICROPY_QSTR_EXTRA_POOL.
Previously, it was included only in release builds, but it's important
tool which should be always at the fingertips to be useful (and to
pump up its usage).
To make its inclusion as frozen modules in multiple ports less magic.
Ports are just expected to symlink 2 files into their scripts/modules
subdirs.
Unix port updated to use this and in general follow frozen modules setup
tested and tried on baremetal ports, where there's "scripts" predefined
dir (overridable with FROZEN_DIR make var), and a user just drops Python
files there.
At the WS2812 driver level, a 400ns value was used for T0H (time high to
send a 0 bit) but LED specification says it should be 350ns +- 150ns.
Due to loop overhead the 400ns value could lead to T0H close to 500ns
which is too close from the limit value and gave glitches (bad data to
pixels) in some cases. This patch makes the calculated T0H value 350ns.
Previously they used historical "pyb" affix causing confusion and
inconsistency (there's no "pyb" module in modern ports; but people
took esp8266 port as an example, and "pyb" naming kept proliferating,
while other people complained that source structure is not clear).
This helps to test floating point code on Cortex-M hardware.
As part of this patch the link-time-optimisation was disabled because it
wasn't compatible with software FP support. In particular, the linker
could not find the __aeabi_f2d, __aeabi_d2f etc functions even though they
were provided by lib/libm/math.c.
In both parse.c and qstr.c, an internal chunking allocator tidies up
by calling m_renew to shrink an allocated chunk to the size used, and
assumes that the chunk will not move. However, when MICROPY_ENABLE_GC
is false, m_renew calls the system realloc, which does not guarantee
this behaviour. Environments where realloc may return a different
pointer include:
(1) mbed-os with MBED_HEAP_STATS_ENABLED (which adds a wrapper around
malloc & friends; this is where I was hit by the bug);
(2) valgrind on linux (how I diagnosed it).
The fix is to call m_renew_maybe with allow_move=false.
Size 64 was incorrect and will lead to stack corruption. Size 88 was
verified empirically. Also, allow to skip defining it if MD5_CTX
preprocessor macro is already defined (to avoid header conflict).
ESP8266 SDK2.0 fixes (at least, I can't reproduce it) an infamous bug
with crash during scan. 36K seams to be a safe value based on a download
test (test_dl.py), over 1GB was downloaded. More testing is needed, but
let's have other people participate by committing it now.
There is no automatic reconnect after wlan.active(False);
wlan.active(True). This commit provide the possibility to run
wlan.connect() without parameter, to reconnect to the previously
connected AP.
resolve#2493
It's mandatory function which should be present in every port. Even if
it's not, in the stdlib intro we waarn users that a particular port can
lack anything of described in the docs.
Now the function properly uses ring arithmetic to return signed value
in range (inclusive):
[-MICROPY_PY_UTIME_TICKS_PERIOD/2, MICROPY_PY_UTIME_TICKS_PERIOD/2-1].
That means that function can properly process 2 time values away from
each other within MICROPY_PY_UTIME_TICKS_PERIOD/2 ticks, but away in
both directions. For example, if tick value 'a' predates tick value 'b',
ticks_diff(a, b) will return negative value, and positive value otherwise.
But at positive value of MICROPY_PY_UTIME_TICKS_PERIOD/2-1, the result
of the function will wrap around to negative -MICROPY_PY_UTIME_TICKS_PERIOD/2,
in other words, if a follows b in more than MICROPY_PY_UTIME_TICKS_PERIOD/2 - 1
ticks, the function will "consider" a to actually predate b.
It's implemented in terms of usleep(), and POSIX doesn't guarantee that
usleep() can sleep for more than a second. This restriction unlikely
applies to any real-world system, but...
Based on the earlier discussed RFC. Practice showed that the most natural
order for arguments corresponds to mathematical subtraction:
ticks_diff(x, y) <=> x - y
Also, practice showed that in real life, it's hard to order events by time
of occurance a priori, events tend to miss deadlines, etc. and the expected
order breaks. And then there's a need to detect such cases. And ticks_diff
can be used exactly for this purpose, if it returns a signed, instead of
unsigned, value. E.g. if x is scheduled time for event, and y is the current
time, then if ticks_diff(x, y) < 0 then event has missed a deadline (and e.g.
needs to executed ASAP or skipped). Returning in this case a large unsigned
number (like ticks_diff behaved previously) doesn't make sense, and such
"large unsigned number" can't be reliably detected per our definition of
ticks_* function (we don't expose to user level maximum value, it can be
anything, relatively small or relatively large).
The integration with Zephyr is fairly clean but as MicroPython Hardware API
requires pin ID to be a single value, but Zephyr operates GPIO in terms of
ports and pins, not just pins, a "hierarchical" ID is required, using tuple
of (port, pin). Port is a string, effectively a device name of a GPIO port,
per Zephyr conventions these are "GPIO_0", "GPIO_1", etc.; pin is integer
number of pin with the port (supposed to be in range 0-31).
Example of pin initialization:
pin = Pin(("GPIO_1", 21), Pin.OUT)
(an LED on FRDM-K64F's Port B, Pin 21).
There is support for in/out pins and pull up/pull down but currently
there is no interrupt support.
Signed-off-by: Daniel Thompson <daniel.thompson@linaro.org>
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@linaro.org>
Signed-off-by: Paul Sokolovsky <paul.sokolovsky@linaro.org>
This happens with some compilers on some architectures, which don't define
size_t as unsigned int. MicroPython's printf() dooesn't support obscure
format specifiers for size_t, so the obvious choice is to explicitly cast
to unsigned, to match %u used in printf().
Clarify the class implements master side of the protocol, also put adhoc
WiPy paramter after the generic, described in the current Hardware API
version.
The NeoPixel class now handles 4 bytes-per-pixel LEDs (extra byte is
intensity) and arbitrary byte ordering. APA102 class is now derived from
NeoPixel to reduce code size and support fill() operation.
To build, "make 512k".
Disabled are FatFs support (no space for filesystem), Python functionality
related to files, btree module, and recently enabled features. With all
this, there's only one free FlashROM page.
As we're looking towards adding OTA support, calculation of a FlashROM
area which can be used for filesystem (etc.) may become complex, so
introduce C function for that. So far it just hardcodes current value,
0x90000. In the future the function may be extended (and renamed) to
return the size of area too.
This provides time and sleep together with the usual ticks_us/_ms/_diff
and sleep_us/ms family.
We also provide access to Zephyr's high precision timer as ticks_cpu().
Signed-off-by: Daniel Thompson <daniel.thompson@linaro.org>
Builtin functions with a fixed number of arguments (0, 1, 2 or 3) are
quite common. Before this patch the wrapper for such a function cost
3 machine words. After this patch it only takes 2, which can reduce the
code size by quite a bit (and pays off even more, the more functions are
added). It also makes function dispatch slightly more efficient in CPU
usage, and furthermore reduces stack usage for these cases. On x86 and
Thumb archs the dispatch functions are now tail-call optimised by the
compiler.
The bare-arm port has its code size increase by 76 bytes, but stmhal drops
by 904 bytes. Stack usage by these builtin functions is decreased by 48
bytes on Thumb2 archs.
In order to have more fine-grained control over how builtin functions are
constructed, the MP_DECLARE_CONST_FUN_OBJ macros are made more specific,
with suffix of _0, _1, _2, _3, _VAR, _VAR_BETEEN or _KW. These names now
match the MP_DEFINE_CONST_FUN_OBJ macros.
Running Python code on a hard interrupt is incompatible with having a GIL,
because most of the time the GIL will be held by the user thread when the
interrupt arrives. Hard interrupts mean that we should process them right
away and hence can't wait until the GIL is released.
The problem with the current code is that a hard interrupt will try to
exit/enter the GIL while it is still held by the user thread, hence leading
to a deadlock.
This patch works around such a problem by just making GIL exit/enter a
no-op when in an interrupt context, or when interrupts are disabled.
See issue #2406.
SDK 2.0.0 goes into boot loop if a firmware is programmed over erased flash,
causing problems with user experience. This change implements behavior
similar to older SDKs': if clean flash is detected, default system
parameters are used.
As long as a port implement mp_hal_sleep_ms(), mp_hal_ticks_ms(), etc.
functions, it can just use standard implementations of utime.sleel_ms(),
utime.ticks_ms(), etc. Python-level functions.
Now there is just one function to allocate a new vstr, namely vstr_new
(in addition to vstr_init etc). The caller of this function should know
what initial size to allocate for the buffer, or at least have some policy
or config option, instead of leaving it to a default (as it was before).
This refactors ujson.loads(s) to behave as ujson.load(StringIO(s)).
Increase in code size is: 366 bytes for unix x86-64, 180 bytes for
stmhal, 84 bytes for esp8266.
The boot issue text mentions a help() function and encourages
the user to run it. It is very disconcerting to find that the
function does not exist...
Signed-off-by: Daniel Thompson <daniel.thompson@linaro.org>
"Forced exit" is treated as soft-reboot (Ctrl+D). But expected effect of
calling sys.exit() is termination of the current script, not any further
and more serious actions like mentioned soft reboot.
Setting emit_dent=0 is unnecessary because arriving in that part of the
if-logic will guarantee that emit_dent is already zero.
The block to check indent_top(lex)>0 is unreachable because a newline is
always inserted an the end of the input stream, and hence dedents are
always processed before EOF.
As per discussion in #2449, using write requests instead of read requests
for I2C.scan() seems to support a larger number of devices, especially
ones that are write-only. Even a read-only I2C device has to implement
writes in order to be able to receive the address of the register to read.
Adds check that LZ offsets fall into the sliding dictionary used. This
catches a case when uzlib.DecompIO with a smaller dictionary is used
to decompress data which was compressed with a larger dictionary.
Previously, this would lead to producing invalid data or crash, now
an exception will be thrown.
The outputexpors target, which exports Zephyr environment variables, was
recently added to Zephyr. By exploiting this feature we can hugely simplify
the build system, improving robustness at the same time.
Signed-off-by: Daniel Thompson <daniel.thompson@linaro.org>
The two variables, GENERIC_TARGETS and CONFIG_TARGETS come, respectively,
from the the lists shown during "make help" and "make kconfig-help".
Signed-off-by: Daniel Thompson <daniel.thompson@linaro.org>
Currently to compile for anything that except ARCH=x86 we have to
provide ARCH via the environment or make arguments. We can do better
than that!
Signed-off-by: Daniel Thompson <daniel.thompson@linaro.org>
Added options to make deploy so it can be used for ESP8266 boards with
other flash configurations. For example NodeMCU DEVKIT V1.0 can now use:
$ make FLASH_MODE=dio FLASH_SIZE=32m deploy
The output might contain more than one line ending in 5b so properly skip
everything until the next known point.
This fixes test failures in appveyor debug builds.
In particular, this makes the L4 .isr_vector section 16K in size so it's
the same as the F4/F7 MCUs. The patch also moves the L4 filesystem to
the end of flash, which allows for 512K filesystem on the 1Mb devices
like the STM32L476DISC.
The delay_half parameter must be specified by the port to set up the
timing of the software SPI. This allows the port to adjust the timing
value to better suit its timing characteristics, as well as provide a
more accurate printing of the baudrate.
It's simpler to just default to always using software SPI if no specific
peripheral id/name is given. To use hardware SPI users must specify a
hardware peripheral id as the first parameter to the SPI constructor.
There is no need to take src_len and dest_len arguments. The case of
reading-only with a single output byte (originally src_len=1, dest_len>1)
is now handled by using the output buffer as the input buffer, and using
memset to fill the output byte into this buffer. This simplifies the
implementations of the spi_transfer protocol function.
Similar to how binary op already works. Common unary operations already
have fast paths for bool so there's no need to have explicit handling of
ops in bool_unary_op, especially since they have the same behaviour as
integers.
On 32-bit archs this makes the scope_t struct 48 bytes in size, which fits
in 3 GC blocks (previously it used 4 GC blocks). This will lead to some
savings when compiling scripts because there are usually quite a few scopes,
one for each function and class.
Note that qstrs will fit in 16 bits, this assumption is made in a few other
places.
The memory read/write I2C functions now take an optional keyword-only
parameter that specifies the number of bits in the memory address.
Only mem-addrs that are a multiple of 8-bits are supported (otherwise
the behaviour is undefined).
Due to the integer type used for the address, for values larger than 32
bits, only 32 bits of address will be sent, and the rest will be padded
with 0s. Right now no exception is raised when that happens. For values
smaller than 8, no address is sent. Also no exception then.
Tested with a VL6180 sensor, which has 16-bit register addresses.
Due to code refactoring, this patch reduces stmhal and esp8266 builds
by about 50 bytes.
Following how other objects work, set/frozenset methods should use the
mp_check_self() macro to check the type of the self argument, because in
most cases this check can be a null operation.
Saves about 100-180 bytes of code for builds with set and frozenset
enabled.
To reset the flags we should write to the single bit only, not the entire
register (otherwise all other settings in the register are cleared).
Fixes#2457.
Having a micropython.const identity function, and writing "from micropython
import const" at the start of scripts that use the const feature, allows to
write scripts which are compatible with CPython, and with uPy builds that
don't include const optimisation.
This patch adds such a function and updates the tests to do the import.
When an exception is raised and is to be handled by the VM, it is stored
on the Python value stack so the bytecode can access it. CPython stores
3 objects on the stack for each exception: exc type, exc instance and
traceback. uPy followed this approach, but it turns out not to be
necessary. Instead, it is enough to store just the exception instance on
the Python value stack. The only place where the 3 values are needed
explicitly is for the __exit__ handler of a with-statement context, but
for these cases the 3 values can be extracted from the single exception
instance.
This patch removes the need to store 3 values on the stack, and instead
just stores the exception instance.
Code size is reduced by about 50-100 bytes, the compiler and VM are
slightly simpler, generate bytecode is smaller (by 2 bytes for each try
block), and the Python value stack is reduced in size for functions that
handle exceptions.
This fixes constant substitution so that only standalone identifiers are
replaced with their constant value (if they have one). I.e. don't
replace NAME in expressions like obj.NAME or NAME = expr.
qstrs ids are restricted to fit within 2 bytes already (eg in persistent
bytecode) so it's safe to use a uint16_t to store them in mp_arg_t. And
the flags member only needs a maximum of 2 bytes so can also use uint16_t.
