Compare commits

..

709 Commits
v1.6 ... v1.8

Author SHA1 Message Date
Damien George
2c2fc070ec docs: Bump version to 1.8. 2016-05-03 17:32:32 +01:00
Damien George
56fd33a6dd docs/esp8266/tutorial: Change name of ESP8266 firmware to match actual. 2016-05-03 16:42:52 +01:00
Paul Sokolovsky
c68c327310 docs/esp8266/tutorial/repl: Reword description of initial WebREPL setup a bit. 2016-05-03 18:40:16 +03:00
Paul Sokolovsky
1f396c58d9 docs/esp8266/tutorial/repl: Suggest using hosted WebREPL client.
At http://micropython.org/webrepl .
2016-05-03 18:35:43 +03:00
Paul Sokolovsky
fb5017f9dc esp8266/main: Set sys.path to ["", "/", "/lib"]. 2016-05-03 18:25:27 +03:00
Damien George
496a601c3b esp8266: Shrink help text by a few lines, to fit in smaller windows. 2016-05-03 15:54:57 +01:00
Paul Sokolovsky
f873a5005a esp8266/scripts/ntptime: Add simple NTP client.
.time() returns seconds since MicroPython epoch (2000-01-01 00:00UTC),
.settime() sends current system time, assuming UTC timezone.
2016-05-03 16:47:42 +03:00
Damien George
5d05993f10 esp8266/tutorial: Mention that esptool is available via pip. 2016-05-03 14:05:50 +01:00
Damien George
8af64bcf2b docs/esp8266/tutorial: Update pins tutorial to reflect changes in API. 2016-05-03 13:56:15 +01:00
Damien George
5036b6ad18 docs/library/machine.Pin: Update pin docs to reflect ESP8266 support. 2016-05-03 13:55:37 +01:00
Damien George
8e130fcf2b esp8266/modpybpin: Make pin.irq() methods take keyword args. 2016-05-03 13:47:10 +01:00
Damien George
8a3e9036eb esp8266/modpybpin: Use None instead of PULL_NONE for no-pull config. 2016-05-03 13:13:56 +01:00
Damien George
9df6b3a2c2 esp8266/modpybpin: Use enum+array instead of struct for parsing args. 2016-05-03 12:44:28 +01:00
Damien George
02fd83bcbc tools/mpy-tool: Make sure that all C-level variables are unique.
Fixes issue #2023.
2016-05-03 12:24:39 +01:00
Damien George
b539a61490 esp8266/scripts/neopixel.py: Swap red and green in pixel accessor. 2016-05-03 11:17:37 +01:00
Paul Sokolovsky
81a99eb388 docs/machine: idle() description generalization. 2016-05-03 12:53:57 +03:00
Paul Sokolovsky
bb6458bf43 docs/machine: More generic description of sleep's, WiPy details to its genref. 2016-05-03 12:48:20 +03:00
Paul Sokolovsky
db99ae00a2 docs/machine: Move WiPy-specific hardware details to its general reference. 2016-05-03 12:26:55 +03:00
Paul Sokolovsky
06ec96b47b docs/machine: Generalize docs from just WiPy to other ports. 2016-05-03 12:15:29 +03:00
Paul Sokolovsky
cfc94bec9f extmod/modlwip: Implement sendall() method for TCP sockets. 2016-05-03 10:43:11 +03:00
Damien George
879bc4197a docs/esp8266: Add ESP8266 tutorial. 2016-05-03 01:39:04 +01:00
Paul Sokolovsky
5e94f0b43a esp8266/scripts/inisetup: Update for nic.mac() method being gone. 2016-05-03 02:16:42 +03:00
Paul Sokolovsky
a6cf45864f docs/network: esp8266: MAC address is set via .config() method. 2016-05-03 01:04:40 +03:00
Paul Sokolovsky
35e63f0007 esp8266/modnetwork: Remove .mac() method, move to .config("mac").
Querying/setting MAC address is pretty adhoc operation to belong to
.config() instead of taking a whole method on its own.
2016-05-03 01:02:14 +03:00
Paul Sokolovsky
ae845f13de docs: Use getaddrinfo() result in easy way.
Instead of extracting 4th element, extact last. Much easier to remember!
2016-05-03 00:48:04 +03:00
Paul Sokolovsky
c2d885501f examples/network/: Use getaddrinfo() result in easy way.
Instead of extracting 4th element, extact last. Much easier to remember!
2016-05-03 00:45:37 +03:00
Paul Sokolovsky
3944d3511f esp8266/scripts/inisetup: Enable WebREPL auto-start on boot. 2016-05-03 00:38:47 +03:00
Paul Sokolovsky
76c81cd5a6 esp8266/modesp: Add malloc() and free() functions.
Useful for testing fragmentation issues in OS heap. E.g. freemem() may
report large amount, but is it possible to actually allocate block of
a given size? Issue malloc() (followed by free()) to find out.
2016-05-03 00:35:11 +03:00
Paul Sokolovsky
2123ced3f4 esp8266/modesp: Add esf_free_bufs() debugging function.
Return number of free inernal WiFi buffers.
2016-05-03 00:26:22 +03:00
Paul Sokolovsky
3d830415bc esp8266/esp_mphal: Add ets_esf_free_bufs(), etc. functions.
Returning free number of various WiFi driver packet buffers.
2016-05-03 00:18:14 +03:00
Paul Sokolovsky
7b7c99fec1 esp8266/modnetwork: Remove deprecated wifi_mode().
Network interfaces are now controlled individually using .active() method.
2016-05-03 00:09:23 +03:00
Damien George
9215cdc7fd esp8266: Change platform name from ESP8266 to esp8266.
The port name is lowercase, and this change is made for consistency with
the docs and other ports.
2016-05-02 18:54:46 +01:00
Paul Sokolovsky
b8468d12a1 extmod/modwebrepl: Get rid of using strncpy(). 2016-05-02 20:52:34 +03:00
Paul Sokolovsky
c6923f52f0 lib/libc/string0: Remove better-than-standard strncpy() implementation.
ANSI C doesn't require that strncpy() produced null-terminated string, so
it's basicly useless for string manipulation.
2016-05-02 18:53:21 +03:00
Paul Sokolovsky
13d9d50fea esp8266/scripts/webrepl_setup: Reject too short passwords. 2016-05-02 18:48:32 +03:00
Paul Sokolovsky
bd9de5ec90 lib/libc/string0: Add strncpy() implementation. 2016-05-02 18:38:19 +03:00
Paul Sokolovsky
5302c3e8c4 docs/esp8266_contents: Referebce general and tutorial docs. 2016-05-02 17:45:42 +03:00
Paul Sokolovsky
a22aa53ef1 docs/esp8266/general: Add "Boot process" section. 2016-05-02 17:41:08 +03:00
Paul Sokolovsky
12144e8fcd docs/esp8266/general: Add techspec section.
Link to vendor forum with datasheets, etc. is provided, as well as inline
TTX.
2016-05-02 17:12:25 +03:00
Paul Sokolovsky
0f682f1ee1 docs/esp8266/general: Fix list formatting. 2016-05-02 16:10:48 +03:00
Paul Sokolovsky
5aa4db0505 docs/esp8266/general: Add more points to "Multitude of boards" section. 2016-05-02 16:00:44 +03:00
Paul Sokolovsky
74c6363b97 docs/esp8266/general: WebREPL is described in quickref for now. 2016-05-02 15:26:40 +03:00
Paul Sokolovsky
566d8f1d7e tests: Make "io" modules fixes for CPython compatibility.
Previously, "import _io" worked on both CPython and MicroPython (essentially
by a chance on CPython, as there's not guarantee that its contents will stay
the same across versions), but as the module was renamed to uio, need to use
more robust import sequence for compatibility.
2016-05-02 14:38:07 +03:00
Damien George
c816b89353 docs/library/machine.I2C: Update to reflect ESP8266 implementation.
This machine.I2C documentation is now closer to a more port-neutral
description, although there are still differences between WiPy and
ESP8266.
2016-05-02 12:31:17 +01:00
Paul Sokolovsky
8c35f3979c tests: Update for _io/_collections module having been renamed. 2016-05-02 14:15:11 +03:00
Paul Sokolovsky
621c644205 docs: _io and _collections were renamed to have standard "u" prefix. 2016-05-02 14:02:54 +03:00
Paul Sokolovsky
9549590fc6 py/modcollections: Rename module name have "u" prefix for consistency. 2016-05-02 13:57:46 +03:00
Paul Sokolovsky
ddb9dba2f7 py/modio: Rename module name to "uio" for consistency with other modules. 2016-05-02 13:56:33 +03:00
Damien George
70ff7350e7 stmhal, cc3200: Change i2c.scan() method to scan addresses 0x08-0x77.
A standard I2C address is 7 bits but addresses 0b0000xxx and 0b1111xxx
are reserved.  The scan() method is changed to reflect this, along with
the docs.
2016-05-02 11:15:36 +01:00
Paul Sokolovsky
26fd0ac571 esp8266/Makefile: Be sure to pass cross-compiling AR when building axtls.
Fixes build under MacOSX.
2016-05-02 01:22:42 +03:00
Paul Sokolovsky
8ebdbcfb27 docs: Add _io module reference. 2016-05-02 00:39:36 +03:00
Paul Sokolovsky
348caaf940 docs: Add _collections module reference. 2016-05-02 00:36:58 +03:00
Paul Sokolovsky
1f0dfe37a1 lib/axtls: Update to the latest upstream, fix reported MacOSX build issue. 2016-05-01 22:19:14 +03:00
Paul Sokolovsky
fd283eba64 docs/sys: Describe sys.platform is port-neutral manner. 2016-05-01 14:39:38 +03:00
Paul Sokolovsky
e9b7610748 docs/sys: Describe sys.maxsize. 2016-05-01 14:31:08 +03:00
Paul Sokolovsky
59603a2e89 docs/sys: Describe sys.implementation. 2016-05-01 13:59:34 +03:00
Paul Sokolovsky
4fb9452bff docs/sys: Clean up print_exception() description. 2016-05-01 13:44:06 +03:00
Paul Sokolovsky
ad2889c141 docs/sys: Clarify description of sys.exit(). 2016-05-01 13:42:36 +03:00
Paul Sokolovsky
8ad1659f68 docs/sys: Make module variable descriptions proper sentences. 2016-05-01 13:38:45 +03:00
Paul Sokolovsky
7781caf8d3 docs/sys: Remove port-specific details from description of stdin/out/err. 2016-05-01 13:37:28 +03:00
Paul Sokolovsky
c468fe65c5 docs/ustruct: Fix argument formatting.
Per current CPython docs conventions, arguments are in italics. Follow
that.
2016-05-01 13:34:16 +03:00
Paul Sokolovsky
a9ed42b3b4 docs/sys: Document sys.modules. 2016-05-01 13:32:15 +03:00
Paul Sokolovsky
6b6acc5b5d docs/ustruct: Document pack_into(), unpack_from(). 2016-05-01 13:17:07 +03:00
Paul Sokolovsky
d46cd02d95 docs/esp8266/quickref: Add info about WebREPL. 2016-05-01 11:41:46 +03:00
Paul Sokolovsky
df06e34175 tests/run-bench-tests: Process tests in alphabetical order. 2016-05-01 10:35:24 +03:00
Paul Sokolovsky
83e99f88cb docs/utime: Clarify module purpose. 2016-05-01 01:48:30 +03:00
Paul Sokolovsky
613fd0a1ca docs/library/utime: Elaborate on epochs and calendar time maintenance. 2016-05-01 00:16:47 +03:00
Paul Sokolovsky
9dd2c92d01 esp8266/README: Mention WebREPL. 2016-04-30 23:02:54 +03:00
Paul Sokolovsky
c1d1c562f3 esp8266/scripts/webrepl: Add "first connection" mode to setup password.
If there's no port_config.py file, or it lacks WEBREPL_PASS variable,
"initial setup mode" will be entered on first WebREPLconnection. User
will be asked for password, which will be written to
port_config.WEBREPL_PASS, and system restarted to work in normal mode
with password active.
2016-04-30 20:41:09 +03:00
Paul Sokolovsky
962d5a987f esp8266/scripts/webrepl: Switch to using _webrepl object wrapper.
Handling of binary protocol is untested on esp8266 so far.
2016-04-30 20:39:35 +03:00
Paul Sokolovsky
006ffe1561 esp8266/scripts/webrepl: Connection ack prompt is now printed by modwebrepl.
After password is checked.
2016-04-30 20:38:05 +03:00
Paul Sokolovsky
859e4e94f3 extmod/modwebrepl: Add support for password.
Request for password then becomes mandatory part of the protocol.
2016-04-30 20:36:32 +03:00
Paul Sokolovsky
6ddd9f3e2b esp8266/scripts/inisetup: Create default boot.py in filesystem.
Currently it pre-imports webrepl, but doesn't start it.
2016-04-29 20:11:48 +03:00
Paul Sokolovsky
74f413bc60 esp8266/scripts/_boot: builtins is no longer used. 2016-04-29 20:04:17 +03:00
Paul Sokolovsky
d86d65f625 esp8266/scripts: Move all of initial setup to inisetup module. 2016-04-29 20:02:59 +03:00
Paul Sokolovsky
adae53d522 esp8266: Enable webrepl module. 2016-04-29 19:38:21 +03:00
Paul Sokolovsky
18775d3807 extmod/modwebrepl: Set debugging by default to off.
That's production setting. Also, extra UART output may affect behavior of
(subpar) network drivers.
2016-04-29 19:17:37 +03:00
Paul Sokolovsky
f8170db390 esp8266: Enable WebREPL file transfer rate limiting. 2016-04-29 19:15:26 +03:00
Paul Sokolovsky
b0f3ae58e7 extmod/modwebrepl: Add rate-limiting workaround for broken network drivers.
Like ESP8266 has.
2016-04-29 19:14:03 +03:00
Paul Sokolovsky
8811b0af9c extmod/modwebrepl: Use bigger socket receive buffer.
The smaller chunks we send (and receive), the more packets there to
receive, and higher chance to git internal packet buffer overflow in
WiFi driver.
2016-04-29 18:43:19 +03:00
Damien George
12c61ddddd stmhal/accel: Raise an exception if the accel couldn't be initialised.
On PYBLITEv1.0 there is no accelerometer and in this case the Accel()
constructor should not silently succeed.
2016-04-29 15:43:15 +01:00
Paul Sokolovsky
b3bc2ee1b9 extmod/modwebrepl: More detailed debug output.
So detailed that even commented by default.
2016-04-29 17:37:40 +03:00
Paul Sokolovsky
473b639845 extmod/modwebrepl: GET_FILE: Send length-prefix chunk with one write().
A bit of optimization.
2016-04-29 17:35:21 +03:00
Paul Sokolovsky
3f3ccef829 README: Mention support "async" keyword from Python 3.5. 2016-04-29 15:44:53 +03:00
Paul Sokolovsky
f41e1f1bb7 extmod/modwebrepl: Keep reading data when there's something to read.
EAGAIN should be returned only if underlying socket returned it. Wrap
existing read function into external loop to process all data available.
2016-04-29 01:05:02 +03:00
Paul Sokolovsky
6514ff6160 extmod/modwebrepl: Initial implementation of "get file" operation. 2016-04-29 01:02:39 +03:00
Paul Sokolovsky
25d0f7d59d extmod/modwebrepl: Module to handle WebREPL protocol.
While just a websocket is enough for handling terminal part of WebREPL,
handling file transfer operations requires demultiplexing and acting
upon, which is encapsulated in _webrepl class provided by this module,
which wraps a websocket object.
2016-04-29 00:52:52 +03:00
Paul Sokolovsky
22050a3ed0 esp8266/help: Add cheatsheet for basic WiFi configuration. 2016-04-29 00:34:08 +03:00
Paul Sokolovsky
b639ce27c7 esp8266/help: Implement help() builtin. 2016-04-29 00:17:11 +03:00
Paul Sokolovsky
c10d303e1b README: Promote "docs" and "tests" to "major components". 2016-04-29 00:02:31 +03:00
Aex Aey
af554b4ba2 esp8266/modnetwork: Make WLAN.ifconfig() read/write.