Savings in code size can be significant when many mp_arg_t structs are
used for argument parsing. Eg, this patch reduces stmhal by 480 bytes.
When the clock is too fast for the i2c slave, it can temporarily hold
down the scl line to signal to the master that it needs to wait. The
master should check the scl line when it is releasing it after
transmitting data, and wait for it to be released.
This change has been tested with a logic analyzer and an i2c slace
implemented on an atmega328p using its twi peripheral, clocked at 8Mhz.
Without the change, the i2c communication works up to aboy 150kHz
frequency, and above that results in the slave stuck in an unresponsive
state. With this change, communication has been tested to work up to
400kHz.
The system printf is no longer used by the core uPy code. Instead, the
platform print stream or DEBUG_printf is used. Using DEBUG_printf in the
showbc functions would mean that the code can't be tested by the test
suite, so use the normal output instead.
This patch also fixes parsing of bytecode-line-number mappings.
UART1 can be used even if the switch is enabled. The schematics for this
board make I2C1 available on PB8/PB9, even though it can also be mapped
to PB6/PB7.
See #2396 and #2427.
The vstr.had_error flag was a relic from the very early days which assumed
that the malloc functions (eg m_new, m_renew) returned NULL if they failed
to allocate. But that's no longer the case: these functions will raise an
exception if they fail.
Since it was impossible for had_error to be set, this patch introduces no
change in behaviour.
An alternative option would be to change the malloc calls to the _maybe
variants, which return NULL instead of raising, but then a lot of code
will need to explicitly check if the vstr had an error and raise if it
did.
The code-size savings for this patch are, in bytes: bare-arm:188,
minimal:456, unix(NDEBUG,x86-64):368, stmhal:228, esp8266:360.
With the previous patch combining 3 emit functions into 1, it now makes
sense to also combine the corresponding VM opcodes, which is what this
patch does. This eliminates 2 opcodes which simplifies the VM and reduces
code size, in bytes: bare-arm:44, minimal:64, unix(NDEBUG,x86-64):272,
stmhal:92, esp8266:200. Profiling (with a simple script that creates many
list/dict/set comprehensions) shows no measurable change in performance.
The 3 kinds of comprehensions are similar enough that merging their emit
functions reduces code size. Decreases in code size in bytes are:
bare-arm:24, minimal:96, unix(NDEBUG,x86-64):328, stmhal:80, esp8266:76.
bool(None) has a fast path in mp_obj_is_true so doesn't need to be
handled in none_unary_op. The only caveat is that subclassing may
bypass the mp_obj_is_true function, but actually you aren't allowed to
subclass classes that have singleton instances like NoneType (see
https://mail.python.org/pipermail/python-dev/2002-March/020822.html for
reference on this point).
This is actually long overdue: the README in the windows directory has been
updated once to indicate mingw32 is abandoned and not ok to use with uPy,
but we forgot travis builds were still using it.
As a bonus the travis build will succeed again since moduerrno.c now compiles.
(see https://github.com/micropython/micropython/pull/2399)
py/makeqstrdefs.py declares that it works with python 2.6 however the
syntax used to initialise of a set with values was only added in python
2.7. This leads to build failures when the host system doesn't have
python 2.7 or newer.
Instead of using the new syntax pass a list of initial values through
set() to achieve the same result. This should work for python versions
from at least 2.6 onwards.
Helped-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
Signed-off-by: Chris Packham <judge.packham@gmail.com>
If a user tries to call `swint()` while interrupt is disabled the flag in
SWIER is set but the interrupt is not triggered and therefore the SWIER bit
is not cleared. When the interrupt is again enabled the next call to
`swint()` won't trigger the IRQ because a 0 to 1 transition will not occur.
The LCD interface library fails to deassert the chip select of the LCD
after an SPI transmission. Consequently using the SPI with other
peripherals disturbs the state of the LCD. This patch changes
lcd.lcd_out() to deassert CS after each transmission to the LCD.
Tested on a STM32F7DISCO at 216MHz. All tests generating code (inlineasm,
native, viper) now pass, except pybnative/while.py, but that's because
there is no LED(2).
machine.POWER_ON is renamed to machine.PWRON_RESET to match other
reset-cause constants that all end in _RESET. The cc3200 port keeps a
legacy definition of POWER_ON for backwards compatibility.
- Refers to the technique of instantiating an object for use in an ISR by
specifying it as a default argument.
- Footnote detailing the fact that interrupt handlers continue to be
executed at the REPL.
When dealing with a board which controls chip reset with UART's DTR/RTS,
we never see REASON_DEFAULT_RST (0), only REASON_EXT_SYS_RST (6). However,
trying a "raw" module with with just TXD/RXD UART connection, on power up
it has REASON_DEFAULT_RST as a reset reason.
According to the Arduino ESP8266 implementation the first argument to the
wifi scan callback is actually a bss_info pointer. This patch fixes the
iteration over this data so the first 2 entries are no longer skipped.
Fixes issue #2372.
Interrupts during neopixel_write causes timing problems and therefore
wrong light patterns. Switching off IRQs should help to keep the strict
timing schedule.
This new config option allows to control whether MicroPython uses its own
internal printf or not (if not, an external one should be linked in).
Accompanying this new option is the inclusion of lib/utils/printf.c in the
core list of source files, so that ports no longer need to include it
themselves.
Adds horizontal scrolling. Right now, I'm just leaving the margins
created by the scrolling as they were -- so they will repeat the
edge of the framebuf. This is fast, and the user can always fill
the margins themselves.
modpybhspi now does the needed multiplexing, calling out to modpybspi
(bitbanging SPI) for suitable peripheral ID's. modmachinespi (previous
multiplexer class) thus not needed and removed.
modpybhspi also updated to following standard SPI peripheral naming:
SPI0 is used for FlashROM and thus not supported so far. SPI1 is available
for users, and thus needs to be instantiated as:
spi = machine.SPI(1, ...)
There was a bug in `framebuf1_fill` function, that makes it leave a few
lines unfilled at the bottom if the height is not divisible by 8.
A similar bug is fixed in the scroll method.
Arguments of an unknown type cannot be skipped and continuing to parse a
format string after encountering an unknown format specifier leads to
undefined behaviour. This patch helps to find use of unsupported formats.
The idea is that all ports can use these helper methods and only need to
provide initialisation of the SPI bus, as well as a single transfer
function. The coding pattern follows the stream protocol and helper
methods.
This extra forward slash for the starting-point directory is unnecessary
and leads to additional slashes on Max OS X which mean that the frozen
files cannot be imported.
Fixes#2374.
The OneWire class is now in its own onewire.py module, and the temperature
sensor class is in its own ds18x20.py module. The latter is renamed to
DS18X20 to reflect the fact that it will support both the "S" and "B"
variants of the device.
These files are moved to the modules/ subdirectory to take advantage of
frozen bytecode.
This patch makes second and next calls to <socket>.close() a no-op.
It prevents GC from closing the underlying resource after user
already used <socket>.close() explicitly.
fixes#2355
There can be stray pointers in memory blocks that are not properly zero'd
after allocation. This patch adds a new config option to always zero all
allocated memory (via gc_alloc and gc_realloc) and hence help to eliminate
stray pointers.
See issue #2195.
This is an object-oriented approach, where uos is only a proxy for the
methods on the vfs object. Some internals had to be exposed (the STATIC
keyword removed) for this to work.
Fixes#2338.
In current state `mp_get_stream_raise` assumes that `self_in` is an object
and always performs a pointer derefence which may cause a segfault.
This function shall throw an exception whenever `self_in` does not implement
a stream protocol, that includes qstr's and numbers.
fixes#2331
In `btree_seq()`, when `__bt_seq()` gets called with invalid
`flags` argument it will return `RET_ERROR` and it won't
initialize `val`. If field `data` of uninitialized `val`
is passed to `mp_obj_new_bytes()` it causes a segfault.
It turns out that TIM1 and TIM8 have their own Capture/Compare
interrupt vector. For all of the other timers, the capture/compare
interrupt vector is the same as the update vector.
So we need to add handlers for these vectors and enable them
when using capture/compare callbacks.
During testing of this, I also found that passing a channel callback
into the channel constructor would not enable interrupts properly.
I tested using:
```
>>> pyb.Timer(1, freq=4).channel(1, pyb.Timer.OC_TOGGLE, callback=lambda t: print('.', end=''))
```
I tested the above with channels 1, 4, and 8
This type was used only for the typedef of mp_obj_t, which is now defined
by the object representation. So we can now remove this unused typedef,
to simplify the mpconfigport.h file.
The machine_ptr_t type is long obsolete as the type of mp_obj_t is now
defined by the object representation, ie by MICROPY_OBJ_REPR. So just use
void* explicitly for the typedef of mp_obj_t.
If a port wants to use something different then they should define a new
object representation.
Only tuple, namedtuple and attrtuple use the tuple_cmp_helper function,
and they all have getiter=mp_obj_tuple_getiter, so the check here is only
to ensure that the self object is consistent. Hence use mp_check_self.
Checks for number of args removes where guaranteed by function descriptor,
self checking is replaced with mp_check_self(). In few cases, exception
is raised instead of assert.
Indended to replace raw asserts in bunch of files. Expands to empty
if MICROPY_BUILTIN_METHOD_CHECK_SELF_ARG is defined, otehrwise by
default still to assert, though a particular port may define it to
something else.
Introduce mp_raise_msg(), mp_raise_ValueError(), mp_raise_TypeError()
instead of previous pattern nlr_raise(mp_obj_new_exception_msg(...)).
Save few bytes on each call, which are many.
Fixing Issue #2243. Main problems were:
- HAL_ADC_GetState(adcHandle) may return other bits set (not only
HAL_ADC_STATE_EOC_REG) when called - so I AND-ed it out as proposed by
mattbrejza in Issue #2243.
- ADC Pin has to be configured as GPIO_MODE_ANALOG_ADC_CONTROL not only
GPIO_MODE_ANALOG.
- Resolved ADC resolution L4 specific (Use L4 define ADC_RESOLUTION_12B).
- Changed setting of Init.EOCSelection toADC_EOC_SINGLE_CONV for L4.
- Added call to ADC_MultiModeTypeDef as this is done on a STM32Cube
generated project too.
- Clean up: Configuration of ADC is done only in ONE function not the same
is done in two functions.
Test is done on PA5 pin of STM32L4Discovery-Kit which is connected to the
DOWN button.
Thanks to mattbrejza for discovering the bug.
This includes file and socket objects, backed by Unix file descriptor.
This improves compatibility with stmhal's uselect (and convenience of
use), though not completely: return value from poll.poll() is still
raw file descriptor.
That apparently will only help folks who read the docs on how to disable,
but could use a quick reminder straight in boot.py. For the developers,
it's important to have debug logging enabled in development branch
(master).
This goes bit against websocket nature (message-based communication),
as it ignores boundaries bertween messages, but may be very practical
to do simple things with websockets.
Name recv() based a "simplistic", as it can't work robustly in every
environment. All this is to let people concentreate on proper, read()-
based one (and to turn recv() based into a "negative showcase",
explaining what are the pitfalls of such approach).
In the sense that while GET_FILE transfers its data, REPL still works.
This is done by requiring client to send 1-byte block before WebREPL
server transfers next block of data.
md5 is calculated over the entire file, except first 4 bytes, which contain
flash parameters and may be changed by flashing tool or MicroPython flash
auto-config.
These macros are broken and are anyway unused on these two ports. If they
are ever needed in the future then their implementation can be taken from
either stmhal (working macros in mpconfigport.h) or esp8266 (functions).
Using __errno() function, and redirect it to use mp_stream_errno from
stream module. This is pre-requisite for integrating with 3rd-party libs,
like BerkeleyDB.
When compiling with msys2's gcc there's no need to apply the binary fmode
so adjust the Makefile to reflect that.
When compiling with mingw we need to include malloc.h since there is no
alloca.h, and the 64bit detection in mpconfigport.h needs some adjustment.
To filter out even prototypes of mp_stream_posix_*() functions, which
require POSIX types like ssize_t & off_t, which may be not available in
some ports.
Helpful when porting existing C libraries to MicroPython. abort()ing in
embedded environment isn't a good idea, so when compiling such library,
-Dabort=abort_ option can be given to redirect standard abort() to this
"safe" version.
The configuration bits for the UART register were wrong and the parity
couldn't be enabled, because the exist_parity member hasn't been updated. I
took this ESP8266 register description (http://esp8266.ru/esp8266-uart-reg/)
as reference.
Verification has been done with a logic analyzer.
The idea behind decrease is: bytecode and other static data is also kept on
heap, and can easily become half of heap, then setting threshold to half of
heap will have null effect - GC will happen on complete heap exhaustion like
before. But exactly in such config maintaining heap defragmented is very
important, so lower threshold to accommodate that.
This is a fix for https://github.com/micropython/micropython/issues/2209:
by default a file created using open() uses text translation mode so writing
\n to it will result in the file having \r\n. This is obviously problematic
for binary .mpy files, so provide functions for setting the open mode
and use binary mode in mpy-cross' main().
Something like:
if foo == "bar":
will be always false if foo is b"bar". In CPython, warning is issued if
interpreter is started as "python3 -b". In MicroPython,
MICROPY_PY_STR_BYTES_CMP_WARN setting controls it.
Currently, MicroPython runs GC when it could not allocate a block of memory,
which happens when heap is exhausted. However, that policy can't work well
with "inifinity" heaps, e.g. backed by a virtual memory - there will be a
lot of swap thrashing long before VM will be exhausted. Instead, in such
cases "allocation threshold" policy is used: a GC is run after some number of
allocations have been made. Details vary, for example, number or total amount
of allocations can be used, threshold may be self-adjusting based on GC
outcome, etc.
This change implements a simple variant of such policy for MicroPython. Amount
of allocated memory so far is used for threshold, to make it useful to typical
finite-size, and small, heaps as used with MicroPython ports. And such GC policy
is indeed useful for such types of heaps too, as it allows to better control
fragmentation. For example, if a threshold is set to half size of heap, then
for an application which usually makes big number of small allocations, that
will (try to) keep half of heap memory in a nice defragmented state for an
occasional large allocation.