Allow setting ip, netmask, gw and dns server (also, allows getting dns).
For docs see: https://github.com/micropython/micropython/commit/06deec9
2016-04-28 23:51:04 +03:00
Martin Müller
31fc81d3b8 unix/Makefile: Make install more compatible (BSD, etc.).
The current install command uses the flag -D which is specific to the
install command from GNU coreutils, but isn't available for the BSD
version. This solution uses the -d flag which should be commonly
available to create the target directory. Afterwards the target files
are installed to this directory seperately.
2016-04-28 21:45:27 +03:00
bsdfox
193c62226c esp8266/README: Add recently required step of 'make axtls'. 2016-04-28 21:42:04 +03:00
Paul Sokolovsky
8fcfaf6f22 examples/http_server_ssl.py: HTTPS server example. 2016-04-28 21:39:17 +03:00
Paul Sokolovsky
978a429aaa esp8266: Set suitable values for axtls's RT_MAX_PLAIN_LENGTH & RT_EXTRA. 2016-04-28 17:45:22 +03:00
Paul Sokolovsky
ba61480df5 extmod/modussl: SSL_OK from ssl_read() means "no user data so far".
SSL_OK is numeric 0, and it's *not* an EOF. So, should keep reading.
2016-04-28 17:29:11 +03:00
Paul Sokolovsky
2534bfdb92 extmod/modussl: Support server-side SSL sockets.
wrap_socket(sock, server_side=True)
2016-04-28 17:27:20 +03:00
Damien George
348edad888 docs/esp8266: Update quickref to reflect changes to 1-wire and NeoPixel. 2016-04-28 14:31:37 +01:00
Damien George
8c3b5526ae esp8266/scripts/neopixel.py: Remove test function from neopixel driver.
It takes up lots of room and isn't needed.
2016-04-28 13:37:17 +01:00
Damien George
1f7cec944e esp8266/scripts/onewire.py: Simplify and improve 1-wire driver.
Changes are:
- added OneWireError exception and used where errors can occur
- renamed read/write functions to use same names as C _onewire funcs
- read_bytes is now read, write_bytes is now write
- add ability to read/write DS18B20 scratch pad
- rename start_measure to convert_temp (since that's what it does)
- rename get_temp to read_temp (consistency with other read names)
- removed test function
2016-04-28 13:33:55 +01:00
Damien George
38358a096d esp8266: Move onewire.py, neopixel.py drivers from tests/ to scripts/. 2016-04-28 12:36:45 +01:00
Damien George
37d5aa1377 docs: Make the short port names in the port/version sidebar lowercase.
To make it neater and simpler.
2016-04-28 12:34:59 +01:00
Damien George
a6aa35af09 esp8266: Move pyb.info() function to esp module and remove pyb module.
All functionality of the pyb module is available in other modules, like
time, machine and os.  The only outstanding function, info(), is
(temporarily) moved to the esp module and the pyb module is removed.
2016-04-28 12:23:55 +01:00
Paul Sokolovsky
3c2e40b008 tests/run-tests: Add gen_yield_from_stopped to skipped for --emit=native.
Just as the rest of generator tests, which aren't yet supoorted for
native.
2016-04-28 10:24:27 +03:00
Paul Sokolovsky
0ea2108f1c tests: Add testcase for yielding from a stopped generator. 2016-04-28 02:08:51 +03:00
Paul Sokolovsky
eff85bb1dc py/vm: "yield from" didn't handle MP_OBJ_STOP_ITERATION optimization.
E.g. crashed when yielding from already stopped generators.
2016-04-28 02:08:43 +03:00
Paul Sokolovsky
d54290f6e2 extmod/modussl: Throw Python exceptions in case of errors. 2016-04-28 00:49:54 +03:00
Paul Sokolovsky
0785040593 esp8266/Makefile: Enable "ussl" module.
axTLS should be built first using "make axtls".
2016-04-28 00:48:38 +03:00
Paul Sokolovsky
941ddfe559 esp8266/Makefile: Support linking with axTLS built from source. 2016-04-28 00:48:38 +03:00
Damien George
8ed3a9eb9c esp8266/tests/onewire.py: Don't run test on import. 2016-04-27 22:32:39 +01:00
Paul Sokolovsky
6d8156ae28 docs/network: esp8266: Describe wlan.config() method. 2016-04-28 00:11:55 +03:00
Paul Sokolovsky
06deec9d35 docs/network: esp8266: Add wlan.ifconfig() method. 2016-04-28 00:10:29 +03:00
Paul Sokolovsky
50ef851bee lib/timeutils/timeutils: Typo fix in comment. 2016-04-27 18:52:57 +03:00
Paul Sokolovsky
1b45670c69 docs/ubinascii: Clean up grammar. 2016-04-27 15:47:33 +03:00
Paul Sokolovsky
df4e1d1279 docs/library: Consistently use admonitions for CPython differences. 2016-04-27 15:43:48 +03:00
Paul Sokolovsky
31300b5144 docs/utime: Describe sleep() peculiarities in MicroPython.
Not all ports accept floating-point value.
2016-04-27 15:28:46 +03:00
Paul Sokolovsky
c564169c8f docs/utime: Describe time() peculiarities in MicroPython. 2016-04-27 15:23:11 +03:00
Paul Sokolovsky
dc2c8f0b1a esp8266/axtls_helpers: Helper/wrapper functions for axTLS. 2016-04-27 14:54:36 +03:00
Damien George
556e5dfd35 docs/library/utime: Add more time functions for unix and esp8266 ports. 2016-04-27 12:30:59 +01:00
Damien George
e0f7e001e8 docs: Fix uos and utime heading underlines to be the correct length.
Otherwise Sphinx gives a warning.
2016-04-27 12:11:27 +01:00
Paul Sokolovsky
648333d2d5 esp8266/Makefile: Override abort() when building axtls.
abort() is a special function known to compiler as no-return.
2016-04-27 13:41:59 +03:00
Paul Sokolovsky
480c212009 extmod/modwebsocket: Handle CLOSE control frame.
This fixes situation when clients hangs waiting for disconnect and does
so only on timeout.
2016-04-27 12:49:30 +03:00
Paul Sokolovsky
351ec6d4ab docs/library: "os" module is actually "uos". 2016-04-27 01:55:06 +03:00
Paul Sokolovsky
f3f5e975e4 docs/Makefile: Default BUILDDIR based on MICROPY_PORT.
It doesn't make sense to duplicate both on command line, and MICROPY_PORT
is effectively mandatory to build docs.
2016-04-27 01:50:05 +03:00
Paul Sokolovsky
0df2ee0126 docs/library/index: Order sections from the most to least standard modules. 2016-04-27 01:38:59 +03:00
Paul Sokolovsky
492bf12499 docs/library/index: Make single section for "micro-ified" modules.
Even the modules whose names don't start with "u" prefix are micro-ified
anyway, i.e. provide only subset of CPython's functionality (and sometimes
extensions to it). So, it doesn't make much sense to devide them by
criteria of having/not having "u" prefix.
2016-04-27 01:38:59 +03:00
Paul Sokolovsky
678f3a1e05 docs: Module "time" is actually "utime". 2016-04-27 01:38:59 +03:00
Paul Sokolovsky
a119983328 docs/library/index: esp8266 has the same set of stdlibs as pyboard/unix. 2016-04-27 01:17:28 +03:00
Paul Sokolovsky
88ed518390 docs/library/index: Move WiPy "micro-libraries" under corresponding heading. 2016-04-27 01:14:16 +03:00
Paul Sokolovsky
8b8c32c09b docs/library: Group MicroPython-specific modules under separate heading. 2016-04-27 01:11:24 +03:00
Paul Sokolovsky
6afd651f1e esp8266/esp8266.ld: Put axTLS to FlashROM. 2016-04-27 00:45:09 +03:00
Paul Sokolovsky
6149ce01f8 esp8266/Makefile: Add target to build axTLS. 2016-04-27 00:35:13 +03:00
Paul Sokolovsky
1c6d91d968 extmod/modlwip: Add print_pcbs() debug function.
This requires lwIP built with LWIP_DEBUG (or it will be no-op).
2016-04-26 16:30:13 +03:00
Damien George
45ac5a85d5 extmod/modlwip: Workaround esp8266 sendto issue where 1 is returned. 2016-04-26 13:19:08 +01:00
Damien George
a63542387d extmod, stmhal: Fix typo of macro that detects if float is enabled. 2016-04-26 12:47:24 +01:00
Paul Sokolovsky
90b2cfe644 esp8266/scripts/webrepl: Add "ws://" to "daemon started at" message.
To remind people it's not HTTP.
2016-04-26 12:47:24 +03:00
Paul Sokolovsky
51cee4495e py/mkrules.mk: Typo fixes in comments. 2016-04-26 12:39:28 +03:00
Damien George
07615d9f7e tests/extmod: Move split-on-empty-match tests to a separate test file.
And provide an expected-output file because these tests have a different
behaviour under CPython.
2016-04-26 10:19:04 +01:00
Damien George
23df4b08fb py/emitnative: Use MP_OBJ_NEW_SMALL_INT instead of manual bit shifting. 2016-04-26 10:02:32 +01:00
Damien George
2bddfd4922 py/obj.h: When constructing a small-int cast to mp_uint_t for bit-shift.
The C standard says that left-shifting a signed value (on the LHS of the
operator) is undefined.  So we cast to an unsigned integer before the
shift.  gcc does not issue a warning about this, but clang does.
2016-04-26 09:51:37 +01:00
Paul Sokolovsky
237c519ac4 esp8266/scripts/flashbdev: Use all available Flash for filesystem.
All Flash sans firmware at the beginning and 16K SDK param block at the
end is used for filesystem (and that's calculated depending on the Flash
size).
2016-04-26 01:36:32 +03:00
Paul Sokolovsky
650df97c06 docs/network: esp8266: scan(): Add note that bssid is bytes object. 2016-04-26 01:09:11 +03:00
Paul Sokolovsky
ef2ffc0e4e esp8266/scripts/webrepl: Print client address for incoming connections. 2016-04-26 01:00:28 +03:00
Paul Sokolovsky
c888831410 esp8266/scripts/webrepl: Print connection address.
Based on active network interfaces.
2016-04-26 00:59:30 +03:00
stijn
29c8c8aecb windows/msvc: Rewrite qstr auto-generation.
Builds have been broken since reworking autogeneration in c618f91 and
related, this gets fixed here by applying similar qstr generation logic
for the msvc builds: c files are only preprocessed when changed (or not
yet preprocessed) and the concatenated output is fed into makeqstrdefs.py.
To speed up this process, the concatenated output is already filtered to
contain only lines which makeqstrdefs really needs: this makes the qstr
generation stage about twice as fast (checked on different machines).
2016-04-25 22:34:24 +01:00
stijn
9264d42e2a py/makeqstrdefs.py: Windows compatibility.
- msvc preprocessor output contains full paths with backslashes so the
  ':' and '\' characters needs to be erased from the paths as well
- use a regex for extraction of filenames from preprocessor output so it
  can handle both gcc and msvc preprocessor output, and spaces in paths
  (also thanks to a PR from @travnicekivo for part of that regex)
- os.rename will fail on windows if the destination file already exists,
  so simply attempt to delete that file first
2016-04-25 22:34:22 +01:00
stijn
b2b771ca02 py/makeqstrdefs.py: Remove unused function/variable/import. 2016-04-25 22:34:20 +01:00
Paul Sokolovsky
7a012f4793 extmod/modlwip: Protect recv/accept Python callback against exceptions.
Using usual call_function_*_protected() helper, to avoid NLR jump crashes.
2016-04-25 21:27:55 +03:00
Paul Sokolovsky
bababce6de py/runtime_utils: Fix nanbox build. 2016-04-25 20:03:14 +03:00
Paul Sokolovsky
6d103b6548 py: Move call_function_*_protected() functions to py/ for reuse.
They almost certainly needed by any C code which calls Python callbacks.
2016-04-25 19:31:17 +03:00
Colin Hogben
104aa26271 cc3200, stmhal, teensy: Use pyhelp_print_obj function.
Update the help() implementations in the cc3200, stmhal and teensy
ports to use the pyhelp_print_obj function.
2016-04-25 18:54:59 +03:00
Colin Hogben
2b46da234c lib/utils/pyhelp: Extract implementation of help(obj) to a library function.
Several ports use identical code for the 1-argument form of the builtin
help function.  Move this code to a library function to allow easier
re-use by ports.
2016-04-25 18:54:09 +03:00
Paul Sokolovsky
4296a8dc5c esp8266/scripts/webrepl: Allow to override port. 2016-04-25 18:44:37 +03:00
Paul Sokolovsky
bd66b09512 esp8266/scripts/webrepl: Don't start on import.
Explicit .start() is required now.
2016-04-25 00:33:27 +03:00
Paul Sokolovsky
8db4f363e9 esp8266/scripts/webrepl: Convert to persistent daemon. 2016-04-25 00:31:43 +03:00
Paul Sokolovsky
7c40b15a3f esp8266/scripts/webrepl: WebREPL based on C-level websocket object. 2016-04-24 23:04:21 +03:00
Paul Sokolovsky
0d10e5310a docs/usocket: Describe address format once at the beginning.
Different ports may have different formats.
2016-04-23 00:31:05 +03:00
Paul Sokolovsky
92497bff94 docs/usocket: socket.IPPROTO_SEC is WiPy-specific. 2016-04-23 00:17:34 +03:00
Paul Sokolovsky
955b8526f4 docs/usocket: Socket-specific exceptions are for WiPy only. 2016-04-23 00:17:09 +03:00
Paul Sokolovsky
71c6f93016 docs/library/usocket: Add link to CPython's socket module. 2016-04-23 00:08:43 +03:00
Paul Sokolovsky
bbe5245028 docs: esp8266: Include usocket module reference. 2016-04-23 00:08:11 +03:00
Paul Sokolovsky
3bc9b571bb docs/ustruct: There's no complete "struct" module, only "ustruct" subset.
"ustruct" is good example of micro-ified module, so rather should belong
to the corresponding list.
2016-04-22 22:37:14 +03:00
Paul Sokolovsky
5c8147528e docs/esp8266/tutorial: Add tutorial placeholder page. 2016-04-22 22:37:02 +03:00
Paul Sokolovsky
d422e56631 esp8266/scripts/websocket_helper: Disable debug output. 2016-04-22 18:19:54 +03:00
Paul Sokolovsky
eb40769613 esp8266/scripts/websocket_helper: Module encapsulating handshake sequences. 2016-04-22 18:18:27 +03:00
Damien George
51dca54cd0 py/mkrules.mk: Remove obsolete rules for auto qstr generation. 2016-04-22 11:36:19 +01:00
Damien George
b372156f74 esp8266: Change software SPI driver to use general pin HAL. 2016-04-22 10:44:06 +01:00
Damien George
67a6d31955 esp8266: Allow GPIO16 to be used as a pin in the uPy pin HAL.
Now I2C works with GPIO16 as the SCL or SDA pin.
2016-04-22 10:35:26 +01:00
Damien George
a2d5d84ecc esp8266: Convert mp_hal_pin_obj_t from pin ptr to simple integer.
Most pin I/O can be done just knowing the pin number as a simple
integer, and it's more efficient this way (code size, speed) because it
doesn't require a memory lookup to get the pin id from the pin object.

If the full pin object is needed then it can be easily looked up in the
pin table.
2016-04-22 10:04:12 +01:00
Damien George
624738ca64 extmod/machine_i2c: Allow mp_hal_pin_obj_t to be any type, not a ptr. 2016-04-22 09:56:02 +01:00
Damien George
109990fc32 py/mkenv.mk: Remove -s and -S args from PYTHON variable.
Qstr auto-generation is now much faster so this optimisation for start-up
time is no longer needed.  And passing "-s -S" breaks some things, like
stmhal's "make deploy".
2016-04-21 22:25:35 +01:00
Damien George
fea40ad468 py: Fix bug passing a string as a keyword arg in a dict.
Addresses issue #1998.
2016-04-21 16:51:36 +01:00
Damien George
d4f4cb6a24 esp8266/esp_mphal: Remove mp_hal_feed_watchdog.
It doesn't do anything and is not needed.  ets_loop_iter/ets_event_poll
now take care of feeding the WDT.
2016-04-21 15:30:29 +01:00
Damien George
c4e26dd19a esp8266/uart: Remove obsolete UART rx buffering code.
It's now completely replaced by the ringbuf implementation.
2016-04-21 15:27:18 +01:00
Damien George
d46bea9ffa esp8266: Implement UART.read functionality. 2016-04-21 15:19:19 +01:00
Damien George
7652ab77ef esp8266: Add uart_rx_wait and uart_rx_char functions. 2016-04-21 15:19:00 +01:00
Tobias Badertscher
495da15611 stmhal: L4: Add support for external interrupts/events.
The L4 MCU supports 40 Events/IRQs lines of the type configurable and
direct.  But this L4 port only supports configurable line types which are
already supported by uPy.  For details see page 330 of RM0351, Rev 1.

The USB_FS_WAKUP event is a direct type and there is no support for it.
2016-04-21 13:11:37 +01:00
Tobias Badertscher
067fb2da14 stmhal: L4: Modify flash.c and storage.c to support L4 MCU.
The way to lookup the flash sector now uses a much simpler table for
all MCUs.
2016-04-21 13:03:38 +01:00
Tobias Badertscher
dda1a41205 stmhal: L4: Modify mphalport to support L4 MCU.
__GPIOI_CLK_ENABLE is defined in hal/l4/inc/Legacy/stm32_hal_legacy.h
as __HAL_RCC_GPIOI_CLK_ENABLE, and that latter macro is not defined
anywhere else (because the L4 does not have port GPIOI).  So the test
for GPIOI is needed, along with the test for the CLK_ENABLE macro.
2016-04-21 12:23:28 +01:00
Damien George
36d328e451 ACKNOWLEDGEMENTS: Add list of 842 backers from the ESP8266 campaign. 2016-04-21 12:18:28 +01:00
Damien George
fcc9d43c6d docs/esp8266: Add info about using deep-sleep mode to quickref. 2016-04-21 12:01:50 +01:00
Damien George
32d7cf6e44 esp8266: Implement basic deep-sleep capabilities.
Use the machine.deepsleep() function to enter the sleep mode.  Use the
RTC to configure the alarm to wake the device.

Basic use is the following:

    import machine

    # configure RTC's ALARM0 to wake device from deep sleep
    rtc = machine.RTC()
    rtc.irq(trigger=rtc.ALARM0, wake=machine.DEEPSLEEP)

    # do other things
    # ...

    # set ALARM0's alarm to wake after 10 seconds
    rtc.alarm(rtc.ALARM0, 10000)

    # enter deep-sleep state (system is reset upon waking)
    machine.deepsleep()

To detect if the system woke from a deep sleep use:

    if machine.reset_cause() == machine.DEEPSLEEP_RESET:
        print('woke from deep sleep')
2016-04-21 11:43:37 +01:00
Paul Sokolovsky
2a51f72ed1 docs/esp8266/general: Start "General information" for esp8266. 2016-04-21 01:03:51 +03:00
Paul Sokolovsky
f73d78394b docs/topindex.html: esp8266: Enable quickref/general on the main page. 2016-04-21 01:03:27 +03:00
Paul Sokolovsky
4fa1731b6e esp8266/modnetwork: .config(): Add "hidden ESSID" param. 2016-04-21 00:42:45 +03:00
Paul Sokolovsky
cc1ef76f88 esp8266/scripts/flashbdev: Correct bootloader flash size to match real size.
Flash size as seen by vendor SDK doesn't depend on real size, but rather on
a particular value in firmware header, as put there by flash tool. That means
it's user responsibility to know what flash size a particular device has, and
specify correct parameters during flashing. That's not end user friendly
however, so we try to make it "flash and play" by detecting real size vs
from-header size mismatch, and correct the header accordingly.
2016-04-20 18:07:34 +03:00
Paul Sokolovsky
584406880c esp8266/scripts/_boot: Print notice when initial setup is executed. 2016-04-20 18:01:09 +03:00
Paul Sokolovsky
2494399a42 esp8266/scripts/flashbdev: Disable debug output/checks. 2016-04-20 00:35:46 +03:00
Paul Sokolovsky
46f0641fba esp8266/modnetwork: .config(): Add "channel" param. 2016-04-20 00:25:31 +03:00
Paul Sokolovsky
1b60a6dc4e py: Divide "split" and "cat" phases of qstr extraction for better efficiency.
E.g. for stmhal, accumulated preprocessed output may grow large due to
bloated vendor headers, and then reprocessing tens of megabytes on each
build make take couple of seconds on fast hardware (=> potentially dozens
of seconds on slow hardware). So instead, split once after each change,
and only cat repetitively (guaranteed to be fast, as there're thousands
of lines involved at most).
2016-04-19 14:39:08 +03:00
Paul Sokolovsky
8dd704b019 py/makeqstrdefs.py: Process only CPP line-numbering info.
Not stuff like "#pragma", etc.
2016-04-19 12:52:57 +03:00
Paul Sokolovsky
4494b521ea py/mkrules.mk: Fix Bashism. 2016-04-19 12:32:23 +03:00
Paul Sokolovsky
21ab304c41 py/mkrules.mk: Cleanup command passed to shell. 2016-04-19 12:28:30 +03:00
Paul Sokolovsky
0dc85c9f86 py/mkrules.mk: Try to detect and emulate make -B behavior for qstr extraction.
If make -B is run, the rule is run with $? empty. Extract fron all file in
this case. But this gets fragile, really "make clean" should be used instead
with such build complexity.
2016-04-19 12:18:46 +03:00
Paul Sokolovsky
098f3e2862 stmhal: Update Makefile dependencies. 2016-04-19 11:54:07 +03:00
Paul Sokolovsky
270dd29320 unix: Make sure build dir exists before accessing it for freezing upip. 2016-04-19 11:41:40 +03:00
Paul Sokolovsky
c618f91e22 py: Rework QSTR extraction to work in simple and obvious way.
When there're C files to be (re)compiled, they're all passed first to
preprocessor. QSTR references are extracted from preprocessed output and
split per original C file. Then all available qstr files (including those
generated previously) are catenated together. Only if the resulting content
has changed, the output file is written (causing almost global rebuild
to pick up potentially renumbered qstr's). Otherwise, it's not updated
to not cause spurious rebuilds. Related make rules are split to minimize
amount of commands executed in the interim case (when some C files were
updated, but no qstrs were changed).
2016-04-19 11:37:56 +03:00
Colin Hogben
8aa3cbf153 lib/utils/pyexec: Condition-out GC calls from pyexec.
A port which uses lib/utils/pyexec.c but which does not enable garbage
collection should not need to implement the gc_collect function.

This patch also moves the gc_collect call to after printing the qstr
info.  Since qstrs cannot be collected it should not make any difference
to the printed statistics.
2016-04-19 09:22:40 +01:00
Paul Sokolovsky
97f88eebb6 README: Explicitly point to required dependencies section. 2016-04-18 22:37:42 +03:00
Paul Sokolovsky
8dcce92606 esp8266/scripts: Don't try to create filesystem on 512KB devices or less.
There's no space for it.
2016-04-18 17:14:00 +03:00
Paul Sokolovsky
89e56a80b8 esp8266/modesp: Add flash_size() function.
Returns FlashROM size in bytes from vendor SDK's point of view, not
physical size.
2016-04-18 17:12:57 +03:00
Paul Sokolovsky
3a5a35aaec esp8266/scripts/flashbdev: Use all available space in 1MB FlashROM for FS. 2016-04-18 01:23:04 +03:00
Damien George
d76ebde85e esp8266/modesp: Allow esp.deepsleep to take 2nd arg for RF wake opt. 2016-04-17 16:28:47 +01:00
Paul Sokolovsky
89aa7157d0 esp8266/README.md: Update feature list for current state of affairs. 2016-04-17 18:17:49 +03:00
Paul Sokolovsky
7e5715a6d5 esp8266/README.md: Typo fix. 2016-04-17 18:16:36 +03:00
Paul Sokolovsky
6f3b9933bd esp8266/esp_mphal: Protect dupterm_task_handler() from recursive exec. 2016-04-17 18:11:04 +03:00
Paul Sokolovsky
dde9abad16 esp8266/moduos: Add dupterm_notify() function.
Should be called to notify that current dupterm object has more input
data to read.
2016-04-17 18:09:52 +03:00
Paul Sokolovsky
7d57037906 extmod/modlwip: Add ability to run callback on "recv" and "accept" events.
To use: .setsockopt(SOL_SOCKET, 20, lambda sock: print(sock)). There's a
single underlying callback slot. For normal sockets, it serves as data
received callback, for listening sockets - connection arrived callback.
2016-04-17 18:06:45 +03:00
Paul Sokolovsky
67ece47121 docs/machine: reset_cause() has been implemented for esp8266. 2016-04-17 17:40:08 +03:00
Paul Sokolovsky
50e4fa5e19 py/mkenv.mk: Optimize Python startup type during make process.
By skipping loading site.py, etc.
2016-04-17 16:11:44 +03:00
Damien George
31480fb91b py/frozenmod: Pass the source name of the frozen module to the lexer.
This allows for better error messages, since the name of the file (sans
.py) can now be printed when an exception occurs within a frozen script.
2016-04-17 12:37:00 +01:00
Damien George
5e247a5192 stmhal: Fix machine.unique_id() function to work for all MCUs. 2016-04-17 12:18:50 +01:00
Tobias Badertscher
31f5dc065a stmhal: L4: Modify timer.c to support L4 MCU. 2016-04-17 12:16:13 +01:00
Tobias Badertscher
432465b167 stmhal: L4: Modify rtc.c to support L4 MCU. 2016-04-17 12:08:07 +01:00
Damien George
aed1da913b stmhal: L4: Modify usbd_conf.c to support L4 MCU.
Original patch was authored by Tobias Badertscher / @tobbad, but it was
reworked to split UART edits from USB edits.
2016-04-17 12:02:26 +01:00
Damien George
53521152a8 stmhal: L4: Modify uart.c to support L4 MCU.
L4 does not have UART6, and has similar registers to the F7.

Original patch was authored by Tobias Badertscher / @tobbad, but it was
reworked to split UART edits from USB edits.
2016-04-17 12:01:05 +01:00
Paul Sokolovsky
8007f84cca extmod/modlwip: lwip_tcp_receive(): Full error handling. 2016-04-17 02:22:26 +03:00
Paul Sokolovsky
b830f4c610 extmod/modlwip: lwip_tcp_send(): Full error handling. 2016-04-17 02:20:05 +03:00
Tobias Badertscher
d49a547064 stmhal: L4: Modify adc.c to add support for STM32L4 series. 2016-04-16 23:02:36 +01:00
Tobias Badertscher
69f26c68c9 stmhal: L4: Add line to Makefile for building L4 series. 2016-04-16 22:14:12 +01:00
Tobias Badertscher
0b6e28c999 stmhal: L4: Add board definition files for STM32L476DISC. 2016-04-16 22:11:02 +01:00
Damien George
e943a407f2 stmhal: Update HALCOMMITS due to change to hal. 2016-04-16 22:00:49 +01:00
Tobias Badertscher
d4c3349957 stmhal: L4: Adapt UART HAL to avoid 64-bit integer division.
64-bit integer division brings a dependency on library functions. It is
avoided here by dividing fck and baud by a common divisior.  The error
is the better (1/(2*0x300)) as with 64 bit division (1/(0x300)).
2016-04-16 21:54:19 +01:00
Tobias Badertscher
f4942db044 stmhal: L4: Add basic STM32L4xx HAL files.
These files come from STM32Cube_FW_L4_V1.3.0, with Windows line endings
converted to unix.  Only basic HAL files are added.  In addition the QSPI
support is included to support later external QSPI flash as mass storage.
2016-04-16 21:51:40 +01:00
Tobias Badertscher
2ba6677775 stmhal: L4: Add CMSIS files to support STM32L476. 2016-04-16 21:41:52 +01:00
Damien George
040373e4c4 stmhal: For frozen bytecode generation, add dependency of qstr file. 2016-04-16 13:20:02 +01:00
Damien George
593ffdd976 minimal: For frozen bytecode generation, add dependency of qstr file. 2016-04-16 13:20:02 +01:00
Damien George
73ccb3fc5b esp8266: Adapt port to use new auto-qstr generation. 2016-04-16 13:20:02 +01:00
Jan Čapek
53e3770b15 py/mkrules.mk: Suppress line-no output from CPP for qstr auto-gen. 2016-04-16 13:19:35 +01:00
Jan Čapek
000eae121c py/py.mk: Add makefile variable for qstr autogeneration control.
- any architecture may explicitely build with qstring make
  QSTR_AUTOGEN_DISABLE=1 autogeneration disabled and provide its
  own list of qstrings by the standard
  mechanisms (qstrdefsport.h).
2016-04-16 13:19:23 +01:00
stijn
9a627e8881 windows/msvc: Implement automatic qstr generation using makeqstrdefs.
Note this still needs some work: currently all source files are always
preprocessed no matter which one actually changed, moreover that happens
file by file without any parallellism so builds are painstakingly slow.
2016-04-16 13:19:15 +01:00
Jan Čapek
61b560f63f py/mkrules.mk: Add mpconfig[port].h dependency to qstr generating rule. 2016-04-16 13:18:51 +01:00
Jan Čapek
d76c65f599 py: Add rules for automated extraction of qstrs from sources.
- add template rule that converts a specified source file into a qstring file

- add special rule for generating a central header that contains all
  extracted/autogenerated strings - defined by QSTR_DEFS_COLLECTED
  variable. Each platform appends a list of sources that may contain
  qstrings into a new build variable: SRC_QSTR. Any autogenerated
  prerequisities are should be appened to SRC_QSTR_AUTO_DEPS variable.