For an application which doesn't exhibit such behavior, there won't be any
visible effects, except for GC running more frequently, which however may
affect performance. To address this, the GC threshold is configurable, and
by default is off so far. It's configured with gc.threshold(amount_in_bytes)
call (can be queries without an argument).
3-arg form:
stream.write(data, offset, length)
2-arg form:
stream.write(data, length)
These allow efficient buffer writing without incurring extra memory
allocation for slicing or creating memoryview() object, what is
important for low-memory ports.
All arguments must be positional. It might be not so bad idea to standardize
on 3-arg form, but 2-arg case would need check and raising an exception
anyway then, so instead it was just made to work.
The minimum thread stack size is set by pthreads (16k bytes) so we must
use that value for our minimum. The stack limit check is also adjusted
to work correctly for 32-bit builds.
Since "read-exactly" stream refactor, where stream.read(N) will read
exactly N bytes (unless EOF), http_server* examples can't any longer do
client_socket.read(4096) and expect to get full request (it will block
on HTTP/1.1 client). Instead, read request line by line, as the HTTP
protocol requires.
Threading support is still very new so stay conservative at this point
and enable threading without the GIL. This requires users to protect
concurrent access of mutatable Python objects (eg lists) with locks at
the Python level (something you should probably do anyway). The
advantage is that there is less of a performance hit for non-threaded
code, because the VM does not need to constantly release/acquire the GIL.
In the future the GIL will be made more efficient. There is also room to
improve the efficiency of non-GIL code by not using mutex's if there is
only one thread active.
Due to the way modern compilers work (allocating space for stack vars once
at tha start of function, and deallocating once on exit from), using
intermediate stack buffer of big size caused blockage of 4K (PATH_MAX)
on stack for the entire duration of MicroPython execution.
This follows source code/header file organization similar to few other
objects, and intended to be used only is special cases, where efficiency/
simplicity matters.
Previously, if there was chain of allocated blocks ending with the last
block of heap, it wasn't included in number of 1/2-block or max block
size stats.
To start with, the critical scripts _boot.py and flashbdev.py are frozen
to improve performance and reduce RAM consumption.
Saves about 1000 bytes of heap RAM for a bare boot with filesystem.
The 16k FreeRTOS heap originally had all TCBs and stacks dynamically
allocated within it (plus semaphores and some other things). Now that
xTaskCreateStatic is used instead of xTaskCreate, the TCBs and stacks
are allocated statically and no longer use any of the FreeRTOS heap.
Therefore, the FreeRTOS stack can be shrunk by the amount that has been
made static. Furthermore, the TCBs and stack that are now static should
be placed in the .rtos_heaps section of RAM because this RAM is treated
specially by the bootloader (the bootloader executes from the first 16k
of RAM and loads the firmware into the section starting after the 16k).
After this patch the FreeRTOS heap (ucHeap) is 7200 bytes. The memory
available for the MicroPython heap is 54936 bytes (including GC overhead).
In VStartSimpleLinkSpawnTask we change xTaskCreate to xTaskCreateStatic
so that the task is created using statically allocated memory for the TCB
and stack.
This means that xTaskCreate function is no longer needed (the static
version is now used exclusively).
This function is no longer used. Having the .boot section attribute
meant that it was included in the firmware regargless of use. Without
this attribute the linker can remove the function.
This allows to statically allocate the TCB (thread control block) and
thread stack in the BSS segment, reducing the need for dynamic memory
allocation.
Now only the bits that really need to be written in assembler are written
in it, otherwise C is used. This means that the assembler code no longer
needs to know about the global state structure which makes it much easier
to maintain.
This is a pristine copy (actually a subset of files) of upstream FreeRTOS
v9.0.0.
Modifications to the previous version of FreeRTOS (v8.1.2) included
addition of __attribute__ ((section (".boot"))) to the following
functions:
pxPortInitialiseStack
prvTaskExitError
prvPortStartFirstTask
xPortStartScheduler
vPortSetupTimerInterrupt
xTaskGenericCreate
vTaskStartScheduler
prvInitialiseTCBVariables
prvInitialiseTaskLists
prvAllocateTCBAndStack
This attribute will need to be reinstated on a case-by-case basis
because some of the above functions are now removed/changed.
SA_SIGINFO allows the signal handler to access more information about
the signal, especially useful in a threaded environment. The extra
information is not currently used but it may prove useful in the future.
GC_EXIT() can cause a pending thread (waiting on the mutex) to be
scheduled right away. This other thread may trigger a garbage
collection. If the pointer to the newly-allocated block (allocated by
the original thread) is not computed before the switch (so it's just left
as a block number) then the block will be wrongly reclaimed.
This patch makes sure the pointer is computed before allowing any thread
switch to occur.
By using a single, global mutex, all memory-related functions (alloc,
free, realloc, collect, etc) are made thread safe. This means that only
one thread can be in such a function at any one time.
The linker flag --gc-sections is not available on the linker used on
Mac OS X which results in an error when linking micropython on Mac OS X.
Therefore move this option to the LDFLAGS_ARCH variable on non Darwin
systems. According to http://stackoverflow.com/a/17710056 the equivalent
to --gc-sections is -dead_strip thus this option is used for the
LDFLAGS_ARCH on Darwin systems.
In particular, the WeMOS D1 Mini board comes with a shield that has a
64x48 OLED display. This patch makes it display properly, with the upper
left pixel being at (0, 0) and not (32, 0).
I tried to do this with the configuration commands, but there doesn't
seem to be a command that would set the column offset (there is one for
the line offset, though).
gcc 6.1.1 warns when indentation is misleading, and in this case the
formatting of the code really is misleading. So adjust the formatting
to be clear of the meaning of the code.
Storing a chain of pbuf was an original design of @pfalcon's lwIP socket
module. The problem with storing just one, like modlwip does is that
"peer closed connection" notification is completely asynchronous and out of
band. So, there may be following sequence of actions:
1. pbuf #1 arrives, and stored in a socket.
2. pbuf #2 arrives, and rejected, which causes lwIP to put it into a
queue to re-deliver later.
3. "Peer closed connection" is signaled, and socket is set at such status.
4. pbuf #1 is processed.
5. There's no stored pbufs in teh socket, and socket status is "peer closed
connection", so EOF is returned to a client.
6. pbuf #2 gets redelivered.
Apparently, there's no easy workaround for this, except to queue all
incoming pbufs in a socket. This may lead to increased memory pressure,
as number of pending packets would be regulated only by TCP/IP flow
control, whereas with previous setup lwIP had a global overlook of number
packets waiting for redelivery and could regulate them centrally.
This allows to define an abstract base class which would translate
C-level protocol to Python method calls, and any subclass inheriting
from it will support this feature. This in particular actually enables
recently introduced machine.PinBase class.
Allows to translate C-level pin API to Python-level pin API. In other
words, allows to implement a pin class and Python which will be usable
for efficient C-coded algorithms, like bitbanging SPI/I2C, time_pulse,
etc.
When built for Linux, libffi includes very bloated and workaround exec-alloc
implementation required to work around SELinux and other "sekuritee" features
which real people don't use. MicroPython has own alloc-exec implementation,
used to alloc memory for @micropython.native code. With this option enabled,
uPy's implementation will override libffi's. This saves 11K on x86_64 (and
that accounts for more than half of the libffi code size).
TODO: Possibly, we want to refactor this option to allow either use uPy's
implementation even for libffi, or allow to use libffi's implementation even
for uPy.
This actually saves "only" 6K for x86_64 build, as we're still more or less
careful to #ifdef unneeded code. But relying on --gc-sections in a "lazy"
manner would allow to make #ifdef'ing less pervasive (not suggested right
away, but an option for the future).
The time stamp is taken from the RTC for all newly generated
or changed files. RTC must be maintained separately.
The dummy time stamp of Jan 1, 2000 is set in vfs.stat() for the
root directory, avoiding invalid time values.
MicroPython own readline implementation is superior now by providing
automatic indentation and completion (completion for GNU Readline was
never implemented). MICROPY_USE_READLINE=2 also wasn't build for a long
time and probably broken.
If GNU Readline is still beneficial for some cases, it can be achieved
with external wrappers like "rlwrap" (there will be the same level of
functionality, as again, there never was deep integration, like completion
support).
That's arbitrary restriction, in case of embedding, a source file path may
be absolute. For the purpose of filtering out system includes, checking
for ".c" suffix is enough.
From https://github.com/pfalcon/berkeley-db-1.xx, which so far contains
pristine 1.85, but will get patches and compile warning fixes going
forward.
Berkeley DB 1.xx is BSD-licensed, and will form the basis of "btree"
simple database module.
Docs are now by default rebuilt from scratch, as required to build
conditionalized (i.e. using only:: directive) docs across different
output types. We have pretty small docset, so that's still rather fast.
However, if that's a concern, incremental rebuilds can be used by
passing "FORCE=" (nothing after =) as a make parameter. This will work
when using the same output type (e.g. only "html").
Based on my experience, there's rather non-zero chance to have an image be
flashed incorrectly. As --verify option is now works well in teh latest
esptool.py, enable it by default.
For modindex_exclude extension, per-port module excludes are also added.
With these changes, it's possible to generate docs for a particular port
devoid of any superfluous and unrelated content, including in indexes and
full-text search - with small caveat: when generating PDF docs after HTML,
or vice-versa cached internal doctree representation (build/*/doctrees/)
must be removed first.
Designed specifically to workaround issues we were facing with generating
multiple conditionalized output docsets from a single master doctree.
Extensions were factored out into a separate project, based on the fact
that many other Sphinx users experience similar or related problems:
https://github.com/pfalcon/sphinx_selective_exclude
Corresponds to the 182f4a8da57 upstream revision.
Assignments of the form "_id = const(value)" are treated as private
(following a similar CPython convention) and code is no longer emitted
for the assignment to a global variable.
See issue #2111.
By design, at wake up from deepsleep, the RTC timer will be reset, but
the data stored in RTC memory will not [1]. Therefore, we have to adjust
delta in RTC memory before going into deepsleep to get almost correct
time after waking up.
[1] http://bbs.espressif.com/viewtopic.php?t=1184#p4082
Instead of calling strlen(), which won't work if there're 32 chars in
returned ESSID. struct bss_info::ssid_len is not documented in SDK API
Guide, but is present in SDK headers since 1.4.0. Just in case, previous
code is left commented.
ESP-SDK system_get_rtc_time() returns uint32 and therefore overflow
about every 7:45h. Let's write the last state of system_get_rtc_time()
in RTC mem and use it to check for overflow. This commit require running
pyb_rtc_get_us_since_2000() at least once within 7 hours to avoid
overflow.
This introductions makes explicit the fact that whenever possible,
the documentation describes full MicroPython functionality, and arbitrary
functions/classes/modules may be missing in a paricular port or build.
This implementation makes use of vfs.stat() and therefore has the same
properties. Known issues for all ports: uos.stat(".") on the top level
returns the error code 22, EINVAL. The same happens with
uos.stat("dirname/") where dirname IS the name of a directory.
The call to stat() returns a 10 element tuple consistent to the os.stat()
call. At the moment, the only relevant information returned are file
type and file size.
Ctrl-C will raise a KeyboardInterrupt and stop the scan (although it will
continue to run in the background, it won't report anything). If
interrupted, and another scan() is started before the old one completes
in the background, then the second scan will fail with an OSError.
Avoid using system libraries, use copies bundled with MicroPython as
submodules (currently affects only libffi, other dependencies either
already used as bundled-only (axtls), or can't be bundled (so far),
like libjni).
Using usual method of virtual method tables. Single virtual method,
ioctl, is defined currently for all operations. This universal and
extensible vtable-based method is also defined as a default MPHAL
GPIO implementation, but a specific port may override it with its
own implementation (e.g. close-ended, but very efficient, e.g. avoiding
virtual method dispatch).
ets_loop_iter processes pending tasks, and tasks are considered lower
priority than interrupts, so tasks shouldn't be processed if interrupts
are disabled.
There appears to be issue signature problem with the PPA package we use,
so workaround it this way for now. Warning: with broken signature, there's
always a possibility that PPA was hacked and ships trojaned binaries.
.mpy files contain the name of the source file that they were compiled
from. This patch adds a way to change this name to an arbitrary string,
specified on the command line with the -s option. The default is to use
the full name of the input filename.
This new -s option is useful to strip off a leading directory name so
that mpy-tool.py can freeze packages.
Disabled by default, enabled in unix port. Need for this method easily
pops up when working with text UI/reporting, and coding workalike
manually again and again counter-productive.
Frozen modules are now stored with extensions and with '/' as path
separator. In other words, frozen modules paths stored as they are
in normal filesystem.
Now frozen modules is treated just as a kind of VFS, and all operations
performed on it correspond to operations on normal filesystem. This allows
to support packages properly, and potentially also data files.
This change also have changes to rework frozen bytecode modules support to
use the same framework, but it's not finished (and actually may not work,
as older adhox handling of any type of frozen modules is removed).
Make dupterm subsystem close a term stream object when EOF or error occurs.
There's no other party than dupterm itself in a better position to do this,
and this is required to properly reclaim stream resources, especially if
multiple dupterm sessions may be established (e.g. as networking
connections).
Adding a very first start section to get people going after flashing.
I tried to condense it to a minimum to avoid as much as possible
redundancy and bloating.
Both read and write operations support variants where either a) a single
call is made to the undelying stream implementation and returned buffer
length may be less than requested, or b) calls are repeated until requested
amount of data is collected, shorter amount is returned only in case of
EOF or error.
These operations are available from the level of C support functions to be
used by other C modules to implementations of Python methods to be used in
user-facing objects.
The rationale of these changes is to allow to write concise and robust
code to work with *blocking* streams of types prone to short reads, like
serial interfaces and sockets. Particular object types may select "exact"
vs "once" types of methods depending on their needs. E.g., for sockets,
revc() and send() methods continue to be "once", while read() and write()
thus converted to "exactly" versions.
These changes don't affect non-blocking handling, e.g. trying "exact"
method on the non-blocking socket will return as much data as available
without blocking. No data available is continued to be signaled as None
return value to read() and write().
From the point of view of CPython compatibility, this model is a cross
between its io.RawIOBase and io.BufferedIOBase abstract classes. For
blocking streams, it works as io.BufferedIOBase model (guaranteeing
lack of short reads/writes), while for non-blocking - as io.RawIOBase,
returning None in case of lack of data (instead of raising expensive
exception, as required by io.BufferedIOBase). Such a cross-behavior
should be optimal for MicroPython needs.