- remove most qstrings from py/qstrdefs, keep only qstrings that
  contain special characters - these cannot be easily detected in the
  sources without additional annotations

- remove most manual qstrdefs, use qstrdef autogen for: py, cc3200,
  stmhal, teensy, unix, windows, pic16bit:

   - remove all micropython generic qstrdefs except for the special strings that contain special characters (e.g. /,+,<,> etc.)
   - remove all port specific qstrdefs except for special strings
   - append sources for qstr generation in platform makefiles (SRC_QSTR)
2016-04-16 13:18:09 +01:00
Pavel Moravec
dbbf082786 py/makeqstrdefs: Add script to automate extraction of qstr from sources.
This script will search for patterns of the form Q(...) and generate a
list of them.

The original code by Pavel Moravec has been significantly simplified to
remove the part that searched for C preprocessor directives (eg #if).
This is because all source is now run through CPP before being fed into
this script.
2016-04-16 13:13:52 +01:00
Paul Sokolovsky
050e645ef2 esp8266/modmachine: Add reset_cause() function. 2016-04-15 22:08:04 +03:00
Paul Sokolovsky
53ac7830cb docs/speed_python: Add article. 2016-04-15 20:09:59 +03:00
Damien George
2c883c5ab7 tests: Fix dict1.py so it doesn't rely on the order of dict elems. 2016-04-15 16:28:33 +01:00
Damien George
00137b8c11 py/map: Change hash-table allocation policy to be less aggressive.
Small hash tables (eg those used in user class instances that only have a
few members) now only use the minimum amount of memory necessary to hold
the key/value pairs.  This can reduce performance for instances that have
many members (because then there are many reallocations/rehashings of the
table), but helps to conserve memory.

See issue #1760.
2016-04-15 16:24:46 +01:00
Paul Sokolovsky
5801967496 docs/speed_python: Add many more details on memoryviews. 2016-04-15 18:18:18 +03:00
Paul Sokolovsky
47f9b10b30 docs/speed_python: Generalize "Floating point" subsection.
Don't describe just single port's peculiarities, note aboute possible
array of issues with floating-point.
2016-04-15 17:43:03 +03:00
Paul Sokolovsky
6c84f1e03a docs/speed_python: Clarify/generalize "Buffers" subsection. 2016-04-15 17:24:56 +03:00
Paul Sokolovsky
f474e956d7 docs/machine: Start to update for esp8266 port. 2016-04-15 17:06:11 +03:00
Paul Sokolovsky
b122ed0732 docs/esp: Enumerate flash access functions. 2016-04-15 14:01:22 +03:00
Damien George
c3beb16db3 tools/mpy-tool.py: Add support for Python 2.7. 2016-04-15 11:56:10 +01:00
Damien George
091dcaea2f esp8266/moduos: Add uos.mkdir function. 2016-04-14 23:37:15 +01:00
Damien George
bcd719ea3a extmod/fsusermount: In mount/mkfs, deregister VFS object on error.
Should fix issue #1947.
2016-04-14 23:36:25 +01:00
Damien George
7d2c685544 esp8266/scripts/_boot: Mount block device on "" instead of "/".
"" is the correct name of the root directory when mounting a device there
(as opposed to "/").  One can now do os.listdir('/') and open('/abc'), as
well as os.listdir() and open('abc').
2016-04-14 22:56:21 +01:00
Paul Sokolovsky
5c1af60e19 extmod/modlwip: More debug messages for various edge conditions. 2016-04-15 00:37:12 +03:00
Paul Sokolovsky
d3ab4bc7ca esp8266/qstrdefsport.h: Mark qstr's for "esp" module. 2016-04-15 00:11:22 +03:00
Paul Sokolovsky
4f811d0e4c esp8266: Enable input() builtin. 2016-04-15 00:08:39 +03:00
Paul Sokolovsky
9b0714b24c py: Declare help, input, open builtins in core.
These are *defined* per-port, but why redeclare them again and again.
2016-04-15 00:07:56 +03:00
Paul Sokolovsky
272fad6d9c esp8266/scripts/port_diag.py: Module to collect diagnostic info.
A shortcut for users to provide background diagnostic info for bug
reports.
2016-04-14 18:54:11 +03:00
Damien George
a649d72606 py/makeqstrdata: Add special case to handle \n qstr. 2016-04-14 15:22:36 +01:00
Damien George
2243d68345 py/makeqstrdata: Reinstate Python2 compatibility. 2016-04-14 14:37:04 +01:00
Damien George
49bb04ee64 py/makeqstrdata: Fix rendering of qstrs that have non-printable ASCII.
The qstr data needs to be turned into a proper C string so non-ASCII
chars must be properly escaped according to C rules.
2016-04-14 14:20:25 +01:00
Damien George
0c1de1cdee py: Simplify "and" action within parser by making ident-rules explicit.
Most grammar rules can optimise to the identity if they only have a single
argument, saving a lot of RAM building the parse tree.  Previous to this
patch, whether a given grammar rule could be optimised was defined (mostly
implicitly) by a complicated set of logic rules.  With this patch the
definition is always specified explicitly by using "and_ident" in the rule
definition in the grammar.  This simplifies the logic of the parser,
making it a bit smaller and faster.  RAM usage in unaffected.
2016-04-14 13:49:23 +01:00
Paul Sokolovsky
0a400a6333 esp8266: Switch integer arith routines to BootROM. 2016-04-14 15:06:07 +03:00
Damien George
df3b1741b6 esp8266: Separate 1-wire timing funcs from Python module to save iRAM.
esponewire.c contains low-level timing-critical functions that go in
iRAM.  modonewire.c contains Python wrapper code.
2016-04-14 12:44:26 +01:00
Damien George
674bf1bc81 esp8266: Add hard IRQ callbacks for pin change on GPIO0-15. 2016-04-14 12:44:26 +01:00
Damien George
d9d408135d esp8266: Add dummy entries for non-existing pins to simplify pin logic.
Now pins can be easily looked up in the table using the pin number as the
index and vice versa.
2016-04-14 12:43:25 +01:00
Damien George
a9a732af1f esp8266: Remove pin_id field from C pin object.
This field is the same as phys_port and not needed.
2016-04-14 12:43:25 +01:00
Paul Sokolovsky
44ab5c3ef1 extmod/modlwip: Start adding debug output. 2016-04-14 01:15:52 +03:00
Paul Sokolovsky
fef0d9818a extmod/modlwip: lwip_tcp_receive(): Properly handle EOF for non-blocking sock. 2016-04-14 00:59:09 +03:00
Damien George
f30b6f0af5 py/makeqstrdata: Add more names for escaped chars and esc non-printable.
Non-printable characters are escaped as 0xXX, where XX are the hex
digits of the character value.
2016-04-13 22:12:39 +01:00
Paul Sokolovsky
59a4fee516 extmod/modwebsocket: Another case to propagate EOF. 2016-04-13 22:17:09 +03:00
Damien George
733db525e2 stmhal: Add Makefile option FROZEN_MPY_DIR to support frozen bytecode. 2016-04-13 16:07:47 +01:00
Damien George
f9448ddc2c minimal: Add example of frozen persistent bytecode (.mpy file).
frozentest.py is frozen into the binary as frozen bytecode.  The .mpy
file is included so that there is no dependency on the cross compiler.
2016-04-13 16:07:47 +01:00
Damien George
0a2e9650f5 py: Add ability to have frozen persistent bytecode from .mpy files.
The config variable MICROPY_MODULE_FROZEN is now made of two separate
parts: MICROPY_MODULE_FROZEN_STR and MICROPY_MODULE_FROZEN_MPY.  This
allows to have none, either or both of frozen strings and frozen mpy
files (aka frozen bytecode).
2016-04-13 16:07:47 +01:00
Damien George
0699c6bf9e tools: Add mpy-tool.py, to work with .mpy files.
Currently it can freeze .mpy files.
2016-04-13 16:05:43 +01:00
Damien George
594fa73411 py/makeqstrdata: Factor out some code to functions that can be reused. 2016-04-13 16:05:43 +01:00
Damien George
ed0c11236f py/emitglue: Make mp_raw_code_t* arguments constant pointers. 2016-04-13 16:05:43 +01:00
Damien George
6d24dc23b8 py/emitglue: Move typedef of mp_raw_code_t from .c to .h file.
It's needed by frozen bytecode.
2016-04-13 16:05:43 +01:00
Damien George
c2a519bab9 tests: Skip async tests for native emitter. 2016-04-13 15:56:42 +01:00
Damien George
7f7e247545 tests: Add .exp files for async tests, so they can run with Python 3.4. 2016-04-13 15:56:15 +01:00
Damien George
6eb17c31a9 ports: Disable async/await on bare-arm, minimal, pic16bit, cc3200.
It costs 1188 bytes of code on Thumb 2 archs.
2016-04-13 15:31:30 +01:00
Damien George
c33df193bf tests: Add 6 tests for async await/for/with. 2016-04-13 15:27:06 +01:00
Damien George
eacbd7aeba py: Fix constant folding and inline-asm to work with new async grammar. 2016-04-13 15:26:39 +01:00
pohmelie
81ebba7e02 py: add async/await/async for/async with syntax
They are sugar for marking function as generator, "yield from"
and pep492 python "semantically equivalents" respectively.

@dpgeorge was the original author of this patch, but @pohmelie made
changes to implement `async for` and `async with`.
2016-04-13 15:26:38 +01:00
Paul Sokolovsky
959ed931a4 esp8266/esp_mphal: call_dupterm_read(): Fix order of deactivating on EOF.
First deactivate, then print diagnostic message.
2016-04-13 16:35:50 +03:00
Paul Sokolovsky
19e3c9d53a esp8266/esp_mphal: Don't swallow exceptions in dupterm's read()/write().
The idea is that if dupterm object can handle exceptions, it will handle
them itself. Otherwise, object state can be compromised and it's better
to terminate dupterm session. For example, disconnected socket will keep
throwing exceptions and dump messages about that.
2016-04-13 16:34:17 +03:00
Paul Sokolovsky
54ea253f56 extmod/moduos_dupterm: Don't swallow exceptions in dupterm's read()/write().
The idea is that if dupterm object can handle exceptions, it will handle
them itself. Otherwise, object state can be compromised and it's better
to terminate dupterm session. For example, disconnected socket will keep
throwing exceptions and dump messages about that.
2016-04-13 16:34:11 +03:00
Paul Sokolovsky
47442d9f52 lib/utils/printf: Rework overriding printer of DEBUG_printf().
By default it uses mp_plat_print, but a port may override it to another
value with MICROPY_DEBUG_PRINTER_DEST.
2016-04-13 11:53:12 +03:00
Peter Hinch
22cbcd55f0 stmhal: Properly handle RTS/CTS flow control for buf/unbuf transfers.
Fixes issues #1912 and #1913.  UART documentation is also updated.
2016-04-13 08:42:32 +01:00
Damien George
3177ef544f esp8266: In callback helpers, pop nlr_buf on successful call.
nlr_pop must be called if no exception was raised.

Also, return value of these callback helpers is made void because ther
is (currently) no use for it.
2016-04-13 00:01:28 +01:00
Paul Sokolovsky
b67d098841 py/modbuiltins: __repl_print__: Add comment about setting "_" special var. 2016-04-13 00:59:41 +03:00
Damien George
eec8a94f04 extmod/machine_i2c: Implement I2C memory reading/writing. 2016-04-12 15:52:17 +01:00
Damien George
9314b2df4f extmod/machine_i2c: Fix I2C reading by sending ack/nack at end of byte. 2016-04-12 15:46:13 +01:00
Damien George
73bc0c24ab drivers: Add SSD1306 OLED driver, with I2C and SPI interfaces. 2016-04-12 14:06:54 +01:00
Damien George
e813ea1070 esp8266: Enable framebuf module. 2016-04-12 14:06:54 +01:00
Damien George
a525493e40 esp8266: Switch from using custom I2C driver to generic extmod one. 2016-04-12 14:06:54 +01:00
Damien George
ac63ca7bc5 esp8266: Implement basic C-level pin HAL. 2016-04-12 14:06:54 +01:00
Damien George
1a65ff1b72 esp8266: Protect modpyb.h header file from multiple inclusions.
Also include py/obj.h so the header is self contained.
2016-04-12 14:06:54 +01:00
Damien George
67a327cb9b stmhal: Enable framebuf module. 2016-04-12 14:06:54 +01:00
Damien George
e4f963a351 stmhal: Use new generic I2C object in machine module. 2016-04-12 14:06:54 +01:00
Damien George
69a1aaf654 stmhal: Implement basic C-level pin HAL. 2016-04-12 14:06:54 +01:00
Damien George
d083712224 extmod: Add generic machine.I2C class, with bit-bang I2C.
Should work on any machine that provides the correct pin functions.
2016-04-12 14:06:54 +01:00
Damien George
53ad681ed1 extmod: Add initial framebuf module. 2016-04-12 14:06:53 +01:00
Damien George
3a37426b29 esp8266/scripts/inisetup.py: Use "-" in AP ESSID instead of space. 2016-04-12 00:47:21 +03:00
Paul Sokolovsky
260b839483 esp8266/scripts/inisetup.py: Set WPA/WPA2 AP mode with a predefined password. 2016-04-12 00:46:04 +03:00
Paul Sokolovsky
40f5ecd3a8 esp8266: Add Python modules for initial configuration.
Main entry point is _boot.py which checks whether FAT FS in flash mountable,
and if so, mounts it. Otherwise, it checks if flash is empty, and if so,
performs initial module setup: makes FAT FS, configures default AP name,
etc. As a last option, if flash is not empty, and could not be mounted,
it means filesystem corruption, and warning message with instructions is
printed in an infinite loop.
2016-04-12 00:37:04 +03:00
Paul Sokolovsky
2f5935269b esp8266/scripts/main.py: Remove stale file. 2016-04-12 00:35:13 +03:00
Paul Sokolovsky
54b89665fc esp8266/modnetwork: .config(): Add "password" param (W/O). 2016-04-12 00:18:40 +03:00
Paul Sokolovsky
7acc252e93 esp8266/modnetwork: .config(): Add "authmode" param. 2016-04-12 00:17:31 +03:00
Paul Sokolovsky
6f3fc9bfa1 esp8266/modnetwork: .config(): Check interface whose config is requested. 2016-04-12 00:16:16 +03:00
Paul Sokolovsky
1a327c4fa3 unix: Build with MICROPY_PY_UHASHLIB_SHA1 if already building with axTLS. 2016-04-11 21:58:58 +03:00
Paul Sokolovsky
f49d63a75c esp8266: Enable websocket module. 2016-04-11 21:25:43 +03:00
Damien George
9b0a150bd6 docs: Bump version to 1.7. 2016-04-11 12:18:10 +01:00
Paul Sokolovsky
f8fb4470a0 extmod/modwebsocket: write(): Support write size beyond 125 bytes. 2016-04-11 14:07:57 +03:00
Paul Sokolovsky
7063210014 extmod/modlwip: Fix for loss of data in unaccepted incoming sockets.
When lwIP creates a incoming connection socket of a listen socket, it
sets its recv callback to one which discards incoming data. We set
proper callback only in accept() call, when we allocate Python-level
socket where we can queue incoming data. So, in lwIP accept callback
be sure to set recv callback to one which tells lwIP to not discard
incoming data.
2016-04-11 01:21:34 +03:00
Paul Sokolovsky
1cc81ed449 esp8266/modesp: Add freemem() and meminfo() functions.
They call into vendor SDK functions system_get_free_heap_size() and
system_print_meminfo() respectively.
2016-04-11 01:16:38 +03:00
Paul Sokolovsky
c734de490a esp8266/main: mp_builtin_open(): Implement, using vfs_proxy_call(). 2016-04-10 16:59:19 +03:00
Damien George
358e5d8bad py/stream: Move uPy func obj wrappers to below their respective funcs. 2016-04-10 12:41:28 +01:00
Damien George
657aef66ff py/stream: Simplify arg extraction logic for stream_ioctl.
Saves 16 bytes of code.

Also, use mp_obj_get_int_truncated to allow integers as big as a machine
word to be passed as the value.
2016-04-10 12:37:59 +01:00
Damien George
6e87aeb841 esp8266: Implement multistage bootstrap sequence.
Upon start-up, _boot module is executed from frozen files to do early
initialization, e.g. create and mount the flash filesystem. Then
"boot.py" is executed if it exists in the filesystem. Finally, "main.py"
is executed if exists to allow start-on-boot user applications.

This allows a user to make a custom boot file or startup application
without recompiling the firmware, while letting to do early initialization
in Python code.

Based on RFC https://github.com/micropython/micropython/issues/1955.
2016-04-10 14:24:41 +03:00
Paul Sokolovsky
b69f798c92 extmod/modwebsocket.h: Split websocket-related defines for reuse. 2016-04-10 13:42:51 +03:00
Paul Sokolovsky
558fd5d228 py/stream: ioctl(): Properly support 2-arg form. 2016-04-10 13:36:44 +03:00
Paul Sokolovsky
6c3db26ab7 py/stream: Fix signed comparison issue. 2016-04-10 13:31:52 +03:00
Paul Sokolovsky
d6236e85c2 extmod/modwebsocket: Implement MP_STREAM_SET_DATA_OPTS ioctl.
Allows to set fragment type (txt/bin/etc.) for output records.
2016-04-10 13:19:26 +03:00
Paul Sokolovsky
6837dba6b8 extmod/modwebsocket: Allow to get type of last read data using ioctl(). 2016-04-10 12:50:46 +03:00
Paul Sokolovsky
0c97e4c414 py/stream: Add Python-level ioctl() method.
Will call underlying C virtual methods of stream interface. This isn't
intended to be added to every stream object (it's not in CPython), but
is convenient way to expose extra operation on Python side without
adding bunch of Python-level methods.
2016-04-10 12:45:46 +03:00
Paul Sokolovsky
a45e280c58 py/stream.h: Add bigger inventory of stream ioctl's. 2016-04-10 12:42:41 +03:00
Paul Sokolovsky
f38e8f5217 extmod/modwebsocket: Record current fragment type (binary/text/etc.)
Also, handle continuation frames (untested).
2016-04-09 16:14:47 +03:00
Paul Sokolovsky
5b1c221785 extmod/modwebsocket: Add option for blocking writes to non-blk sockets.
This is strange asymmetry which is sometimes needed, e.g. for WebREPL: we
want to process only available input and no more; but for output, we want
to get rid of all of it, because there's no other place to buffer/store
it. This asymmetry is akin to CPython's asyncio asymmetry, where reads are
asynchronous, but writes are synchronous (asyncio doesn't expect them to
block, instead expects there to be (unlimited) buffering for any sync write
to completely immediately).
2016-04-09 16:03:38 +03:00
Paul Sokolovsky
397b705647 extmod/modwebsocket: Reset mask between packets. 2016-04-09 12:29:18 +03:00
Paul Sokolovsky
7e9182f3aa extmod/modwebsocket: Make sure to propagate EOF. 2016-04-08 20:26:54 +03:00
pohmelie
b32b0d38fe unix: freedos strip and size names for binaries
After this you need only one path for build (path/to/djgpp/bin). Original patch made by @dhylands
2016-04-08 20:15:37 +03:00
Tom Sparks
20d9bc2d76 extmod/modure: re_exec() renamed to ure_exec() due to collison in 4.3BSD.
Addresses issue #1972.
2016-04-08 20:12:03 +03:00
Paul Sokolovsky
05ba2433f6 extmod/modwebsocket: Properly check number of args to constructor. 2016-04-08 16:05:48 +03:00
Paul Sokolovsky
5e919b7ef8 lib/axtls: Update to the latest upstream master. 2016-04-08 15:19:57 +03:00
Paul Sokolovsky
9c04299da1 docs: esp8266: Enable "machine" module docs.
The docs are still heavily biased towards WiPy, so will need a lot of
exclusions.
2016-04-07 16:44:10 +03:00
Paul Sokolovsky
5e7fa7c80c docs/ubinascii: Document non-standard "sep" argument to hexlify(). 2016-04-07 12:39:00 +03:00
Martin Fischer
8a8e775035 stmhal: Consistently enable USB SOF Irqs for all USB modes (FS and HS).
SOF irqs are now standard for rx/tx USB transfers, so enable them for both
FS and HS modes.  Fixes #1944.
2016-04-07 09:23:33 +01:00
Damien George
04d5e644fc py/objarray: Fix array.append so it doesn't extend if append fails.
Addresses issue #1965.
2016-04-07 09:03:33 +01:00
Damien George
2c915e1ae6 py: Implement basic with support in native emitter. 2016-04-07 08:53:24 +01:00
Damien George
ce8b4e8749 py: Combine continuous block of emit steps into with_cleanup emit call.
Because different emitters need to handle with-cleanup in different ways.
2016-04-07 08:50:38 +01:00
Damien George
2c407bcf20 esp8266: Switch from terse error messages to normal ones.
Adds 2k to the code size.
2016-04-07 00:38:08 +03:00
Paul Sokolovsky
d85439fd19 esp8266/README: Add short troubleshooting section. 2016-04-07 00:21:04 +03:00
Damien George
1a0a323ca8 esp8266: Add initial implementation of machine.UART.
Currently UART(0) and UART(1) are exposed and only uart.write works.
2016-04-06 19:45:52 +03:00
Paul Sokolovsky
4e51a3038c cc3200/mods/modwlan: Include stream.h after recent refactor. 2016-04-06 01:18:39 +03:00
Damien George
96eca22322 esp8266: Make destination for vendor OS debug output soft-configurable.
Use esp.osdebug(None) to disable, or esp.osdebug(uart_id) to send output
to a UART.
2016-04-06 00:12:58 +03:00
Paul Sokolovsky
e6a4d4e23c py: Move stream-related declarations from obj.h to stream.h. 2016-04-05 22:06:52 +03:00
Paul Sokolovsky
e4cb7c6158 docs/esp8266/quickref: Add note about physical vs logical pin numbers. 2016-04-05 16:30:51 +03:00
Paul Sokolovsky
2c8356c482 esp8266/modnetwork: require_if(): Report the actual interface required. 2016-04-05 16:09:03 +03:00
Paul Sokolovsky
f81ea6307c docs/ubinascii: Document a2b_base64(), b2a_base64(). 2016-04-05 14:00:12 +03:00
Paul Sokolovsky
de12502d89 esp8266: Move pyb.unique_id() to machine.unique_id(). 2016-04-05 00:57:49 +03:00
Paul Sokolovsky
81fd5685fc esp8266: Move pyb.hard_reset() to machine.reset(). 2016-04-05 00:20:25 +03:00
Paul Sokolovsky
1b811b946e unix/modsocket: Use mp_const_empty_map instead of creating empty map. 2016-04-04 23:43:16 +03:00
Paul Sokolovsky
069654f2be py/obj.h: Add comment why mp_fun_kw_t takes non-const mp_map_t*.
mp_fun_kw_t takes mp_map_t* (and not const mp_map_t*) to ease passing
this arg to mp_map_lookup(), which may modify its arg, depending on
flags.
2016-04-04 15:37:19 +03:00
pohmelie
cee888255b unix: djgpp errno.h have no ENOTSUP, so define it to Linux value. 2016-04-03 23:23:01 +03:00
Paul Sokolovsky
28d4b94dce docs/machine: Change wording to be a bit more port-neutral. 2016-04-03 20:49:29 +03:00
Paul Sokolovsky
69b702276b docs/os: Change wording to be a bit more port-neutral. 2016-04-03 20:49:25 +03:00
Paul Sokolovsky
e24674d44e docs: esp8266: esp.socket is deprecated, remove from docs. 2016-04-03 20:19:39 +03:00
Paul Sokolovsky
69256ac0b1 esp8266: Bump heap size to 24k. 2016-04-03 19:55:45 +03:00
Paul Sokolovsky
debbaac1bd esp8266: Update flashing instructions in README. 2016-04-03 16:04:18 +03:00
Paul Sokolovsky
919b70b7ec esp8266: Switch back to flashing combined firmware (single file).
With gap between segments minimized, there's not much padding to flash,
so no big speed overhead.
2016-04-03 15:48:46 +03:00
Paul Sokolovsky
8d2bcaf3cd esp8266: Minimize gap between Inst/DataRAM segments and FlashROM segment.
With .rodata being in FlashROM now, gap can be much smaller now. InstRAM
can be max 32K, and with segment headers, that already makes it more than
32K. Then there's some .data still, and the next Flash page boundary is
0x9000. That figure should be more or less future-proof.

TODO: Refactor makeimg to take FlashROM segment offset from file name.
2016-04-03 15:45:14 +03:00
Paul Sokolovsky
9698a60591 esp8266/ets_alt_task: Comment out debug output. 2016-04-03 01:04:01 +03:00
Paul Sokolovsky
fcd6862597 esp8266: Bump iROM size to 512k.
Needed for frozen scripts, and for future growth of binary.
2016-04-03 00:57:27 +03:00
Paul Sokolovsky
ef0c5db2ed esp8266: Move .rodata where it belongs with -mforce-l32 help. 2016-04-03 00:51:51 +03:00
Paul Sokolovsky
254a5646c1 docs: Update copyright notice. 2016-04-03 00:05:23 +03:00
Paul Sokolovsky
333a63efaa esp8266/README: Add link to docs. 2016-04-03 00:01:31 +03:00
Paul Sokolovsky
4f2d59e82f examples/http_client_ssl.py: HTTPS client example. 2016-04-02 23:19:03 +03:00
Paul Sokolovsky
ec5f8db49d examples/http_server.py: Bind to 0.0.0.0, to be accessible from other hosts.
This is helpful when running on deeply embedded targets, but may be
"security risk". Caveat emptor.
2016-04-02 23:14:19 +03:00
Paul Sokolovsky
c07a03a36d examples/http_server.py: Introduce main() function.
Allows to re-run code if it was imported as a module (e.g., on bare-metal
ports).
2016-04-02 20:57:58 +03:00
Paul Sokolovsky
aa3fb7b387 examples/http_server.py: Refactor/simplify for Python 3.5. 2016-04-02 20:53:29 +03:00
Paul Sokolovsky
fd2b71f972 examples/http_client.py: Introduce main() function.
Allows to re-run code if it was imported as a module (e.g., on bare-metal
ports).
2016-04-02 19:13:39 +03:00
Paul Sokolovsky
a5d07c3aba examples/http_client.py: Improve CPython compatibility in stream mode. 2016-04-02 17:28:42 +03:00
Paul Sokolovsky
a5d2af7949 unix/file: "encoding" arg to open() isn't kw-only.
And with "buffering" arg introduced, it's non possible to make it
non-kwonly.
2016-04-02 17:23:51 +03:00
Paul Sokolovsky
e5fa163a4c unix/file: Parse "buffering" argument of open() builtin.
It's ignored (unbuffered, raw I/O is used), but least makes it compatible
with CPython.
2016-04-02 17:23:46 +03:00
Damien George
a0cb4eda9a esp8266: Use VM_HOOK to call ets_loop_iter within the VM.
Starting with a divisor of 10, pystone_lowmem gives a score of 256.
2016-04-02 01:34:32 +03:00
Paul Sokolovsky
cef073877b example/http_client.py: Remove unused code. 2016-04-01 21:10:06 +03:00
Paul Sokolovsky
cf4b72bf13 examples: http_client.py, http_server.py aren't just unix, move to network/. 2016-04-01 20:53:23 +03:00
Stephen Kyle
b475327ffa py/map: Prevent map resize failure from destroying map. 2016-04-01 16:36:00 +03:00
Damien George
6a051a8e0b esp8266/uart: Get ctrl-C working now that event-based REPL is disabled. 2016-04-01 14:53:01 +03:00
Damien George
fb6cc96951 esp8266/uart: Comment out old, unused rx buffering code.
This was originally used for non-event based REPL processing.  Then it
was unused when event-based processing was activated.  But now that event
based is disabled, and non-event based is back, there has been new ring
buffer code to process the chars.
2016-04-01 14:30:47 +03:00
Paul Sokolovsky
fc4c43a72e esp8266: Switch to non event-driven REPL to support paste mode. 2016-04-01 14:22:28 +03:00
Paul Sokolovsky
785cf9a61f esp8266: Support dedicated REPL loop (aka pull-style).
Event-driven loop (push-style) is still supported and default (controlled
by MICROPY_REPL_EVENT_DRIVEN setting, as expected).