To use frozen bytecode make a subdirectory under the unix/ directory
(eg frozen/), put .py files there, then run:
make FROZEN_MPY_DIR=frozen
Be sure to build from scratch. The .py files will then be available for
importing.
When an mpy file is frozen it must know the values of certain
configuration variables. This patch provides an explicit check in the
generated C file that the configuration variables are what they are
supposed to be.
That one was missing in the module, even if it was available in the
vfs object. The change consist of adding the name and preparing the
call to the underlying vfs module, similar to what was already
implemented e.g. for remove.
Rename is useful by itself, or for instance for a safe file replace,
consisting of the sequence:
write to a temp file
delete the original file
rename the temp file to the original file's name
Calling it from lwIP accept callback will lead incorrect functioning
and/or packet leaks if Python callback has any networking calls, due
to lwIP non-reentrancy. So, instead schedule "poll" callback to do
that, which will be called by lwIP when it does not perform networking
activities. "Poll" callback is called infrequently though (docs say
every 0.5s by default), so for better performance, lwIP needs to be
patched to call poll callback soon after accept callback, but when
current packet is already processed.
For example, the following code now works with a file on the SD card:
f = open('test', 'rb') # test must be 1024 bytes or more in size
f.seek(511)
f.read(513)
Also works for writing.
Fixes issue #1863.
Address printed was truncated anyway and in general confusing to outsider.
A line which dumps it is still left in the source, commented, for peculiar
cases when it may be needed (e.g. when running under debugger).
In some compliation enviroments (e.g. mbed online compiler) with
strict standards compliance, <math.h> does not define constants such
as M_PI. Provide fallback definitions of M_E and M_PI where needed.
If an OSError is raised with an integer argument, and that integer
corresponds to an errno, then the string for the errno is used as the
argument to the exception, instead of the integer. Only works if
the uerrno module is enabled.
These are typical consumers of large chunks of memory, so it's useful to
see at least their number (how much memory isn't clearly shown, as the data
for these objects is allocated elsewhere).
These symbols are still defined in terms of the system Exxx symbols, and
can be switched to internal numeric definitions at a later stage.
Note that extmod/modlwip still uses many system Exxx symbols.
Effect measured on esp8266 port:
Before:
>>> pystone_lowmem.main(10000)
Pystone(1.2) time for 10000 passes = 44214 ms
This machine benchmarks at 226 pystones/second
>>> pystone_lowmem.main(10000)
Pystone(1.2) time for 10000 passes = 44246 ms
This machine benchmarks at 226 pystones/second
After:
>>> pystone_lowmem.main(10000)
Pystone(1.2) time for 10000 passes = 44343ms
This machine benchmarks at 225 pystones/second
>>> pystone_lowmem.main(10000)
Pystone(1.2) time for 10000 passes = 44376ms
This machine benchmarks at 225 pystones/second
vstr_null_terminated_str is almost certainly a vstr finalization operation,
so it should add the requested NUL byte, and not try to pre-allocate more.
The previous implementation could actually allocate double of the buffer
size.
Previous to this patch bignum division and modulo would temporarily
modify the RHS argument to the operation (eg x/y would modify y), but on
return the RHS would be restored to its original value. This is not
allowed because arguments to binary operations are const, and in
particular might live in ROM. The modification was to normalise the arg
(and then unnormalise before returning), and this patch makes it so the
normalisation is done on the fly and the arg is now accessed as read-only.
This change doesn't increase the order complexity of the operation, and
actually reduces code size.
This is kind of compensation for 4K FatFs buffer size which is eaten away
from it on FS mount. This should still leave enough of networking ("OS")
heap.
When DIG_SIZE=32, a uint32_t is used to store limbs, and no normalisation
is needed because the MSB is already set, then there will be left and
right shifts (in C) by 32 of a 32-bit variable, leading to undefined
behaviour. This patch fixes this bug.
Also do that only for the first word in a line. The idea is that when you
start up interpreter, high chance that you want to do an import. With this
patch, this can be achieved with "i<tab>".
The type is an unsigned 8-bit value, since bytes objects are exactly
that. And it's also sensible for unicode strings to return unsigned
values when accessed in a byte-wise manner (CPython does not allow this).
It interferes with running testsuite. master branch should be optimized for
development, so any features which interfere with that, would need to be
disabled by default.
The main thing is to change the DMA code in a way that the structure
DMA_Stream_TypeDef (which is similar to DMA_Channel_TypeDef on stm32l4)
is no longer used outside of dma.c, as this structure only exists for the
F4 series. Therefore I introduced a new structure (dma_descr_t) which
handles all DMA specific stuff for configuration. Further the periphery
(spi, i2c, sdcard, dac) does not need to know the internals of the dma.
Useful for testing fragmentation issues in OS heap. E.g. freemem() may
report large amount, but is it possible to actually allocate block of
a given size? Issue malloc() (followed by free()) to find out.
Previously, "import _io" worked on both CPython and MicroPython (essentially
by a chance on CPython, as there's not guarantee that its contents will stay
the same across versions), but as the module was renamed to uio, need to use
more robust import sequence for compatibility.
A standard I2C address is 7 bits but addresses 0b0000xxx and 0b1111xxx
are reserved. The scan() method is changed to reflect this, along with
the docs.
If there's no port_config.py file, or it lacks WEBREPL_PASS variable,
"initial setup mode" will be entered on first WebREPLconnection. User
will be asked for password, which will be written to
port_config.WEBREPL_PASS, and system restarted to work in normal mode
with password active.
While just a websocket is enough for handling terminal part of WebREPL,
handling file transfer operations requires demultiplexing and acting
upon, which is encapsulated in _webrepl class provided by this module,
which wraps a websocket object.
The current install command uses the flag -D which is specific to the
install command from GNU coreutils, but isn't available for the BSD
version. This solution uses the -d flag which should be commonly
available to create the target directory. Afterwards the target files
are installed to this directory seperately.
Changes are:
- added OneWireError exception and used where errors can occur
- renamed read/write functions to use same names as C _onewire funcs
- read_bytes is now read, write_bytes is now write
- add ability to read/write DS18B20 scratch pad
- rename start_measure to convert_temp (since that's what it does)
- rename get_temp to read_temp (consistency with other read names)
- removed test function
All functionality of the pyb module is available in other modules, like
time, machine and os. The only outstanding function, info(), is
(temporarily) moved to the esp module and the pyb module is removed.
Even the modules whose names don't start with "u" prefix are micro-ified
anyway, i.e. provide only subset of CPython's functionality (and sometimes
extensions to it). So, it doesn't make much sense to devide them by
criteria of having/not having "u" prefix.
The C standard says that left-shifting a signed value (on the LHS of the
operator) is undefined. So we cast to an unsigned integer before the
shift. gcc does not issue a warning about this, but clang does.
All Flash sans firmware at the beginning and 16K SDK param block at the
end is used for filesystem (and that's calculated depending on the Flash
size).
Builds have been broken since reworking autogeneration in c618f91 and
related, this gets fixed here by applying similar qstr generation logic
for the msvc builds: c files are only preprocessed when changed (or not
yet preprocessed) and the concatenated output is fed into makeqstrdefs.py.
To speed up this process, the concatenated output is already filtered to
contain only lines which makeqstrdefs really needs: this makes the qstr
generation stage about twice as fast (checked on different machines).
- msvc preprocessor output contains full paths with backslashes so the
':' and '\' characters needs to be erased from the paths as well
- use a regex for extraction of filenames from preprocessor output so it
can handle both gcc and msvc preprocessor output, and spaces in paths
(also thanks to a PR from @travnicekivo for part of that regex)
- os.rename will fail on windows if the destination file already exists,
so simply attempt to delete that file first
Several ports use identical code for the 1-argument form of the builtin
help function. Move this code to a library function to allow easier
re-use by ports.
Most pin I/O can be done just knowing the pin number as a simple
integer, and it's more efficient this way (code size, speed) because it
doesn't require a memory lookup to get the pin id from the pin object.
If the full pin object is needed then it can be easily looked up in the
pin table.
Qstr auto-generation is now much faster so this optimisation for start-up
time is no longer needed. And passing "-s -S" breaks some things, like
stmhal's "make deploy".
The L4 MCU supports 40 Events/IRQs lines of the type configurable and
direct. But this L4 port only supports configurable line types which are
already supported by uPy. For details see page 330 of RM0351, Rev 1.
The USB_FS_WAKUP event is a direct type and there is no support for it.
__GPIOI_CLK_ENABLE is defined in hal/l4/inc/Legacy/stm32_hal_legacy.h
as __HAL_RCC_GPIOI_CLK_ENABLE, and that latter macro is not defined
anywhere else (because the L4 does not have port GPIOI). So the test
for GPIOI is needed, along with the test for the CLK_ENABLE macro.
Use the machine.deepsleep() function to enter the sleep mode. Use the
RTC to configure the alarm to wake the device.
Basic use is the following:
import machine
# configure RTC's ALARM0 to wake device from deep sleep
rtc = machine.RTC()
rtc.irq(trigger=rtc.ALARM0, wake=machine.DEEPSLEEP)
# do other things
# ...
# set ALARM0's alarm to wake after 10 seconds
rtc.alarm(rtc.ALARM0, 10000)
# enter deep-sleep state (system is reset upon waking)
machine.deepsleep()
To detect if the system woke from a deep sleep use:
if machine.reset_cause() == machine.DEEPSLEEP_RESET:
print('woke from deep sleep')
Flash size as seen by vendor SDK doesn't depend on real size, but rather on
a particular value in firmware header, as put there by flash tool. That means
it's user responsibility to know what flash size a particular device has, and
specify correct parameters during flashing. That's not end user friendly
however, so we try to make it "flash and play" by detecting real size vs
from-header size mismatch, and correct the header accordingly.
E.g. for stmhal, accumulated preprocessed output may grow large due to
bloated vendor headers, and then reprocessing tens of megabytes on each
build make take couple of seconds on fast hardware (=> potentially dozens
of seconds on slow hardware). So instead, split once after each change,
and only cat repetitively (guaranteed to be fast, as there're thousands
of lines involved at most).
If make -B is run, the rule is run with $? empty. Extract fron all file in
this case. But this gets fragile, really "make clean" should be used instead
with such build complexity.
When there're C files to be (re)compiled, they're all passed first to
preprocessor. QSTR references are extracted from preprocessed output and
split per original C file. Then all available qstr files (including those
generated previously) are catenated together. Only if the resulting content
has changed, the output file is written (causing almost global rebuild
to pick up potentially renumbered qstr's). Otherwise, it's not updated
to not cause spurious rebuilds. Related make rules are split to minimize
amount of commands executed in the interim case (when some C files were
updated, but no qstrs were changed).
A port which uses lib/utils/pyexec.c but which does not enable garbage
collection should not need to implement the gc_collect function.
This patch also moves the gc_collect call to after printing the qstr
info. Since qstrs cannot be collected it should not make any difference
to the printed statistics.
To use: .setsockopt(SOL_SOCKET, 20, lambda sock: print(sock)). There's a
single underlying callback slot. For normal sockets, it serves as data
received callback, for listening sockets - connection arrived callback.
L4 does not have UART6, and has similar registers to the F7.
Original patch was authored by Tobias Badertscher / @tobbad, but it was
reworked to split UART edits from USB edits.
64-bit integer division brings a dependency on library functions. It is
avoided here by dividing fck and baud by a common divisior. The error
is the better (1/(2*0x300)) as with 64 bit division (1/(0x300)).
These files come from STM32Cube_FW_L4_V1.3.0, with Windows line endings
converted to unix. Only basic HAL files are added. In addition the QSPI
support is included to support later external QSPI flash as mass storage.
- any architecture may explicitely build with qstring make
QSTR_AUTOGEN_DISABLE=1 autogeneration disabled and provide its
own list of qstrings by the standard
mechanisms (qstrdefsport.h).
Note this still needs some work: currently all source files are always
preprocessed no matter which one actually changed, moreover that happens
file by file without any parallellism so builds are painstakingly slow.
- add template rule that converts a specified source file into a qstring file
- add special rule for generating a central header that contains all
extracted/autogenerated strings - defined by QSTR_DEFS_COLLECTED
variable. Each platform appends a list of sources that may contain
qstrings into a new build variable: SRC_QSTR. Any autogenerated
prerequisities are should be appened to SRC_QSTR_AUTO_DEPS variable.
- remove most qstrings from py/qstrdefs, keep only qstrings that
contain special characters - these cannot be easily detected in the
sources without additional annotations
- remove most manual qstrdefs, use qstrdef autogen for: py, cc3200,
stmhal, teensy, unix, windows, pic16bit:
- remove all micropython generic qstrdefs except for the special strings that contain special characters (e.g. /,+,<,> etc.)
- remove all port specific qstrdefs except for special strings
- append sources for qstr generation in platform makefiles (SRC_QSTR)
This script will search for patterns of the form Q(...) and generate a
list of them.
The original code by Pavel Moravec has been significantly simplified to
remove the part that searched for C preprocessor directives (eg #if).
This is because all source is now run through CPP before being fed into
this script.
Small hash tables (eg those used in user class instances that only have a
few members) now only use the minimum amount of memory necessary to hold
the key/value pairs. This can reduce performance for instances that have
many members (because then there are many reallocations/rehashings of the
table), but helps to conserve memory.
See issue #1760.
"" is the correct name of the root directory when mounting a device there
(as opposed to "/"). One can now do os.listdir('/') and open('/abc'), as
well as os.listdir() and open('abc').
Most grammar rules can optimise to the identity if they only have a single
argument, saving a lot of RAM building the parse tree. Previous to this
patch, whether a given grammar rule could be optimised was defined (mostly
implicitly) by a complicated set of logic rules. With this patch the
definition is always specified explicitly by using "and_ident" in the rule
definition in the grammar. This simplifies the logic of the parser,
making it a bit smaller and faster. RAM usage in unaffected.
The config variable MICROPY_MODULE_FROZEN is now made of two separate
parts: MICROPY_MODULE_FROZEN_STR and MICROPY_MODULE_FROZEN_MPY. This
allows to have none, either or both of frozen strings and frozen mpy
files (aka frozen bytecode).