Dedicated loop worked even without adding ets_loop_iter(), though that
needs to be revisited later.
2016-04-01 14:02:36 +03:00
Paul Sokolovsky
777232c9a5 esp8266: Disallow recursive calls to REPL.
Before this change, if REPL blocked executing some code, it was possible
to still input new statememts and excuting them, all leading to weird,
and portentially dangerous interaction.

TODO: Current implementation may have issues processing input accumulated
while REPL was blocked.
2016-04-01 12:53:50 +03:00
Pavol Rusnak
3d4a535208 unix: implement -i option (inspect - start REPL after script is finished) 2016-04-01 12:35:45 +03:00
Paul Sokolovsky
5531437941 esp8266: Move PHY mode constants from modesp to modnetwork. 2016-04-01 12:10:11 +03:00
Damien George
4b597a1c1a esp8266: Reset term_obj on reboot.
Also, term_obj can be NULL if socket enables REPL duplication signalling
before os.dupterm is called, so it should be checked.
2016-03-31 19:56:52 +03:00
Paul Sokolovsky
98af891610 esp8266: Implement input part of dupterm handling.
The idea is following: underlying interrupt-driven or push-style data source
signals that more data is available for dupterm processing via call to
mp_hal_signal_dupterm_input(). This triggers a task which pumps data between
actual dupterm object (which may perform additional processing on data from
low-level data source) and input ring buffer.
2016-03-31 19:49:55 +03:00
Paul Sokolovsky
61fa7c8152 esp8266: Switch back to accumulating input data via ring buffer.
But now it's generic ring buffer implemented via ringbuf.h, and is intended
for any type of input, including dupterm's, not just UART. The general
process work like this: an interrupt-driven input source puts data into
input_buf, and then signals new data available via call to
mp_hal_signal_input().
2016-03-30 18:50:38 +03:00
Paul Sokolovsky
2e75a17bab esp8266: Fix issue when current repl line was garbage-collected.
Reference it from root pointers section.
2016-03-30 18:13:03 +03:00
Paul Sokolovsky
b1dfdaf6cb py/ringbuf.h: Add reusable ring buffer class.
Features inline get/put operations for the highest performance. Locking
is not part of implementation, operation should be wrapped with locking
externally as needed.
2016-03-30 14:48:31 +03:00
Paul Sokolovsky
f50d9477c1 docs: network: esp8266: .scan() is now synchronous and returns result list. 2016-03-30 11:56:20 +03:00
Paul Sokolovsky
d7019d0628 docs: network: esp8266: status is WLAN object method. 2016-03-30 11:53:45 +03:00
Damien George
9475cc59e6 esp8266: Support synchronous wifi scanning.
That is: aps = if0.scan()

TODO: make sure that returned list has tuple with values in "standard"
order (whatever that standard is).
2016-03-30 11:35:03 +03:00
Damien George
2599672384 py/parsenum: Use pow function to apply exponent to decimal number.
Pow is already a dependency when compiling with floats, so may as well
use it here to reduce code size and speed up the conversion for most
cases.
2016-03-29 22:12:07 +01:00
Damien George
e1e7657277 py/formatfloat: Fix further cases of buffer overflow in formatting.
Includes extensive test cases to catch hopefully all cases where
buffer might overflow.
2016-03-29 22:07:15 +01:00
Damien George
03b8bb7ec9 py/formatfloat: Fix case of float format where leading digit was "10".
When taking the logarithm of the float to determine the exponent, there
are some edge cases that finish the log loop too large.  Eg for an
input value of 1e32-epsilon, this is actually less than 1e32 from the
log-loop table and finishes as 10.0e31 when it should be 1.0e32.  It
is thus rendered as :e32 (: comes after 9 in ascii).

There was the same problem with numbers less than 1.
2016-03-29 22:03:13 +01:00
Paul Sokolovsky
d88250c06e esp8266: Reduce heap size for now to avoid random segfaults on WiFi connect. 2016-03-29 21:14:41 +03:00
Paul Sokolovsky
c4506ed869 esp8266: Let esp8266 "os" messages go to standard (REPL) UART.
That's definitely helpful for debugging.
2016-03-29 21:10:10 +03:00
Paul Sokolovsky
402a743821 esp8266/esp_mphal: Add support for debug UART-only output.
Helpful when debugging dupterm support (because otherwise all output is
spooled to dupterm too).

To use:

mp_printf(&mp_debug_print, "...");
2016-03-29 11:48:43 +03:00
Paul Sokolovsky
8fc5e56a6a esp8266: Enable uos.dupterm() method. 2016-03-29 11:41:23 +03:00
Paul Sokolovsky
c961889e34 esp8266: Add basic support for duplicating REPL output. 2016-03-29 11:13:32 +03:00
Damien George
6ca17c1922 esp8266: Implement os.urandom function.
Uses what is suspected to be a hardware random number generator.
2016-03-29 10:29:57 +03:00
Paul Sokolovsky
b4070ee8a4 esp8266: Allow to build without FatFs support again. 2016-03-28 21:35:41 +03:00
Paul Sokolovsky
2f02302e22 esp8266: Support importing modules from filesystem. 2016-03-28 18:39:34 +03:00
danicampora
193795398d docs: Correct pin interrupt example code for the WiPy. 2016-03-28 13:12:58 +02:00
Damien George
71d40f132d esp8266: Zero out fs_user_mount state on (soft) reset.
Otherwise device stays mounted on soft reset and leads to corruption
(since block device object is now gone).
2016-03-28 13:28:41 +03:00
Paul Sokolovsky
9edd736ee6 esp8266/moduos: Add os.remove(), proxying to VFS object. 2016-03-28 12:50:07 +03:00
Paul Sokolovsky
e8e116e7fc esp8266/moduos: Factor out VFS method proxy helper. 2016-03-28 12:44:36 +03:00
Paul Sokolovsky
8b08a0d9ed esp8266/moduos: Add listdir() proxy for MP_STATE_PORT(fs_user_mount)[0].
I.e. os.listdir(...) will redirect to
MP_STATE_PORT(fs_user_mount)[0].listdir(...).
2016-03-28 12:29:47 +03:00
Damien George
61230e007d esp8266/moduos: Use mp_rom_map_elem_t for static const dictionary. 2016-03-28 12:08:36 +03:00
Paul Sokolovsky
b01a373adb esp8266: deploy: Use --flash_size=8m option to esptool.py.
Most esp8266 modules have at least 1MB (8Mbit) of flash. If not set, vendor
functions allow to access only first 512K.
2016-03-28 11:28:16 +03:00
Paul Sokolovsky
cd6194aefc esp8266/esp8266.ld: Put FatFs to FlashROM. 2016-03-27 17:15:25 +03:00
Paul Sokolovsky
374654f2b8 esp8266: Enable FatFs support. 2016-03-27 17:13:47 +03:00
Paul Sokolovsky
fe9bc0c573 esp8266/README: Update for the current status of the port. 2016-03-27 16:10:58 +03:00
Paul Sokolovsky
bbc65d4eda esp8266/modesp: flash_read(): Accept buffer to read to as a second argument. 2016-03-27 15:34:35 +03:00
Paul Sokolovsky
fd86bf5917 esp8266/modesp: flash_write(): Writes in multiples of 4 bytes. 2016-03-27 15:32:58 +03:00
Paul Sokolovsky
53302f1616 esp8266: Set up UART handling task soon into init process.
Otherwise, events may be posted to non-initialized task, which leads to
segfaults.
2016-03-27 14:33:17 +03:00
Paul Sokolovsky
651a188299 extmod/vfs_fat_diskio: Actually support sectors != 512 with Python blockdevs. 2016-03-27 14:21:06 +03:00
Paul Sokolovsky
13394a632d unix/unix_mphal: Hack to make uos.dupterm() actually work.
See https://github.com/micropython/micropython/issues/1736 for the
list of complications. This workaround instead of duplicating REPL
to another stream, switches to it, because read(STDIN) we use otherwise
is blocking call, so it and custom REPL stream can't be used together.
2016-03-27 14:02:03 +03:00
Paul Sokolovsky
53ad5edc01 py/stream: Fix stupid thinko with variable naming/shadowing. 2016-03-27 12:58:33 +03:00
Paul Sokolovsky
87c783b454 docs/esp8266: esp.mac() replaced with network.WLAN.mac(). 2016-03-27 06:59:39 +03:00
Paul Sokolovsky
679fe0abae docs/esp8266: esp.wifi_mode() replaced with network.WLAN.active(). 2016-03-27 06:59:00 +03:00
Paul Sokolovsky
eda8746324 docs/esp8266: phy_mode() moved to network module. 2016-03-27 06:58:06 +03:00
Paul Sokolovsky
935e021250 esp8266: Put modpybi2c.o to FlashROM. 2016-03-26 10:59:25 +02:00
Damien George
c33a76059f esp8266/tests: Add neopixel.py test. 2016-03-26 10:55:29 +02:00
Damien George
3962766be0 esp8266: Add esp.neopixel_write function to bit-bang WS2812 data. 2016-03-26 10:55:21 +02:00
Damien George
b62beadae0 esp8266: Link ADC class into machine module. 2016-03-26 00:41:37 +02:00
Paul Sokolovsky
f71c0699a5 esp8266: Put utils.o to FlashROM. 2016-03-26 00:39:51 +02:00
Paul Sokolovsky
9c7e3353e5 esp8266: Put lexerstr32.o into FlashROM. 2016-03-26 00:39:02 +02:00
Paul Sokolovsky
ba640bde55 esp8266/esppwm.c: Fix IRQ handler prototype. 2016-03-26 00:34:28 +02:00
Damien George
632d8efa05 esp8266: Add PWM support.
PWM implementation uses a timer and interrupts (FRC1), taken from
Espressif's/NodeMCU's implementation and adapted for our use.

8 channels are supported, on pins 0, 2, 4, 5, 12, 13, 14, 15.

Usage:

    import machine
    pwm0 = machine.PWM(machine.Pin(0))
    pwm0.freq(1000)
    pwm0.duty(500)