They are sugar for marking function as generator, "yield from"
and pep492 python "semantically equivalents" respectively.
@dpgeorge was the original author of this patch, but @pohmelie made
changes to implement `async for` and `async with`.
The idea is that if dupterm object can handle exceptions, it will handle
them itself. Otherwise, object state can be compromised and it's better
to terminate dupterm session. For example, disconnected socket will keep
throwing exceptions and dump messages about that.
The idea is that if dupterm object can handle exceptions, it will handle
them itself. Otherwise, object state can be compromised and it's better
to terminate dupterm session. For example, disconnected socket will keep
throwing exceptions and dump messages about that.
nlr_pop must be called if no exception was raised.
Also, return value of these callback helpers is made void because ther
is (currently) no use for it.
Main entry point is _boot.py which checks whether FAT FS in flash mountable,
and if so, mounts it. Otherwise, it checks if flash is empty, and if so,
performs initial module setup: makes FAT FS, configures default AP name,
etc. As a last option, if flash is not empty, and could not be mounted,
it means filesystem corruption, and warning message with instructions is
printed in an infinite loop.
When lwIP creates a incoming connection socket of a listen socket, it
sets its recv callback to one which discards incoming data. We set
proper callback only in accept() call, when we allocate Python-level
socket where we can queue incoming data. So, in lwIP accept callback
be sure to set recv callback to one which tells lwIP to not discard
incoming data.
Upon start-up, _boot module is executed from frozen files to do early
initialization, e.g. create and mount the flash filesystem. Then
"boot.py" is executed if it exists in the filesystem. Finally, "main.py"
is executed if exists to allow start-on-boot user applications.
This allows a user to make a custom boot file or startup application
without recompiling the firmware, while letting to do early initialization
in Python code.
Based on RFC https://github.com/micropython/micropython/issues/1955.
Will call underlying C virtual methods of stream interface. This isn't
intended to be added to every stream object (it's not in CPython), but
is convenient way to expose extra operation on Python side without
adding bunch of Python-level methods.
This is strange asymmetry which is sometimes needed, e.g. for WebREPL: we
want to process only available input and no more; but for output, we want
to get rid of all of it, because there's no other place to buffer/store
it. This asymmetry is akin to CPython's asyncio asymmetry, where reads are
asynchronous, but writes are synchronous (asyncio doesn't expect them to
block, instead expects there to be (unlimited) buffering for any sync write
to completely immediately).
With .rodata being in FlashROM now, gap can be much smaller now. InstRAM
can be max 32K, and with segment headers, that already makes it more than
32K. Then there's some .data still, and the next Flash page boundary is
0x9000. That figure should be more or less future-proof.
TODO: Refactor makeimg to take FlashROM segment offset from file name.
This was originally used for non-event based REPL processing. Then it
was unused when event-based processing was activated. But now that event
based is disabled, and non-event based is back, there has been new ring
buffer code to process the chars.
Event-driven loop (push-style) is still supported and default (controlled
by MICROPY_REPL_EVENT_DRIVEN setting, as expected).
Dedicated loop worked even without adding ets_loop_iter(), though that
needs to be revisited later.
Before this change, if REPL blocked executing some code, it was possible
to still input new statememts and excuting them, all leading to weird,
and portentially dangerous interaction.
TODO: Current implementation may have issues processing input accumulated
while REPL was blocked.
The idea is following: underlying interrupt-driven or push-style data source
signals that more data is available for dupterm processing via call to
mp_hal_signal_dupterm_input(). This triggers a task which pumps data between
actual dupterm object (which may perform additional processing on data from
low-level data source) and input ring buffer.
But now it's generic ring buffer implemented via ringbuf.h, and is intended
for any type of input, including dupterm's, not just UART. The general
process work like this: an interrupt-driven input source puts data into
input_buf, and then signals new data available via call to
mp_hal_signal_input().
Features inline get/put operations for the highest performance. Locking
is not part of implementation, operation should be wrapped with locking
externally as needed.
When taking the logarithm of the float to determine the exponent, there
are some edge cases that finish the log loop too large. Eg for an
input value of 1e32-epsilon, this is actually less than 1e32 from the
log-loop table and finishes as 10.0e31 when it should be 1.0e32. It
is thus rendered as :e32 (: comes after 9 in ascii).
There was the same problem with numbers less than 1.
See https://github.com/micropython/micropython/issues/1736 for the
list of complications. This workaround instead of duplicating REPL
to another stream, switches to it, because read(STDIN) we use otherwise
is blocking call, so it and custom REPL stream can't be used together.
PWM implementation uses a timer and interrupts (FRC1), taken from
Espressif's/NodeMCU's implementation and adapted for our use.
8 channels are supported, on pins 0, 2, 4, 5, 12, 13, 14, 15.
Usage:
import machine
pwm0 = machine.PWM(machine.Pin(0))
pwm0.freq(1000)
pwm0.duty(500)
Frequency is shared (ie the same) for all channels. Frequency is
between 1 and 1000. Duty is between 0 and 1023.
Per POSIX http://pubs.opengroup.org/onlinepubs/9699919799/functions/send.html :
"If space is not available at the sending socket to hold the message to be
transmitted, and the socket file descriptor does not have O_NONBLOCK set,
send() shall block until space is available. If space is not available at the
sending socket to hold the message to be transmitted, and the socket file
descriptor does have O_NONBLOCK set, send() shall fail [with EAGAIN]."
Previous to this patch, the "**b" in "a**b" had its own parse node with
just one item (the "b"). Now, the "b" is just the last element of the
power parse-node. This saves (a tiny bit of) RAM when compiling.
Previous to this patch, all qemu-arm tests were running in the same
session, and global variables could be left over from the previous test.
This patch makes it so that the heap and runtime are reinitialised at
the start of each test.
All tests in basics/ directory can now run and pass using 64-bit unix
port with only a 16k heap (./run-tests --heapsize 16k). Tests in this
directory should remain small so they can be used for ports with a
small heap.
Passing an mp_uint_t to a %d printf format is incorrect for builds where
mp_uint_t is larger than word size (eg a nanboxing build). This patch
adds some simple casting to int in these cases.
The code is based on Damien George's implementation for esp8266 port,
avoids use of global variables and associated re-entrancy issues, and
fixes returning stale data in some cases.
This implementation provides the same interface and uses the same
datastructures as used by BootROM, i.e. is a drop-in replacement for it.
But it offers one advantage: it allows to run single iteration of
event-pumping loop.
Original BootROM function are renamed, prefixed with underscore. There's
a switch which allows to use forward calls to them, for compatibility
testing.
The implementation also includes workarounds for hardware timer handler,
and these workarounds may be SDK version specific.
Allows to set (in case keyword args are given) or query (in case a single
"symbolic keyword" (a string, value is the same as keyword)) arbitrary
interface paramters (i.e. extensible and adaptable to various hardware).
Example usage:
ap_if = network.WLAN(1)
ap_if.config(essid="MicroPython on Air")
print(ap_if.config("essid"))
Allows to up/down interface when called with a boolean, or query current
state if called without args. This per-interface method is intended to
supersede adhoc network.wifi_mode() function.
On ESP8266, there're 2 different interfaces. Pretending it's not the case
desn't make sense. So, network.WLAN() now takes interface id, and returns
interface object. Individual operations are then methods of interface
object. Some operations require i/f of specific type (e.g. .connect()
makes sense only for STA), other are defined for any (e.g. .ifconfig(),
.mac()).
Building in 32-bit mode was only to reduce binary size on 64-bit machines
and is otherwise not needed. Having it forced to 32-bit meant an
unnecessary dependency on 32-bit libraries that is now removed.
It can happen that a socket gets closed while the pbuf is not completely
drained by the application. It can also happen that a new pbuf comes in
via the recv callback, and then a "peer closed" event comes via the same
callback (pbuf=NULL) before the previous event has been handled. In both
cases the socket is closed but there is remaining data. This patch makes
sure such data is passed to the application.
If the heap is locked, or memory allocation fails, then calling a bound
method will still succeed by allocating the argument state on the stack.
The new code also allocates less stack than before if less than 4
arguments are passed. It's also a tiny bit smaller in code size.
This was done as part of the ESA project.
tools/pydfu.py is now the recommended way of deploying a DFU file. Old
behaviour of dfu-util can be obtained by passing USE_PYDFU=0 when invoking
make.
The main README.md file has been updated to reflect this change.
None of the other ports do, since introduction of mp_state_ctx_t. In
the case of current esp8266 port, heap is inside BSS, so scanning it
picked up a lot of dead pointers.
NameError may either include offending name or not. Unfortunately, this
change makes test float-dependent. And using integer division leads to
different error message than CPython.
Enabling standard assert() (by removing -DNDEBUG) produces non-bootable
binary (because all messages go to .rodata which silently overflows).
So, for once-off debugging, have a custom _assert().
Initialize RTC period coefficients, etc. if RTC RAM doesn't contain valid
values. time.time() then will return number of seconds since power-on, unless
set to different timebase.
This reuses MEM_MAGIC for the purpose beyond its initial purpose (but the whole
modpybrtc.c need to be eventually reworked completely anyway).
For some reason, Travis now has Google Chrome PPA included in the builder
image, that lacks i386 arch, that leads to apt-get update error. So, ignore
it (this is not ideal as may lead to actual repo update failures to be missed,
leading to installation of old package, leading to weird errors; let's keep
that in mind).
This new compile-time option allows to make the bytecode compiler
configurable at runtime by setting the fields in the mp_dynamic_compiler
structure. By using this feature, the compiler can generate bytecode
that targets any MicroPython runtime/VM, regardless of the host and
target compile-time settings.
Options so far that fall under this dynamic setting are:
- maximum number of bits that a small int can hold;
- whether caching of lookups is used in the bytecode;
- whether to use unicode strings or not (lexer behaviour differs, and
therefore generated string constants differ).
Reduces code size by 112 bytes on Thumb2 arch, and makes assembler faster
because comparison can be a simple equals instead of a string compare.
Not all ops have been converted, only those that were simple to convert
and reduced code size.
The chunks of memory that the parser allocates contain parse nodes and
are pointed to from many places, so these chunks cannot be relocated
by the memory manager. This patch makes it so that when a chunk is
shrunk to fit, it is not relocated.
Properly calculate the period and the prescaler, this now allows to
set the PWM frequency down to 5Hz. Make Timer IDs go from 0 to 3.
Add the trigger definitions for the channel IRQ.
These can be used to insert arbitrary checks, polling, etc into the VM.
They are left general because the VM is a highly tuned loop and it should
be up to a given port how that port wants to modify the VM internals.
One common use would be to insert a polling check, but only done after
a certain number of opcodes were executed, so as not to slow down the VM
too much. For example:
#define MICROPY_VM_HOOK_COUNT (30)
#define MICROPY_VM_HOOK_INIT static uint vm_hook_divisor = MICROPY_VM_HOOK_COUNT
#define MICROPY_VM_HOOK_POLL if (--vm_hook_divisor == 0) { \
vm_hook_divisor = MICROPY_VM_HOOK_COUNT;
extern void vm_hook_function(void);
vm_hook_function();
}
#define MICROPY_VM_HOOK_LOOP MICROPY_VM_HOOK_POLL
#define MICROPY_VM_HOOK_RETURN MICROPY_VM_HOOK_POLL
If None was returned for such requests (which likely means that user simply
didn't handle them), it means successful init and default sector size of 512
bytes respectively. This makes only BP_IOCTL_SEC_COUNT a mandatory request,
and thus re-establishes parity with old interface, where only .count() is
mandatory().
This implements OO interface based on existing fsusermount code and with
minimal changes to it, to serve as a proof of concept of OO interface.
Examle of usage:
bdev = RAMFS(48)
uos.VfsFat.mkfs(bdev)
vfs = uos.VfsFat(bdev, "/ramdisk")
f = vfs.open("foo", "w")
f.write("hello!")
f.close()
This patch adds support to fsusermount for multiple block devices
(instead of just one). The maximum allowed is fixed at compile time by
the size of the fs_user_mount array accessed via MP_STATE_PORT, which
in turn is set by MICROPY_FATFS_VOLUMES.
With this patch, stmhal (which is still tightly coupled to fsusermount)
is also modified to support mounting multiple devices And the flash and
SD card are now just two block devices that are mounted at start up if
they exist (and they have special native code to make them more
efficient).
You can now create (singleton) objects representing the flash and SD
card, using:
flash = pyb.Flash()
sdcard = pyb.SDCard()
These objects provide the block protocol.
This enables MICROPY_HW_HAS_FLASH which got missed.
The HW has UART2 on the 401 connected to the STLINK procesor
which exposes it as USB serial. This connects that up so that
you can get a REPL using the USB serial.
If MICROPY_FATFS_MAX_SS is defined to power of 2 value between 1024 and
4096, support for dynamic sector size in FatFs will be enabled. Note
that FatFs reserves static buffer of MICROPY_FATFS_MAX_SS size for each
filesystem in use, so that value should be set sparingly.
Initial patch provided by @pfalcon.
The new block protocol is:
- readblocks(self, n, buf)
- writeblocks(self, n, buf)
- ioctl(self, cmd, arg)
The new ioctl method handles the old sync and count methods, as well as
a new "get sector size" method.
The old protocol is still supported, and used if the device doesn't have
the ioctl method.
Per the previously discussed plan. mount() still stays backward-compatible,
and new mkfs() is rought and takes more args than needed. But is a step
in a forward direction.
This allows you to pass a number (being an address) to a viper function
that expects a pointer, and also allows casting of integers to pointers
within viper functions.
This was actually the original behaviour, but it regressed due to native
type identifiers being promoted to 4 bits in width.
If MICROPY_VFS_FAT is defined, mp_type_fileio & mp_type_textio won't be
defined, as these may be alredy defined elsewhere. The idea is to have
compartmentalized VFS FatFs class, which can work in parallel with some
other "main" filesystem. E.g., for unix port, mp_type_fileio, etc. will
be defined for the main POSIX filesystem, while stmhal/file.c will be
a self-contained VFS file class.
Move definition of mp_builtin_open_obj to a separate module, then file.c
becomes more or less compartmentalized FatFs file class, which can be used
together with file class implementations for other (V)FSes.
This function computes (x**y)%z in an efficient way. For large arguments
this operation is otherwise not computable by doing x**y and then %z.
It's currently not used, but is added in case it's useful one day.
For these 3 bitwise operations there are now fast functions for
positive-only arguments, and general functions for arbitrary sign
arguments (the fast functions are the existing implementation).
By default the fast functions are not used (to save space) and instead
the general functions are used for all operations.
Enable MICROPY_OPT_MPZ_BITWISE to use the fast functions for positive
arguments.
Before this patch, the native types for uint and ptr/ptr8/ptr16/ptr32
all overlapped and it was possible to make a mistake in casting. Now,
these types are all separate and any coding mistakes will be raised
as runtime errors.
Eg: '{:{}}'.format(123, '>20')
@pohmelie was the original author of this patch, but @dpgeorge made
significant changes to reduce code size and improve efficiency.
Previous to this patch the DMA was setup and then the I2C address sent.
If the I2C address sending failed (eg no I2C device on the bus) then the
DMA was left in an inconsistent state.
This patch moves the DMA setup to after a successful sending of the I2C
address(es).
See issue #1765.
USB CDC no longer needs TIM3 (which was originally used for LED(4) PWM)
and so TIM3 has been freed for general purpose use by the user. Hence
LED(4) lost its PWM capabilities.
This patch reinstates the PWM capabilities using a semi-generic piece
of code which allows to configure a timer and PWM channel to use for any
LED. But the PWM capability is only configured if the LED is set to an
intensity between 1 and 254 (ie only when needed). In that case the
relevant timer is configured for PWM. It's up to the user to make sure
the timers are not used if PWM is active.
This patch also makes sure that PWM LEDs are turned off using standard
GPIO when calling led.off() or led.intensity(0), instead of just setting
the PWM counter to zero.
TIM3 is no longer used by USB CDC for triggering outgoing data, so we
can now make it available to the user.
PWM fading on LED(4) is now gone, but will be reinstated in a new way.
Previous to this patch the USB CDC driver used TIM3 to trigger the
sending of outgoing data over USB serial. This patch changes the
behaviour so that the USB SOF interrupt is used to trigger the processing
of the sending. This reduces latency and increases bandwidth of outgoing
data.
Thanks to Martin Fischer, aka @hoihu, for the idea and initial prototype.
See PR #1713.
For single prec, exponents never get larger than about 37. For double
prec, exponents can be larger than 99 and need 3 bytes to format. This
patch makes the number of bytes needed configurable.
Addresses issue #1772.
Calling it from mp_init() is too late for some ports (like Unix), and leads
to incomplete stack frame being captured, with following GC issues. So, now
each port should call mp_stack_ctrl_init() on its own, ASAP after startup,
and taking special precautions so it really was called before stack variables
get allocated (because if such variable with a pointer is missed, it may lead
to over-collecting (typical symptom is segfaulting)).
When using newer glibc's the compiler automatically sets
_FORTIFY_SOURCE when building with -O1 and this causes
a special inlined version of printf to be declared which
then bypasses our version of printf.
MP_BC_NOT was removed and the "not" operation made a proper unary
operator, and the opcode format table needs to be updated to reflect
this change (but actually the change is only cosmetic).
Functions added are:
- randint
- randrange
- choice
- random
- uniform
They are enabled with configuration variable
MICROPY_PY_URANDOM_EXTRA_FUNCS, which is disabled by default. It is
enabled for unix coverage build and stmhal.
SHA1 is used in a number of protocols and algorithm originated 5 years ago
or so, in other words, it's in "wide use", and only newer protocols use
SHA2.
The implementation depends on axTLS enabled. TODO: Make separate config
option specifically for sha1().
micropython.stack_use() returns an integer being the number of bytes used
on the stack.
micropython.heap_lock() and heap_unlock() can be used to prevent the
memory manager from allocating anything on the heap. Calls to these are
allowed to be nested.
This allows FROZEN_DIR=some-directory to be specified on the make
command line, which will then add all of the files contained within
the indicated frozen directory as frozen files in the image.
There is no change in flash/ram usage if not using the feature.
This is especially useful on smaller MCUs (like the 401) which only
has 64K flash file system.
Seedable and reproducible pseudo-random number generator. Implemented
functions are getrandbits(n) (n <= 32) and seed().
The algorithm used is Yasmarang by Ilya Levin:
http://www.literatecode.com/yasmarang
this allows python code to use property(lambda:..., doc=...) idiom.
named versions for the fget, fset and fdel arguments are left out in the
interest of saving space; they are rarely used and easy to enable when
actually needed.
a test case is included.
The first argument to the type.make_new method is naturally a uPy type,
and all uses of this argument cast it directly to a pointer to a type
structure. So it makes sense to just have it a pointer to a type from
the very beginning (and a const pointer at that). This patch makes
such a change, and removes all unnecessary casting to/from mp_obj_t.
This patch changes the type signature of .make_new and .call object method
slots to use size_t for n_args and n_kw (was mp_uint_t. Makes code more
efficient when mp_uint_t is larger than a machine word. Doesn't affect
ports when size_t and mp_uint_t have the same size.
Minimal support code for a Cortex-M CPU is added, along with set-up
code for an STM32F4xx MCU, including a UART for a REPL. Tested on
a pyboard. Code size is 77592 bytes.
Constant folding in the parser can now operate on big ints, whatever
their representation. This is now possible because the parser can create
parse nodes holding arbitrary objects. For the case of small ints the
folding is still efficient in RAM because the folded small int is stored
inplace in the parse node.
Adds 48 bytes to code size on Thumb2 architecture. Helps reduce heap
usage because more constants can be computed at compile time, leading to
a smaller parse tree, and most importantly means that the constants don't
have to be computed at runtime (perhaps more than once). Parser will now
be a little slower when folding due to calls to runtime to do the
arithmetic.
Before this patch, (x+y)*z would be parsed to a tree that contained a
redundant identity parse node corresponding to the parenthesis. With
this patch such nodes are optimised away, which reduces memory
requirements for expressions with parenthesis, and simplifies the
compiler because it doesn't need to handle this identity case.
A parenthesis parse node is still needed for tuples.
Note that even though wrapped in MICROPY_CPYTHON_COMPAT, it is not
fully compatible because the modifications to the dictionary do not
propagate to the actual instance members.
Only types whose iterator instances still fit in 4 machine words have
been changed to use the polymorphic iterator.
Reduces Thumb2 arch code size by 264 bytes.
Previously, mark operation weren't logged at all, while it's quite useful
to see cascade of marks in case of over-marking (and in other cases too).
Previously, sweep was logged for each block of object in memory, but that
doesn't make much sense and just lead to longer output, harder to parse
by a human. Instead, log sweep only once per object. This is similar to
other memory manager operations, e.g. an object is allocated, then freed.
Or object is allocated, then marked, otherwise swept (one log entry per
operation, with the same memory address in each case).
The default bahaviour for debug builds is to show dialog boxes for asserts
and invalid parameter handling. This is not so nice in general and causes
the Appveyor debug builds to hang because the io\file_seek.py test passes
a closed file descriptor to lseek. Disable this behaviour by printing
assert messages to the output instead of showing the dialog, and by
disabling 'invalid' parameter handling which causes the affected functions
to just return an error and set errno appropriately.
Map indicies are most commonly a qstr, and adding a fast-path for hashing
of a qstr increases overall performance of the runtime.
On pyboard there is a 4% improvement in the pystone benchmark for a cost
of 20 bytes of code size. It's about a 2% improvement on unix.
When looking up and extracting an attribute of an instance, some
attributes must bind self as the first argument to make a working method
call. Previously to this patch, any attribute that was callable had self
bound as the first argument. But Python specs require the check to be
more restrictive, and only functions, closures and generators should have
self bound as the first argument
Addresses issue #1675.
This is a convenience function similar to pyexec_file. It should be used
instead of raw mp_parse_compile_execute because the latter does not catch
and report exceptions.
POSIX doesn't guarantee something like that to work, but it works on any
system with careful signal implementation. Roughly, the requirement is
that signal handler is executed in the context of the process, its main
thread, etc. This is true for Linux. Also tested to work without issues
on MacOSX.
Adds a lot of code, makes IRQs a bit less efficient, but is very useful
for debugging. Usage: pyb.irq_stats() returns a memory view that can be
read and written, eg:
list(pyb.irq_stats())
pyb.irq_stats()[0]
pyb.irq_stats()[0] = 0
The patch provides general IRQ_ENTER() and IRQ_EXIT() macros that can be
modified to provide further IRQ statistics if desired.
This builds upon the changes made in 2195046365. Using signal() does not
produce reliable results so SetConsoleCtrlHandler is used, and the handler
is installed only once during initialization instead of removing it in
mp_hal_set_interrupt_char when it is not strictly needed anymore, since
removing it might lead to Ctrl-C events being missed because they are
fired on a seperate thread which might only become alive after the handler
was removed.
Everyone loves to names similar things the same, then there're conflicts
between different libraries. The namespace prefix used is "CRYAL_", which
is weird, and that's good, as that minimizes chance of another conflict.
This makes all tests pass again for 64bit windows builds which would
previously fail for anything printing ranges (builtin_range/unpack1)
because they were printed as range( ld, ld ).
This is done by reusing the mp_vprintf implementation for MICROPY_OBJ_REPR_D
for 64bit windows builds (both msvc and mingw-w64) since the format specifier
used for 64bit integers is also %lld, or %llu for the unsigned version.
Note these specifiers used to be fetched from inttypes.h, which is the
C99 way of working with printf/scanf in a portable way, but mingw-w64
wants to be backwards compatible with older MS C runtimes and uses
the non-portable %I64i instead of %lld in inttypes.h, so remove the use
of said header again in mpconfig.h and define the specifiers manually.
Appveyor is like Travis, but for Windows builds. The appveyor.yml configuration
will build the msvc port in all configuration/platform conbinations,
and run the tests for each of those.
This basically introduces the MICROPY_MACHINE_MEM_GET_READ_ADDR
and MICROPY_MACHINE_MEM_GET_WRITE_ADDR macros. If one of them is
not defined, then a default identity function is provided.
Ideally we'd use %zu for size_t args, but that's unlikely to be supported
by all runtimes, and we would then need to implement it in mp_printf.
So simplest and most portable option is to use %u and cast the argument
to uint(=unsigned int).
Note: reason for the change is that UINT_FMT can be %llu (size suitable
for mp_uint_t) which is wider than size_t and prints incorrect results.
MICROPY_ENABLE_COMPILER can be used to enable/disable the entire compiler,
which is useful when only loading of pre-compiled bytecode is supported.
It is enabled by default.
MICROPY_PY_BUILTINS_EVAL_EXEC controls support of eval and exec builtin
functions. By default they are only included if MICROPY_ENABLE_COMPILER
is enabled.
Disabling both options saves about 40k of code size on 32-bit x86.
To let unix port implement "machine" functionality on Python level, and
keep consistent naming in other ports (baremetal ports will use magic
module "symlinking" to still load it on "import machine").
Fixes#1701.
This solves long-standing non-deterministic bug, which manifested itself
on x86 32-bit (at least of reported cases) - segfault on Ctrl+C (i.e.
SIGINT).
For builds where mp_uint_t is larger than size_t, it doesn't make
sense to use such a wide type for qstrs. There can only be as many
qstrs as there is address space on the machine, so size_t is the correct
type to use.
Saves about 3000 bytes of code size when building unix/ port with
MICROPY_OBJ_REPR_D.
size_t is the correct type to use to count things related to the size of
the address space. Using size_t (instead of mp_uint_t) is important for
the efficiency of ports that configure mp_uint_t to larger than the
machine word size.
Similar to recently added feature in unix port: if event triggers for an
objects, its polling flags are automatically reset, so it won't be polled
until they are set again explicitly.
ilistdir() returns iterator which yields triples of (name, type, ino)
where ino is inode number for entry's data, type of entry (file/dir/etc.),
and name of file/dir. listdir() can be easily implemented in terms of this
iterator (which is otherwise more efficient in terms of memory use and may
save expensive call to stat() for each returned entry).
CPython has os.scandir() which also returns an iterator, but it yields
more complex objects of DirEntry type. scandir() can also be easily
implemented in terms of ilistdir().
This allows to have single itertaor type for various internal iterator
types (save rodata space by not having repeating almost-empty type
structures). It works by looking "iternext" method stored in particular
object instance (should be first object field after "base").
Previously, SPI was configured by a board defining MICROPY_HW_ENABLE_SPIx
to 0 or 1. Now, the board should define MICROPY_HW_SPIx_SCK, MISO, MOSI
and NSS. This makes it the same as how I2C is configured.
This allows multiple versions (e.g. Debug/Release, x86/x64) of micropython.exe
to co-exist instead and also solves potential problems where msbuild does not
completely rebuild the output and/or pdb files when switching between builds,
which in turn can cause linker errors in dependent projects.
By default exe/map/... files go in windows/build/$(Configuration)$(Platform)
After each build micropython.exe is still copied from the above directory to
the windows directory though, as that is consistent with the other ports and
the test runner by default uses that location as well.
Also rename env.props -> path.props which is a clearer name,
and add ample documentation in the affected build files.
(also see discussion in #1538)
After an I/O event is triggered for fd, event flags are automatically reset,
so no further events are reported until new event flags are set. This is
an optimization for uasyncio, required to account for coroutine semantics:
each coroutine issues explicit read/write async call, and once that trigger,
no events should be reported to coroutine, unless it again explicitly
requests it. One-shot mode saves one linear scan over the poll array.
Fixes#1684 and makes "not" match Python semantics. The code is also
simplified (the separate MP_BC_NOT opcode is removed) and the patch saves
68 bytes for bare-arm/ and 52 bytes for minimal/.
Previously "not x" was implemented as !mp_unary_op(x, MP_UNARY_OP_BOOL),
so any given object only needs to implement MP_UNARY_OP_BOOL (and the VM
had a special opcode to do the ! bit).
With this patch "not x" is implemented as mp_unary_op(x, MP_UNARY_OP_NOT),
but this operation is caught at the start of mp_unary_op and dispatched as
!mp_obj_is_true(x). mp_obj_is_true has special logic to test for
truthness, and is the correct way to handle the not operation.
Oftentimes, libc, libm, etc. don't come compiled with CPU compressed code
option (Thumb, MIPS16, etc.), but we may still want to use such compressed
code for MicroPython itself.