Frequency is shared (ie the same) for all channels.  Frequency is
between 1 and 1000.  Duty is between 0 and 1023.
2016-03-26 00:32:37 +02:00
Damien George
82b95f625e esp8266: Implement software SPI class.
Supports speeds up to 500k baud, polarity=0/1, phase=0/1, and using any
pins.  Only supports MSB output at the moment.
2016-03-25 23:28:13 +02:00
Paul Sokolovsky
91031a75a1 extmod/modlwip: lwip_socket_setsockopt: Handle option value properly. 2016-03-25 20:53:52 +02:00
Paul Sokolovsky
4332d72fd8 extmod/modlwip: Add lwip->POSIX error map for lwIP 1.4.0.
Between 1.4.0 and 1.4.1, lwIP errors were renumbered.
2016-03-25 20:32:01 +02:00
Paul Sokolovsky
de0c84ebf1 extmod/modlwip: lwip_tcp_send: Handle properly send buffer full condition.
Per POSIX http://pubs.opengroup.org/onlinepubs/9699919799/functions/send.html :
"If space is not available at the sending socket to hold the message to be
transmitted, and the socket file descriptor does not have O_NONBLOCK set,
send() shall block until space is available. If space is not available at the
sending socket to hold the message to be transmitted, and the socket file
descriptor does have O_NONBLOCK set, send() shall fail [with EAGAIN]."
2016-03-25 18:38:13 +02:00
Paul Sokolovsky
5e75f335e6 extmod/modlwip: Implement setsocketopt(SO_REUSEADDR). 2016-03-25 17:44:24 +02:00
Paul Sokolovsky
0cb10b5220 docs/esp8266/quickref: Add note about GPIO16. 2016-03-25 16:48:15 +02:00
Paul Sokolovsky
159f1aaca8 docs/esp8266/quickref: Note that timers supported are virtual ones. 2016-03-25 16:44:13 +02:00
Paul Sokolovsky
e589cddcd4 docs/esp: Remove getaddrinfo(), now in socket module as expected. 2016-03-25 16:39:18 +02:00
Paul Sokolovsky
6e6488530e docs: More standard modules for esp8266. 2016-03-25 16:33:05 +02:00
Paul Sokolovsky
4b5606bc09 docs/network: esp8266: Update docs on WLAN constructor. 2016-03-25 16:30:06 +02:00
Paul Sokolovsky
ee6fcc6f91 docs: Add standard modules list for esp8266. 2016-03-25 15:17:55 +02:00
Paul Sokolovsky
96a644076d docs/topindex.html: Refer to "pyb" module only for pyboard. 2016-03-25 15:12:26 +02:00
Paul Sokolovsky
8f1854ad2d extmod/modlwip: Add SOL_SOCKET and SO_REUSEADDR constants for setsockopt(). 2016-03-25 15:06:12 +02:00
Paul Sokolovsky
ac671546d1 esp8266/README: Remove outdated reference to initial port heap size. 2016-03-25 15:02:23 +02:00
Paul Sokolovsky
88f60de914 tests: Add test for io.BufferedWriter. 2016-03-25 15:01:19 +02:00
Paul Sokolovsky
2c81b9be28 py/modio: io.BufferedWriter: Describe flushing policy. 2016-03-25 14:59:30 +02:00
Paul Sokolovsky
063e6e7d0a py/modio: Implement io.BufferedWriter.flush(). 2016-03-25 14:33:38 +02:00
Paul Sokolovsky
5d93dfbc2c py/modio: Initial implementation of io.BufferedWriter class.
Just .write() method implemented currently.
2016-03-25 01:10:49 +02:00
Paul Sokolovsky
3dbd2ee926 extmod/modwebsocket: Implement read support. 2016-03-25 00:51:51 +02:00
Paul Sokolovsky
4a02a8f74d py/stream: Fix object vs ptr usecase in mp_stream_writeall(). 2016-03-24 19:43:08 +02:00
Paul Sokolovsky
24342dd65e extmod/modwebsocket: Start module for WebSocket helper functions.
Currently, only write support is implemented (of limited buffer size).
2016-03-24 19:16:00 +02:00
Paul Sokolovsky
d4c8e626f2 py/stream: Add mp_stream_writeall() helper function.
Spools entire output buffer to a blocking stream (chunk by chunk if
needed).
2016-03-24 19:09:00 +02:00
Damien George
a5d48b1162 esp8266: Add tests/onewire.py as a driver and test code for ds18b20 dev. 2016-03-24 17:35:26 +02:00
Damien George
78d0dde562 esp8266: Add onewire helper functions as C module.
Includes functions to read and write bits and bytes.
2016-03-24 17:33:42 +02:00
Damien George
0cdbd356fd esp8266: Implement bit-bang I2C read, and add i2c.readfrom method.
I2C reading tested with TSL2561 luminosity sensor.
2016-03-24 11:46:05 +02:00
Damien George
5b9f361824 esp8266: Clean up bit-bang I2C implementation.
Changed from using set_sda_scl function to independent set_sda and
set_scl functions.
2016-03-24 11:37:52 +02:00
Paul Sokolovsky
667d64b430 esp8266/modpybi2c: Add missing include. 2016-03-24 11:21:36 +02:00
Damien George
dd32f02cc3 esp8266: Add basic I2C driver, with init and writeto methods.
Tested and working with SSD1306 I2C display.
2016-03-24 11:17:17 +02:00
Damien George
7059c8c23c esp8266: Expose pin object as a public structure for use as C pin API.
This is an initial attempt at making a simple C pin API for writing
things like I2C drivers in C.
2016-03-24 11:07:41 +02:00
Paul Sokolovsky
a1d072df81 esp8266: Enable auto-indent in REPL. 2016-03-23 16:30:29 +02:00
Paul Sokolovsky
df1f6783f2 esp8266: Add "socket" and "usocket" aliases for lwip module. 2016-03-23 16:25:55 +02:00
Paul Sokolovsky
494aea3e86 esp8266: Enable non-blocking stream support. 2016-03-23 16:15:49 +02:00
Damien George
5bc9398d9d esp8266: Enable more extmod's: uheapq, ure, uzlib. 2016-03-23 14:19:14 +02:00
Damien George
8000d51b68 esp8266: Add module weak link from json to ujson. 2016-03-23 14:16:46 +02:00
Paul Sokolovsky
1a0adf49df esp8266: Enable urandom module. 2016-03-23 13:33:17 +02:00
Damien George
e673714cfe esp8266: Make mp_hal_delay_us work with new event framework. 2016-03-23 13:01:21 +02:00
Paul Sokolovsky
58e2ad42ae esp8266: Update README with the latest features. 2016-03-23 12:08:15 +02:00
Damien George
b894551772 extmod/uctypes: Change param type from void* to byte*. 2016-03-19 22:13:17 +00:00
Damien George
da161fd9f0 extmod/uctypes: Finish support for FLOAT32 and FLOAT64 types. 2016-03-19 21:59:42 +00:00
Damien George
12154b1774 extmod/uctypes: Use mp_binary_get_val helper when extracting value.
It handles more cases than mp_binary_get_int.
2016-03-19 21:41:01 +00:00
Damien George
8d4d6731f5 py/parse: When looking up consts, check they exist before checking type. 2016-03-19 21:36:32 +00:00
Peter Hinch
2b302dad51 docs: Update pyb.UART.any() to mention that it returns character count. 2016-03-17 20:19:36 +00:00
Peter Hinch
6d5a549067 docs: Mention that pyb.SPI constructor accepts "X" and "Y" arguments. 2016-03-17 20:19:08 +00:00
Peter Hinch
b8133c4c0f docs: Update pyb.I2C constructor to reflect changes in Pyboard Lite. 2016-03-17 20:18:36 +00:00
Peter Hinch
4a6cac4643 docs: Update asm tutorial, maximum number of allowed args is now 4. 2016-03-17 20:17:40 +00:00
Damien George
99146ea444 tests/io: Remove "testfile" at end of open_plus test. 2016-03-17 20:09:33 +00:00
Damien George
556a1df6fd esp8266/ets_alt_task: Make FIRST_PRIO=0 to cover all task priorities.
FIRST_PRIO=2 works but using 0 is hopefully safer, and can anyway be
optimised in the future.
2016-03-17 16:28:06 +00:00
Paul Sokolovsky
9d7b871f58 esp8266: Store frozen modules in FlashROM.
Requires special lexer to access their contents.
2016-03-17 23:06:47 +08:00
Damien George
2466cb67f8 docs/esp8266: Update quick reference: i2c.readfrom and neopixel example. 2016-03-16 13:37:39 +00:00
Damien George
3acaa28b52 py: Don't allocate an extra parse node for power exponent.
Previous to this patch, the "**b" in "a**b" had its own parse node with
just one item (the "b").  Now, the "b" is just the last element of the
power parse-node.  This saves (a tiny bit of) RAM when compiling.
2016-03-16 13:04:51 +00:00
Paul Sokolovsky
52e062ef33 py/frozenmod: Allow port to override lexer to use for frozen modules. 2016-03-16 17:42:37 +07:00
Damien George
664f03f466 tests: Add a test for argument passing to inline-asm functions. 2016-03-16 08:24:07 +00:00
Damien George
9a58316de2 py/objfun: Allow inline-asm functions to be called with 4 arguments. 2016-03-16 08:22:26 +00:00
Damien George
be989be861 qemu-arm: Enable builtin override feature, and enable more tests.
Hopefully these tests run reliably on Travis.
2016-03-15 13:45:32 +00:00
Damien George
1ded19d4b3 qemu-arm: Reinitialise uPy heap and runtime at start of each test.
Previous to this patch, all qemu-arm tests were running in the same
session, and global variables could be left over from the previous test.
This patch makes it so that the heap and runtime are reinitialised at
the start of each test.
2016-03-15 13:42:36 +00:00
Damien George
157056ecdf tests: Add new subdir "stress/" specifically for stress tests. 2016-03-15 13:20:18 +00:00
Damien George
ab69ed7dac tests: Split large tests into smaller files, to run with a small heap.
All tests in basics/ directory can now run and pass using 64-bit unix
port with only a 16k heap (./run-tests --heapsize 16k).  Tests in this
directory should remain small so they can be used for ports with a
small heap.
2016-03-15 13:07:41 +00:00
Damien George
9996adc37d tests/run-tests: Add cmd line option "--heapsize".
This allows you to specify the heapsize that unix will use when running
the test suite, eg: ./run-tests --heapsize 16k
2016-03-15 13:04:43 +00:00
Damien George
cea6cf8a5e py/formatfloat: Fix buffer overflow when formatting tiny numbers. 2016-03-15 12:21:56 +00:00
Damien George
0d1f8868b6 py: For mp_buffer_info_t, change len type from mp_uint_t to size_t. 2016-03-15 12:20:57 +00:00
Damien George
77f85db41e py/objarray: Fix array slice assignment when array is reallocated.
Addresses issue #1898.
2016-03-14 23:12:54 +00:00
Damien George
06b398489e py/parsenum: Fix compiler warnings for no decl and signed comparison. 2016-03-14 22:52:52 +00:00
Damien George
0be6359f39 py: When printf'ing an object as a pointer, pass the concrete pointer. 2016-03-14 22:41:14 +00:00
Damien George
2a1cca20b1 py: Fix passing of some wide int types to printf varg format list.
Passing an mp_uint_t to a %d printf format is incorrect for builds where
mp_uint_t is larger than word size (eg a nanboxing build).  This patch
adds some simple casting to int in these cases.
2016-03-14 22:40:39 +00:00
Damien George
e7cd1699df py/argcheck: Use size_t instead of mp_uint_t to count number of args. 2016-03-14 22:35:48 +00:00
Damien George
dddb98db8b py/parsenum: Use size_t to count bytes, and int for type of base arg.
size_t is the proper type to count number of bytes in a string.  The base
argument does not need to be a full mp_uint_t, int is enough.
2016-03-14 22:34:03 +00:00
Dave Hylands
99fc0d120a stmhal: NUCELO_F401RE cleanup
Added definitions for SPI1, SPI2, and SPI3
Removed USB stuff (that could be removed)
Updated BOARD name defintion
2016-03-13 12:36:39 +00:00
Dave Hylands
00f921ce02 stmhal: Rename STM32F401NUCLEO to NUCLEO_F401RE
This makes the board match the name printed on the board (and
agree with the documentation)
2016-03-13 12:36:39 +00:00
Dave Hylands
031fadd10e stmhal: Add board definition files for NUCLEO_F411RE 2016-03-12 16:16:15 -08:00
Paul Sokolovsky
e5c39a3a9e esp8266: Switch to lwIP built from source.
Using https://github.com/pfalcon/esp-open-lwip project.
2016-03-12 11:45:53 +07:00
Paul Sokolovsky
0779409d0d extmod/modlwip: lwip_tcp_receive: Properly map lwIP error to POSIX errno. 2016-03-12 11:42:15 +07:00
Paul Sokolovsky
ba8f7d5171 extmod/modlwip: Add socket.setblocking() method. 2016-03-12 10:52:50 +07:00
Paul Sokolovsky
09ed5bcbbb extmod/modlwip: Rework getaddrinfo() data passing.
The code is based on Damien George's implementation for esp8266 port,
avoids use of global variables and associated re-entrancy issues, and
fixes returning stale data in some cases.
2016-03-12 10:50:51 +07:00
Peter Hinch
21b74604f9 docs: Add Python speed optimisation guide, including minimal viper ref. 2016-03-11 16:33:36 +00:00
Peter Hinch
85d3b6165a docs: Update details on using ADCAll object for vref/vbat channels. 2016-03-11 16:33:09 +00:00
Peter Hinch
70f32f0f73 docs: Update asm_thumb2_hints_tips re return type of asm funcs. 2016-03-11 16:32:42 +00:00
Christopher Arndt
3d0e3a3d3e esp8266: Mention git submodule in build instructions for esp8266 port. 2016-03-11 10:07:02 +00:00
Damien George
932f07ccf5 esp8266: Rejig Makefile so extmod/modlwip.o is placed under build/. 2016-03-11 12:00:01 +07:00
Paul Sokolovsky
4c2cb7e384 esp8266: Define MICROPY_EVENT_POLL_HOOK for the port. 2016-03-11 10:41:10 +07:00
Paul Sokolovsky
6e5c31c947 esp8266: Be sure to build ets_alt_task. 2016-03-11 09:43:39 +07:00
Paul Sokolovsky
a099bfe89c esp8266/esp_mphal: Add higher-level event polling function.
ets_event_poll() polls both system events and uPy pending exception.
2016-03-11 09:42:03 +07:00
Paul Sokolovsky
e5b047369b extmod/modlwip: Use MICROPY_EVENT_POLL_HOOK for event polling if defined.
Instead of just delaying 100ms if event isn't yet ready.

So far applies only to default, "infinite" socket timeout.
2016-03-11 09:32:07 +07:00
Paul Sokolovsky
54fc247f9b esp8266/ets_alt_task: Update for vendor SDK 1.5.0.
SDK 1.5.0 has a task with priority 3: ets_task(401001f4, 3, 3fff9808, 4).
Recognizing SDK version requires the latets esp-open-sdk build.
2016-03-11 09:17:57 +07:00
Paul Sokolovsky
97375f4576 esp8266/ets_alt_task: Be sure to "pop" event before calling its handler.
Otherwise, if handler calls recursive event loop, there's infinite
recursion (because the loop calls the same handler on same event again).
2016-03-11 09:16:34 +07:00
Damien George
7261f17b9e esp8266: Feed WDT in ets_loop_iter(). 2016-03-11 09:15:06 +07:00
Paul Sokolovsky
97c2628900 esp8266: Add alternative event loop implementation.
This implementation provides the same interface and uses the same
datastructures as used by BootROM, i.e. is a drop-in replacement for it.
But it offers one advantage: it allows to run single iteration of
event-pumping loop.

Original BootROM function are renamed, prefixed with underscore. There's
a switch which allows to use forward calls to them, for compatibility
testing.

The implementation also includes workarounds for hardware timer handler,
and these workarounds may be SDK version specific.
2016-03-11 09:13:31 +07:00
Damien George
9ae51257bd py: Use MP_SMALL_INT_POSITIVE_MASK to check if uint fits in a small int.
Using the original WORD_MSBIT_HIGH-logic resulted in errors when the
object model is not REPR_A or REPR_C.
2016-03-10 21:52:56 +00:00
Paul Sokolovsky
5239a8a82b esp8266/modnetwork: Add symbolic names for network interfaces: STA_IF & AP_IF.
These are expected to be passed to network.WLAN() to instantiate network
interface objects.
2016-03-10 10:44:15 +07:00
Paul Sokolovsky
a49c16069c esp8266/modnetwork: Introduce interface .config() method.
Allows to set (in case keyword args are given) or query (in case a single
"symbolic keyword" (a string, value is the same as keyword)) arbitrary
interface paramters (i.e. extensible and adaptable to various hardware).