Previously, sizeof() blindly assumed LAYOUT_NATIVE and tried to align
size even for packed LAYOUT_LITTLE_ENDIAN & LAYOUT_BIG_ENDIAN. As sizeof()
is implemented on a strucuture descriptor dictionary (not an structure
object), resolving this required passing layout type around.
This is refactoring to enable support for the two USB PHYs available on
some STM32F4 processors to be used at the same time. The F405/7 & F429
have two USB PHYs, others such as the F411 only have one PHY.
This has been tested separately on a pyb10 (USB_FS PHY) and F429DISC
(USB_HS PHY) to be able to invoke a REPL/USB. I have modified a PYBV10
to support two PHYs.
The long term objective is to support a 2nd USB PHY to be brought up as a
USB HOST, and possibly a single USB PHY to be OTG.
Currently nlr_jump_fail prints that there was an uncaught exception
but nothing about the exception.
This patch causes nlr_jump_failed to try to print the exception.
Given that printf was called on the line above, I think that
the call to mp_obj_print_exception has about as much likelyhood
of succeeding as the printf does.
When you use the USER button to perform a filesystem reset
at boot time then it wipes out the filesystem and creates
a new boot.py and main.py. With this patch these files are
executed after formatting, ensuring that pyb and machine modules
get imported.
Per CPython docs, "Registering a file descriptor that’s already registered
is not an error, and has the same effect as registering the descriptor
exactly once."
https://docs.python.org/3/library/select.html#select.poll.register
That's somewhat ambiguous, what's implemented here is that if fd si not
yet registered, it is registered. Otherwise, the effect is equivalent to
modify() method.
Usually this checking is done by VM on jump instructions, but for linear
sequences of instructions and builtin functions this won't happen. Particular
target of this change is long-running builtin functions like time.sleep().
This is a hack to free up TIM3 so that it can be used by the user.
Instead we use the PVD irq to call the USB VCP polling function, and
trigger it from SysTick (so SysTick itself does not do any processing).
The feature is enabled for pyboard lite only, since it lacks timers.
Consider the following scenario: SD card is being read by pyboard; USB
irq comes in for MSC read request; SD card needs to be read from within
USB irq while SD read is already ongoing. Such contention needs to be
avoided.
This patch provides a simple solution, to raise the irq priority above
that of the USB irq during SD DMA transfers. Pyboard and PC can now
read from the SD card at the same time (well, reads are interleaved).
As set by signal handler. This assumes that exception will be raised
somewhere else, which so far doesn't happen for single function call.
Still, it makes sense to handle that in some common place.
In non-blocking mode (timeout=0), uart.write() can now transmit all of its
data without raising an exception. uart.read() also works correctly in
this mode.
As part of this patch, timout_char now has a minimum value which is long
enough to transfer 1 character.
Addresses issue #1533.
To use, put the following in mpconfigport.h:
#define MICROPY_OBJ_REPR (MICROPY_OBJ_REPR_D)
#define MICROPY_FLOAT_IMPL (MICROPY_FLOAT_IMPL_DOUBLE)
typedef int64_t mp_int_t;
typedef uint64_t mp_uint_t;
#define UINT_FMT "%llu"
#define INT_FMT "%lld"
Currently does not work with native emitter enabled.
This allows the mp_obj_t type to be configured to something other than a
pointer-sized primitive type.
This patch also includes additional changes to allow the code to compile
when sizeof(mp_uint_t) != sizeof(void*), such as using size_t instead of
mp_uint_t, and various casts.
THis is required to deal well with signals, signals being the closest
analogue of hardware interrupts for POSIX. This is also CPython 3.5
compliant behavior (PEP 475).
The main problem implementing this is to figure out how much time was
spent in waiting so far/how much is remaining. It's well-known fact that
Linux updates select()'s timeout value when returning with EINTR to the
remaining wait time. Here's what POSIX-based standards say about this:
(http://pubs.opengroup.org/onlinepubs/9699919799/functions/pselect.html):
"Upon successful completion, the select() function may modify the object
pointed to by the timeout argument."
I.e. it allows to modify timeout value, but doesn't say how exactly it is
modified. And actually, it allows such modification only "upon successful
completion", which returning with EINTR error hardly is.
POSIX also allows to request automatic EINTR restart for system calls using
sigaction call with SA_RESTART flag, but here's what the same document says
about it:
"If SA_RESTART has been set for the interrupting signal, it is
implementation-defined whether the function restarts or returns with
[EINTR]."
In other words, POSIX doesn't leave room for both portable and efficient
handling of this matter, so the code just allows to manually select
Linux-compatible behavior with MICROPY_SELECT_REMAINING_TIME option,
or otherwise will just raise OSError. When systems with non-Linux behavior
are found, they can be handled separately.
With these you can now do things like:
stm.mem32[0x20000000] = 0x80000000
and read 32-bit values. You can also read all the way to the end
of memory using either stm.mem32[0xfffffffc] or stm.mem32[-4].
IRQs shouldn't use mem32 at all since they'd fail if the top 2 bits
weren't equal, so IRQs should be using 16-bit I/O.
The STMCube examples define both USE_USB_HS and USE_USB_HS_IN_FS when they
use the HS in FS mode.
The STM32F401 doesn't have a USB_HS at all, so the USB_OTG_HS instance
doesn't even exist.
The UARTs have no FIFOs, so if interrupts are disabled
for more than a character time (10 usec at 1 Mbit/sec)
then characters get dropped.
The overhead for handling a UART ISR is about 0.5 usec,
so even at baud rates of 1 Mbit/sec this only corresponds
to about 5% of the CPU. Lower baud rates will have less
of an impact.
uwTick can only change in the SysTick IRQ so this IRQ function does not
need to take special care with this variable. It's important to make
this IRQ function as efficient as possible.
Using SysTick to do the counting and dispatch of the flash storage idle
handler is more efficient than requiring a dedicated hardware timer.
No new counter is needed, just the existing uwTick variable. The
processing is not actually done in the SysTick IRQ, it is deferred to
the flash IRQ (which runs at lower priority).
- add mp_int_t/mp_uint_t typedefs in mpconfigport.h
- fix integer suffixes/formatting in mpconfig.h and mpz.h
- use MICROPY_NLR_SETJMP=1 in Makefile since the current nlrx64.S
implementation causes segfaults in gc_free()
- update README
The BSD stuff is a copy from the unix makefile but at least there it
makes some sense, a windows makefile on BSD doesn't.
The -lmman flag is probably for mmap functions but there is no other build
support for it on windows so just that flag won't cut it anyway.
Turning on each DMA block increases the current consumption
by about 8 mA. This code adds an idle timer for each DMA
block and turns off the clocks when no streams are in use
for 128 msec. Having a small timeout allows for improved
performance when back-to-back transfers are being performed.
The 128 msec is basically a guess.
- added some comments to explain the priority/sub-priority.
- adds an entry for SDIO (to be used in a later patch)
- increases DMA priority above USB so that DMA can be used
for sdcard I/O when using USB Mass Storage.
If RTC is already running at boot then it's left alone. Otherwise, RTC is
started at boot but startup function returns straight away. RTC startup
is then finished the first time it is used. Fallback to LSI if LSE fails
to start in a certain time.
Also included:
MICROPY_HW_CLK_LAST_FREQ
hold pyb.freq() parameters in RTC backup reg
MICROPY_HW_RTC_USE_US
option to present datetime sub-seconds in microseconds
MICROPY_HW_RTC_USE_CALOUT
option to enable RTC calibration output
CLK_LAST_FREQ and RTC_USE_CALOUT are enabled for PYBv1.0.
This takes previous IEEE-754 single precision float implementation, and
converts it to fully portable parametrizable implementation using C99
functions like signbit(), isnan(), isinf(). As long as those functions
are available (they can be defined in adhoc manner of course), and
compiler can perform standard arithmetic and comparison operations on a
float type, this implementation will work with any underlying float type
(including types whose mantissa is larger than available intergral integer
type).
In other words, unix port now uses overriden printf(), instead of using
libc's. This should remove almost all dependency on libc stdio (which
is bloated).
Return tuple of (address_family, net_addr, [port, [extra_data]]). net_addr
is still raw network address as bytes object, but suitable for passing to
inet_ntop() function. At the very least, sockaddr() will separate address
family value from binary socket address (and currently, only AF_INET family
is decoded).
This change makes the code behave how it was supposed to work when first
written. The avail_slot variable is set to the first free slot when
looking for a key (which would come from deleting an entry). So it's
more efficient (for subsequent lookups) to insert a new key into such a
slot, rather than the very last slot that was searched.
In new hardware API, these classes implement master modes of interfaces,
and "mode" parameter is not accepted. Trying to implement new HW API
in terms of older pyb module leaves variuos corner cases:
In new HW API, I2C(1) means "I2C #1 in master mode" (? depends on
interpretation), while in old API, it means "I2C #1, with no settings
changes".
For I2C class, it's easy to make mode optional, because that's last
positional param, but for SPI, there's "baudrate" after it (which
is inconsistent with I2C, which requires "baudrate" to be kwonly-arg).
MICROPY_PERSISTENT_CODE must be enabled, and then enabling
MICROPY_PERSISTENT_CODE_LOAD/SAVE (either or both) will allow loading
and/or saving of code (at the moment just bytecode) from/to a .mpy file.
Main changes when MICROPY_PERSISTENT_CODE is enabled are:
- qstrs are encoded as 2-byte fixed width in the bytecode
- all pointers are removed from bytecode and put in const_table (this
includes const objects and raw code pointers)
Ultimately this option will enable persistence for not just bytecode but
also native code.
This makes select.poll() interface fully compatible with CpYthon. Also, make
their numeric values of these options compatible with Linux (and by extension,
with iBCS2 standard, which jopefully means compatibility with other Unices too).
- A single ffcon.h file to configure fatfs settings across ports.
- A single diskio.h file with common drive definitions.
- Removed now reduntand ffconf_template.h.
Now, if we build for an architecture which doesn't have dedicated support
for getting registers for GC scanning, fallback to setjmp-based method
automatically. It's still possible to force setjmp-based implementation
on archs with dedicated support (e.g. for testing, or for peculiar calling
conventions/optimizations).
Currently, the only place that clears the bit is in gc_collect.
So if a block with a finalizer is allocated, and subsequently
freed, and then the block is reallocated with no finalizer then
the bit remains set.
This could also be fixed by having gc_alloc clear the bit, but
I'm pretty sure that free is called way less than alloc, so doing
it in free is more efficient.
This patch allows you to stop auto-indent by pressing enter on a second
blank line. Easier than having to use backspace, and prevents new users
from getting stuck in auto-indent mode.
This patch adds/subtracts a constant from the 30-bit float representation
so that str/qstr representations are favoured: they now have all the high
bits set to zero. This makes encoding/decoding qstr strings more
efficient (and they are used more often than floats, which are now
slightly less efficient to encode/decode).
Saves about 300 bytes of code space on Thumb 2 arch.
The default setting of using the "highest" method available doesn't
work with some servers like Microsoft Azure. TLSV1 seems to work with
pretty much any server.
I left memzip in for the time being, so you can choose in
the Makefile whether to USE_FROZEN or USE_MEMZIP.
It looks like using frozen saves about 2472 bytes (using my
set of 15 python files), mostly due to overheads in the
zip file format.
- use correct 'mingw-w64' package name
- small grammar fixes
- modify Cygwin build instructions to use that same compiler as well: the
original mingw is stuck at gcc v4.7 and does not seem to be updated anymore
- make it clear thet uPy also builds using Visual Studio versions > 2013
Ubuntu's mingw32 has gcc 4.2.1, which is rather old and has incorrect
non-initialized variable analysis which produces warnings, which
per MicroPython default settings get turned into errors.
Contains implementation of ?: (non-capturing groups), ?? (non-greedy ?),
as well as much improved robustness, and edge cases and error handling by
Amir Plivatsky (@ampli).
py/mphal.h contains declarations for generic mp_hal_XXX functions, such
as stdio and delay/ticks, which ports should provide definitions for. A
port will also provide mphalport.h with further HAL declarations.
This makes format specifiers ~ fully compatible with CPython.
Adds 24 bytes for stmhal port (because previosuly we had to catch and report
it's unsupported to user).
This is the case already when using just subprocess.check_output, but in
the special cases (cmdline, meminfo, ...) the carriage return gets lost
during output processing so restore it in the end.
This fixes the micropython/meminfo.py test on Windows.
This prevents the loss of RTC time when exiting from standby mode, since
the RTC is paused while it is being re-inited and this loses about 120ms.
Thanks to @chuckbook for the patch.
This file is actually port-generic and should be moved out of stmhal/ .
Other ports already use it, and thus it should use mp_hal_ticks_ms()
right away.
These MPHAL functions are intended to replace previously used HAL_Delay(),
HAL_GetTick() to provide better naming and MPHAL separation (they are
fully equivalent otherwise).
Also, refactor extmod/modlwip to use them.
Also make sleep.c self-contained by moving initialization code,
instead of having part of the code in init.c, and add a header file
to accomodate this.
msec_sleep() now uses the usleep() implementation as well.
Scenario: module1 depends on some common file from lib/, so specifies it
in its SRC_MOD, and the same situation with module2, then common file
from lib/ eventually ends up listed twice in $(OBJ), which leads to link
errors.
Make is equipped to deal with such situation easily, quoting the manual:
"The value of $^ omits duplicate prerequisites, while $+ retains them and
preserves their order." So, just use $^ consistently in all link targets.
This is required to properly select among overloaded methods. It however
relies on java.lang.Object-overloaded method to come last, which appears
to be the case for OpenJDK.
/* A StaticEventGroup_t object must be provided. */
configASSERT(pxEventGroupBuffer);
/* The user has provided a statically allocated event group - use it. */
pxEventBits=(EventGroup_t*)pxEventGroupBuffer;/*lint !e740 EventGroup_t and StaticEventGroup_t are guaranteed to have the same size and alignment requirement - checked by configASSERT(). */
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and commercial middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
@@ -99,6 +103,15 @@ extern "C" {
/* Definitions specific to the port being used. */
#include"portable.h"
/* Must be defaulted before configUSE_NEWLIB_REENTRANT is used below. */
#ifndef configUSE_NEWLIB_REENTRANT
#define configUSE_NEWLIB_REENTRANT 0
#endif
/* Required if struct _reent is used. */
#if ( configUSE_NEWLIB_REENTRANT == 1 )
#include<reent.h>
#endif
/*
* Check all the required application specific macros have been defined.
* These macros are application specific and (as downloaded) are defined
@@ -125,54 +138,48 @@ extern "C" {
#error Missing definition: configUSE_TICK_HOOK must be defined in FreeRTOSConfig.h as either 1 or 0. See the Configuration section of the FreeRTOS API documentation for details.
#endif
#ifndef configUSE_CO_ROUTINES
#error Missing definition: configUSE_CO_ROUTINES must be defined in FreeRTOSConfig.h as either 1 or 0. See the Configuration section of the FreeRTOS API documentation for details.
#endif
#ifndef INCLUDE_vTaskPrioritySet
#error Missing definition: INCLUDE_vTaskPrioritySet must be defined in FreeRTOSConfig.h as either 1 or 0. See the Configuration section of the FreeRTOS API documentation for details.
#endif
#ifndef INCLUDE_uxTaskPriorityGet
#error Missing definition: INCLUDE_uxTaskPriorityGet must be defined in FreeRTOSConfig.h as either 1 or 0. See the Configuration section of the FreeRTOS API documentation for details.
#endif
#ifndef INCLUDE_vTaskDelete
#error Missing definition: INCLUDE_vTaskDelete must be defined in FreeRTOSConfig.h as either 1 or 0. See the Configuration section of the FreeRTOS API documentation for details.
#endif
#ifndef INCLUDE_vTaskSuspend
#error Missing definition: INCLUDE_vTaskSuspend must be defined in FreeRTOSConfig.h as either 1 or 0. See the Configuration section of the FreeRTOS API documentation for details.
#endif
#ifndef INCLUDE_vTaskDelayUntil
#error Missing definition: INCLUDE_vTaskDelayUntil must be defined in FreeRTOSConfig.h as either 1 or 0. See the Configuration section of the FreeRTOS API documentation for details.
#endif
#ifndef INCLUDE_vTaskDelay
#error Missing definition: INCLUDE_vTaskDelay must be defined in FreeRTOSConfig.h as either 1 or 0. See the Configuration section of the FreeRTOS API documentation for details.
#endif
#ifndef configUSE_16_BIT_TICKS
#error Missing definition: configUSE_16_BIT_TICKS must be defined in FreeRTOSConfig.h as either 1 or 0. See the Configuration section of the FreeRTOS API documentation for details.
#endif
#if configUSE_CO_ROUTINES != 0
#ifndef configMAX_CO_ROUTINE_PRIORITIES
#error configMAX_CO_ROUTINE_PRIORITIES must be greater than or equal to 1.
#endif
#endif
#ifndef configMAX_PRIORITIES
#error configMAX_PRIORITIES must be defined to be greater than or equal to 1.
* Definition of the only type of object that a list can contain.
*/
structxLIST_ITEM
{
listFIRST_LIST_ITEM_INTEGRITY_CHECK_VALUE/*< Set to a known value if configUSE_LIST_DATA_INTEGRITY_CHECK_BYTES is set to 1. */
configLIST_VOLATILETickType_txItemValue;/*< The value being listed. In most cases this is used to sort the list in descending order. */
structxLIST_ITEM*configLIST_VOLATILEpxNext;/*< Pointer to the next ListItem_t in the list. */
structxLIST_ITEM*configLIST_VOLATILEpxPrevious;/*< Pointer to the previous ListItem_t in the list. */
void*pvOwner;/*< Pointer to the object (normally a TCB) that contains the list item. There is therefore a two way link between the object containing the list item and the list item itself. */
void*configLIST_VOLATILEpvContainer;/*< Pointer to the list in which this list item is placed (if any). */
listSECOND_LIST_ITEM_INTEGRITY_CHECK_VALUE/*< Set to a known value if configUSE_LIST_DATA_INTEGRITY_CHECK_BYTES is set to 1. */
};
typedefstructxLIST_ITEMListItem_t;/* For some reason lint wants this as two separate definitions. */
structxMINI_LIST_ITEM
{
listFIRST_LIST_ITEM_INTEGRITY_CHECK_VALUE/*< Set to a known value if configUSE_LIST_DATA_INTEGRITY_CHECK_BYTES is set to 1. */
listFIRST_LIST_INTEGRITY_CHECK_VALUE/*< Set to a known value if configUSE_LIST_DATA_INTEGRITY_CHECK_BYTES is set to 1. */
configLIST_VOLATILEUBaseType_tuxNumberOfItems;
ListItem_t*configLIST_VOLATILEpxIndex;/*< Used to walk through the list. Points to the last item returned by a call to listGET_OWNER_OF_NEXT_ENTRY (). */
MiniListItem_txListEnd;/*< List item that contains the maximum possible item value meaning it is always at the end of the list and is therefore used as a marker. */
ListItem_t*configLIST_VOLATILEpxIndex;/*< Used to walk through the list. Points to the last item returned by a call to listGET_OWNER_OF_NEXT_ENTRY (). */
MiniListItem_txListEnd;/*< List item that contains the maximum possible item value meaning it is always at the end of the list and is therefore used as a marker. */
listSECOND_LIST_INTEGRITY_CHECK_VALUE/*< Set to a known value if configUSE_LIST_DATA_INTEGRITY_CHECK_BYTES is set to 1. */
* stores a pointer to the string - so the string must be persistent (global or
* preferably in ROM/Flash), not on the stack.
*/
#if configQUEUE_REGISTRY_SIZE > 0
#if( configQUEUE_REGISTRY_SIZE > 0 )
voidvQueueAddToRegistry(QueueHandle_txQueue,constchar*pcName)PRIVILEGED_FUNCTION;/*lint !e971 Unqualified char types are allowed for strings and single characters only. */
constchar*pcQueueGetName(QueueHandle_txQueue)PRIVILEGED_FUNCTION;/*lint !e971 Unqualified char types are allowed for strings and single characters only. */
#endif
/*
* Generic version of the function used to creaet a queue using dynamic memory
* allocation. This is called by other functions and macros that create other
* RTOS objects that use the queue structure as their base.
eReady,/* The task being queried is in a read or pending ready list. */
eBlocked,/* The task being queried is in the Blocked state. */
eSuspended,/* The task being queried is in the Suspended state, or is in the Blocked state with an infinite time out. */
eDeleted/* The task being queried has been deleted, but its TCB has not yet been freed. */
eDeleted,/* The task being queried has been deleted, but its TCB has not yet been freed. */
eInvalid/* Used as an 'invalid state' value. */
}eTaskState;
/* Actions that can be performed when vTaskNotify() is called. */
typedefenum
{
eNoAction=0,/* Notify the task without updating its notify value. */
eSetBits,/* Set bits in the task's notification value. */
eIncrement,/* Increment the task's notification value. */
eSetValueWithOverwrite,/* Set the task's notification value to a specific value even if the previous value has not yet been read by the task. */
eSetValueWithoutOverwrite/* Set the task's notification value if the previous value has been read by the task. */
}eNotifyAction;
/*
* Used internally only.
*/
typedefstructxTIME_OUT
{
BaseType_txOverflowCount;
TickType_txTimeOnEntering;
TickType_txTimeOnEntering;
}TimeOut_t;
/*
@@ -158,6 +173,7 @@ typedef struct xTASK_STATUS
UBaseType_tuxCurrentPriority;/* The priority at which the task was running (may be inherited) when the structure was populated. */
UBaseType_tuxBasePriority;/* The priority to which the task will return if the task's current priority has been inherited to avoid unbounded priority inversion when obtaining a mutex. Only valid if configUSE_MUTEXES is defined as 1 in FreeRTOSConfig.h. */
uint32_tulRunTimeCounter;/* The total run time allocated to the task so far, as defined by the run time stats clock. See http://www.freertos.org/rtos-run-time-stats.html. Only valid when configGENERATE_RUN_TIME_STATS is defined as 1 in FreeRTOSConfig.h. */
StackType_t*pxStackBase;/* Points to the lowest address of the task's stack area. */
uint16_tusStackHighWaterMark;/* The minimum amount of stack space that has remained for the task since the task was created. The closer this value is to zero the closer the task has come to overflowing its stack. */
}TaskStatus_t;
@@ -169,7 +185,6 @@ typedef enum
eNoTasksWaitingTimeout/* No tasks are waiting for a timeout so it is safe to enter a sleep mode that can only be exited by an external interrupt. */
}eSleepModeStatus;
/**
* Defines the priority used by the idle task. This must not be modified.
* @return The text (human readable) name of the task referenced by the handle
* xTaskToQuery. A task can query its own name by either passing in its own
* handle, or by setting xTaskToQuery to NULL. INCLUDE_pcTaskGetTaskName must be
* set to 1 in FreeRTOSConfig.h for pcTaskGetTaskName() to be available.
* handle, or by setting xTaskToQuery to NULL.
*
* \defgroup pcTaskGetTaskName pcTaskGetTaskName
* \defgroup pcTaskGetName pcTaskGetName
* \ingroup TaskUtils
*/
char*pcTaskGetTaskName(TaskHandle_txTaskToQuery)PRIVILEGED_FUNCTION;/*lint !e971 Unqualified char types are allowed for strings and single characters only. */
char*pcTaskGetName(TaskHandle_txTaskToQuery)PRIVILEGED_FUNCTION;/*lint !e971 Unqualified char types are allowed for strings and single characters only. */
* NOTE: This function takes a relatively long time to complete and should be
* used sparingly.
*
* @return The handle of the task that has the human readable name pcNameToQuery.
* NULL is returned if no matching name is found. INCLUDE_xTaskGetHandle
* must be set to 1 in FreeRTOSConfig.h for pcTaskGetHandle() to be available.
*
* \defgroup pcTaskGetHandle pcTaskGetHandle
* \ingroup TaskUtils
*/
TaskHandle_txTaskGetHandle(constchar*pcNameToQuery)PRIVILEGED_FUNCTION;/*lint !e971 Unqualified char types are allowed for strings and single characters only. */
voidvTaskGetRunTimeStats(char*pcWriteBuffer)PRIVILEGED_FUNCTION;/*lint !e971 Unqualified char types are allowed for strings and single characters only. */
* Generic version of the task creation function which is in turn called by the
* xTaskCreate() and xTaskCreateRestricted() macros.
*/
BaseType_txTaskGenericCreate(TaskFunction_tpxTaskCode,constchar*constpcName,constuint16_tusStackDepth,void*constpvParameters,UBaseType_tuxPriority,TaskHandle_t*constpxCreatedTask,StackType_t*constpuxStackBuffer,constMemoryRegion_t*constxRegions)PRIVILEGED_FUNCTION;/*lint !e971 Unqualified char types are allowed for strings and single characters only. */
/*
* Get the uxTCBNumber assigned to the task referenced by the xTask parameter.
* // Starting the scheduler will start the timers running as they have already
* // been set into the active state.
* xTaskStartScheduler();
* vTaskStartScheduler();
*
* // Should not reach here.
* for( ;; );
* }
* @endverbatim
*/
TimerHandle_txTimerCreate(constchar*constpcTimerName,constTickType_txTimerPeriodInTicks,constUBaseType_tuxAutoReload,void*constpvTimerID,TimerCallbackFunction_tpxCallbackFunction)PRIVILEGED_FUNCTION;/*lint !e971 Unqualified char types are allowed for strings and single characters only. */
TimerCallbackFunction_tpxCallbackFunction)PRIVILEGED_FUNCTION;/*lint !e971 Unqualified char types are allowed for strings and single characters only. */
* @return The name assigned to the timer specified by the xTimer parameter.
*/
constchar*pcTimerGetTimerName(TimerHandle_txTimer);/*lint !e971 Unqualified char types are allowed for strings and single characters only. */
constchar*pcTimerGetName(TimerHandle_txTimer)PRIVILEGED_FUNCTION;/*lint !e971 Unqualified char types are allowed for strings and single characters only. */
pxList->xListEnd.pxPrevious=(ListItem_t*)&(pxList->xListEnd);/*lint !e826 !e740 The mini list structure is used as the list end to save RAM. This is checked and valid. */
pxList->uxNumberOfItems=(UBaseType_t)0U;
/* Write known values into the list if
configUSE_LIST_DATA_INTEGRITY_CHECK_BYTES is set to 1. */
for(pxIterator=(ListItem_t*)&(pxList->xListEnd);pxIterator->pxNext->xItemValue<=xValueOfInsertion;pxIterator=pxIterator->pxNext)/*lint !e826 !e740 The mini list structure is used as the list end to save RAM. This is checked and valid. */
{
/* There is nothing to do here, we are just iterating to the
wanted insertion position. */
/* There is nothing to do here, just iterating to the wanted
uint8_tucStaticallyAllocated;/*<< Set to pdTRUE if the timer was created statically so no attempt is made to free the memory again if the timer is later deleted. */
#endif
}xTIMER;
/* The old xTIMER name is maintained above then typedefed to the new Timer_t
TimerHandle_txTimerCreate(constchar*constpcTimerName,constTickType_txTimerPeriodInTicks,constUBaseType_tuxAutoReload,void*constpvTimerID,TimerCallbackFunction_tpxCallbackFunction)/*lint !e971 Unqualified char types are allowed for strings and single characters only. */
StaticTimer_t*pxTimerBuffer)/*lint !e971 Unqualified char types are allowed for strings and single characters only. */
{
Timer_t*pxNewTimer;
#if( configASSERT_DEFINED == 1 )
{
/* Sanity check that the size of the structure used to declare a
variable of type StaticTimer_t equals the size of the real timer
structures. */
volatilesize_txSize=sizeof(StaticTimer_t);
configASSERT(xSize==sizeof(Timer_t));
}
#endif /* configASSERT_DEFINED */
/* A pointer to a StaticTimer_t structure MUST be provided, use it. */
configASSERT(pxTimerBuffer);
pxNewTimer=(Timer_t*)pxTimerBuffer;/*lint !e740 Unusual cast is ok as the structures are designed to have the same alignment, and the size is checked by an assert. */
Some files were not shown because too many files have changed in this diff
Show More
Reference in New Issue
Block a user
Blocking a user prevents them from interacting with repositories, such as opening or commenting on pull requests or issues. Learn more about blocking a user.