Example usage:

ap_if = network.WLAN(1)
ap_if.config(essid="MicroPython on Air")
print(ap_if.config("essid"))
2016-03-10 10:41:55 +07:00
Paul Sokolovsky
d5a12a6608 esp8266/modnetwork: Move config defines to the top. 2016-03-10 10:39:52 +07:00
Paul Sokolovsky
1c43a0fbf8 esp8266/modnetwork: Add per-interface .active() method.
Allows to up/down interface when called with a boolean, or query current
state if called without args. This per-interface method is intended to
supersede adhoc network.wifi_mode() function.
2016-03-10 09:31:23 +07:00
Paul Sokolovsky
7378c50b2f esp8266: Move wifi_mode() and phy_mode() to network module. 2016-03-10 09:29:21 +07:00
Paul Sokolovsky
9e8396accb esp8266/modnetwork: Allow to configure STA and AP interfaces separately.
On ESP8266, there're 2 different interfaces. Pretending it's not the case
desn't make sense. So, network.WLAN() now takes interface id, and returns
interface object. Individual operations are then methods of interface
object. Some operations require i/f of specific type (e.g. .connect()
makes sense only for STA), other are defined for any (e.g. .ifconfig(),
.mac()).
2016-03-10 09:24:54 +07:00
Christopher Arndt
9b5e05a7c7 stmhal: Add makefile target and configuration to deploy via OpenOCD. 2016-03-09 23:00:17 +00:00
Ryan Shaw
ad725a6661 stmhal: Add support for generic STM32F439 board (non DISCO). 2016-03-09 22:46:41 +00:00
Damien George
853fb08d0d mpy-cross: Remove setting of MICROPY_FORCE_32BIT=1 from Makefile.
Building in 32-bit mode was only to reduce binary size on 64-bit machines
and is otherwise not needed.  Having it forced to 32-bit meant an
unnecessary dependency on 32-bit libraries that is now removed.
2016-03-09 15:56:11 +00:00
Christopher Arndt
07554486ee stmhal: Add makefile target to deploy stmhal build via ST-LINK. 2016-03-09 13:26:23 +00:00
Damien George
6b80ebe32e docs/esp8266: Fix indent errors, typos, and add info about REPL UART. 2016-03-09 13:01:32 +00:00
Damien George
42ef5a1567 docs: Allow list of versions to be specified by environment variable. 2016-03-09 12:43:22 +00:00
Damien George
5b74bba3a3 docs: Add versions.html template and support code for a version sidebar. 2016-03-09 12:15:47 +00:00
Damien George
4b6077b3fe docs/esp8266: Minor tweaks to quickref, Timer and I2C classes. 2016-03-09 11:02:38 +00:00
Paul Sokolovsky
43d497592f extmod/modlwip: Factor out "socket connected" check to a function.
Same code repeated for each send*() and recv*() function.
2016-03-09 12:43:09 +07:00
Paul Sokolovsky
fda874e406 extmod/modlwip: Support non-blocking recv(). 2016-03-09 12:39:33 +07:00
Paul Sokolovsky
7379be3673 extmod/modlwip: Add .write() stream method. 2016-03-09 12:35:43 +07:00
Damien George
4f64f6bfd3 extmod/modlwip: Still process remaining incoming data of a closed socket.
It can happen that a socket gets closed while the pbuf is not completely
drained by the application.  It can also happen that a new pbuf comes in
via the recv callback, and then a "peer closed" event comes via the same
callback (pbuf=NULL) before the previous event has been handled.  In both
cases the socket is closed but there is remaining data.  This patch makes
sure such data is passed to the application.
2016-03-09 12:31:25 +07:00
Damien George
6d2e9e70b3 extmod/modlwip: Check for state change during recv busy-wait loop.
For example, the peer may close the connection while recv is waiting for
incoming data.
2016-03-09 12:29:40 +07:00
Paul Sokolovsky
6185dc5f3d extmod/modlwip: Add stream .read() and .readline() methods. 2016-03-09 09:20:22 +07:00
Paul Sokolovsky
f1919b7c98 extmod/modlwip: Add dummy .makefile() method. 2016-03-09 09:14:45 +07:00
Paul Sokolovsky
c7fb87caff extmod/modlwip: Add stream protocol read method. 2016-03-09 09:12:32 +07:00
Damien George
f7be80398e esp8266: Move pyb.freq to machine.freq. 2016-03-09 09:03:59 +07:00
Damien George
809fbeefb7 docs: Add esp8266 quick reference page, with basic info. 2016-03-08 23:06:15 +00:00
Damien George
dcdf8f2d14 py/objboundmeth: Allocate arg state on stack if heap alloc fails.
If the heap is locked, or memory allocation fails, then calling a bound
method will still succeed by allocating the argument state on the stack.

The new code also allocates less stack than before if less than 4
arguments are passed.  It's also a tiny bit smaller in code size.

This was done as part of the ESA project.
2016-03-08 15:36:53 +00:00
Damien George
bb293e6bcf stmhal: Add stmhal-specific README.md with extra details for this port. 2016-03-08 12:00:38 +00:00
Damien George
2c72ae5c29 stmhal: Switch from dfu-util to tools/pydfu.py for deflt deploy method.
tools/pydfu.py is now the recommended way of deploying a DFU file.  Old
behaviour of dfu-util can be obtained by passing USE_PYDFU=0 when invoking
make.

The main README.md file has been updated to reflect this change.
2016-03-08 11:58:39 +00:00
Damien George
f0e2d13fd2 tests/run-tests: Simplify handling of newline in output from tests.
Now, all output has newlines converted to \n, regardless of port or
platform.
2016-03-08 10:20:38 +00:00
Paul Sokolovsky
ed593780bf extmod/modlwip: Implement dummy setsockopt(). 2016-03-08 14:24:49 +07:00
Paul Sokolovsky
a0cd118b14 esp8266/main: Module to run on boot is "boot", not "main". 2016-03-08 12:37:24 +07:00
Paul Sokolovsky
f8d42da104 extmod/modlwip: Add .print() method. 2016-03-08 11:37:15 +07:00
Damien George
3fbbbecec9 esp8266: Put more code in iROM section.
Also explicitly name the py/*.o files in the linker file, to enable easy
testing of putting certain ones in iRAM.
2016-03-08 11:31:39 +07:00
Paul Sokolovsky
04a9ac7f38 extmod/modlwip: Update make_new() arguments for recent refactor. 2016-03-08 10:31:21 +07:00
Paul Sokolovsky
d684f872bd esp8266/Makefile: Add define for ESP8266 lwIP. 2016-03-08 10:29:05 +07:00
Damien George
05dda0ee9e esp8266: Enable modlwip. 2016-03-08 10:21:50 +07:00
Paul Sokolovsky
88b0490945 esp8266: Don't gc-collect BSS.
None of the other ports do, since introduction of mp_state_ctx_t. In
the case of current esp8266 port, heap is inside BSS, so scanning it
picked up a lot of dead pointers.
2016-03-08 10:16:06 +07:00
Markus Fix
4f0080346b py/emitglue: Get persistent bytecode working on Linux ARM platform. 2016-03-07 15:15:23 +00:00
Dave Hylands
484a471f9b stmhal: Fix some typos in stm32f411 files, regarding FS layout and CSV. 2016-03-07 12:42:30 +00:00
Dave Hylands
367c084c4b stmhal: Fix typo in stm32f401.ld file, regarding flash size. 2016-03-07 12:38:57 +00:00
Dave Hylands
0edfb7a115 stmhal: Make spi use mp_hal_gpio_set_af 2016-03-07 12:24:53 +00:00
Damien George
d964873e56 tests/run-tests: Fix logic when selecting test-dirs for a given target. 2016-03-07 12:00:16 +00:00
Pavol Rusnak
ce3beb1672 stmhal: Unify comments in stm32f4xx_hal_conf.h across all boards.
To make it easier to spot differences.
2016-03-07 11:28:36 +00:00
Paul Sokolovsky
b86c20676e tests/recursive_iternext.py: Make low-heap friendly. 2016-03-07 15:30:02 +07:00
Paul Sokolovsky
db984b73f3 esp8266: Enable stack overflow checking. 2016-03-07 14:15:00 +07:00
Paul Sokolovsky
1d5d4f49d9 py/stackctrl: Add mp_stack_set_top() to explicitly set stack top value.
Useful for embedded targets with fixed stack layout.
2016-03-07 14:12:24 +07:00
Paul Sokolovsky
419bb26ddc tests/print_exception: Use exception which prints the same regardless of config.
NameError may either include offending name or not. Unfortunately, this
change makes test float-dependent. And using integer division leads to
different error message than CPython.
2016-03-07 14:10:06 +07:00
Paul Sokolovsky
d973c1bc12 test/string_format_fp30: Variant of string_format for 30-bit stuffed float. 2016-03-06 06:10:40 +02:00
Paul Sokolovsky
50e0a7b9d4 test/float2int_fp30: Variant of float2int for 30-bit stuffed float. 2016-03-06 06:08:38 +02:00
Damien George
fbb3c190f9 tests: Remove commented out tests so test script is not too big. 2016-03-06 06:00:28 +02:00
Damien George
14848ffa12 tests: Reduce large object allocations so tests can run with small heap. 2016-03-06 05:59:46 +02:00
Damien George
52d7685d9a esp8266: Allow Makefile's BAUD variable to be overridden. 2016-03-06 05:57:36 +02:00
Paul Sokolovsky
d9d4a72679 esp8266/uart: Add uart_flush() function. 2016-03-05 22:13:26 +02:00
Paul Sokolovsky
d3a4d39687 esp8266: Support raising KeyboardInterrupt on Ctrl+C. 2016-03-05 22:01:27 +02:00
Damien George
077448328a esp8266/etshal.h: More prototypes of ESP8266 SDK/BootROM functions. 2016-03-05 21:56:32 +02:00
Paul Sokolovsky
26f0616e8f esp8266/modmachine: Add Pin class from modpyb. 2016-03-05 21:43:11 +02:00
Paul Sokolovsky
eb247eacd8 esp8266/modpybpin: Add support for GPIO16.
GPIO16 is actually special-function I/O, though some boards have LED there.
2016-03-05 21:37:55 +02:00
Damien George
342d903a13 esp8266: Expose simple pin API at C level. 2016-03-05 21:36:32 +02:00
Damien George
cdad2b6f4d esp8266: Implement Pin.__call__() and Pin.OPEN_DRAIN mode.
OPEN_DRAIN is of course synthesised.  All pin modes are tested and
working.
2016-03-05 21:35:32 +02:00
Paul Sokolovsky
8ab16b6af0 esp8266: Add custom _assert() function.
Enabling standard assert() (by removing -DNDEBUG) produces non-bootable
binary (because all messages go to .rodata which silently overflows).
So, for once-off debugging, have a custom _assert().
2016-03-05 11:30:15 +02:00
Paul Sokolovsky
c70637bc00 esp8266/modmachine: Timer: Add ONE_SHOT and PERIODIC symbolic constants. 2016-03-04 22:26:59 +02:00
Paul Sokolovsky
98b727c931 esp8266/modmachine: Use etshal.h. 2016-03-04 19:41:15 +02:00
Paul Sokolovsky
f22a4f8e0a esp8266/etshal.h: Add timer functions prototypes. 2016-03-04 19:39:24 +02:00
Paul Sokolovsky
f39bcb304b esp8266/modmachine: Changing params of a timer requires disarming it first. 2016-03-04 18:41:37 +02:00
Paul Sokolovsky
7193086c03 esp8266/modmachine: Basic implementation of Timer for OS virtual timers. 2016-03-04 18:40:35 +02:00
Paul Sokolovsky
4284b3811f esp8266: Enable modmachine. 2016-03-04 17:37:13 +02:00
Paul Sokolovsky
5d7c408ba8 esp8266: Add modmachine with mem* arrays. 2016-03-04 17:34:25 +02:00
Paul Sokolovsky
6abafca1aa esp8266/modutime: Support float argument to time.sleep(). 2016-03-04 16:52:30 +02:00
Paul Sokolovsky
a4c8ef9d16 esp8266: Reset "virtual RTC" on power on.
Initialize RTC period coefficients, etc. if RTC RAM doesn't contain valid
values. time.time() then will return number of seconds since power-on, unless
set to different timebase.

This reuses MEM_MAGIC for the purpose beyond its initial purpose (but the whole
modpybrtc.c need to be eventually reworked completely anyway).
2016-03-04 16:49:01 +02:00
Damien George
57884996b9 esp8266: Add time.{sleep_ms,sleep_us,ticks_ms,ticks_us,ticks_diff}.
Framework for time.ticks_cpu added, but not implemented.
2016-03-04 09:25:53 +02:00
Damien George
b41a14a4b9 esp8266: Add mp_hal_delay_us function. 2016-03-04 09:25:05 +02:00
Damien George
f70873db23 esp8266: Enable more features in mpconfigport.h.
This is to get the test suite running and passing.
2016-03-03 23:34:31 +02:00
Paul Sokolovsky
7480ee5892 esp8266: Enable uhashlib module. 2016-03-03 20:14:50 +02:00
Paul Sokolovsky
70fb9ee99b esp8266: Enable config settings helpful for debugging. 2016-03-03 20:12:26 +02:00
Paul Sokolovsky
2382d30318 tests/run-tests: Skips for esp8266. 2016-03-03 15:38:43 +02:00
Paul Sokolovsky
259f1344ca esp8266/esp8266.ld: Link in SDK version section.
Otherwise, os.uname() returns empty string for SDK version.
2016-03-03 15:37:19 +02:00
Paul Sokolovsky
ff69a1d27d esp8266: Enable ujson, ubinascii, and uctypes modules. 2016-03-03 15:35:29 +02:00
Paul Sokolovsky
65405247a0 extmod/vfs_fat_lexer: Add func prototype for pedantic warnings. 2016-03-03 14:53:36 +02:00
Paul Sokolovsky
3aa0f2eed3 extmod/vfs_fat_lexer: Make conditional on FatFs support enabled. 2016-03-03 14:08:27 +02:00
Paul Sokolovsky
453a2a3d7c extmod/vfs_fat: Add lexer, move from stmhal port for reuse. 2016-03-03 13:25:44 +02:00
Paul Sokolovsky
701c4152c1 tarvis: Unbreak build by ignoring lack of i386 arch in some repos.
For some reason, Travis now has Google Chrome PPA included in the builder
image, that lacks i386 arch, that leads to apt-get update error. So, ignore
it (this is not ideal as may lead to actual repo update failures to be missed,
leading to installation of old package, leading to weird errors; let's keep
that in mind).
2016-03-03 11:06:36 +02:00
Damien George
02ea74d8f5 esp8266: Add network.ifconfig(). 2016-03-02 23:04:21 +02:00
Damien George
1febaf3ac3 esp8266: Change "soft reboot" message to work with pyboard.py. 2016-03-02 22:58:48 +02:00
Damien George
d083d7d610 esp8266: Allow Makefile's PORT variable to be overridden. 2016-03-02 22:50:55 +02:00
Damien George
6f4357c28e esp8266: Enable math module. 2016-03-02 22:43:10 +02:00
Damien George
6d0629bddc esp8266: Enable float support, using 30-bit stuffed floats.
No complex numbers though.
2016-03-02 22:43:10 +02:00
Damien George
ecd1272d16 esp8266: Switch bignum implementation from long-long to mpz. 2016-03-02 22:43:10 +02:00
Damien George
3d1d92acfc mpy-cross: Give a more sensible error message when file doesn't exist. 2016-03-02 16:12:00 +00:00
Noah Rosamilia
6bb9d3ea3e docs/uctypes.rst: Fix typo (steamlined -> streamlined). 2016-03-02 00:25:10 +02:00
Paul Sokolovsky
dc320164d8 unix/modsocket: Add comment regarding close() error checking (which is none). 2016-03-02 00:20:48 +02:00
Damien George
4f72aa86bf py/qstrdefs: Add mkdir and remove qstrs for user-mountable filesystems. 2016-02-29 10:54:00 +00:00
Paul Sokolovsky
2740dd85f2 tests/vfs_fat_ramdisk: Add testcase for .rename(). 2016-02-29 01:24:18 +02:00
Paul Sokolovsky
e0821830b0 extmod/vfs_fat: Add .rename() method. 2016-02-29 01:23:53 +02:00
Paul Sokolovsky
09e363316f extmod/vfs_fat_misc: Fix cc3200 port build. 2016-02-29 01:15:19 +02:00
Paul Sokolovsky
9fb36af9af tests/vfs_fat_ramdisk: Allow to run in native mode (don't use "with"). 2016-02-29 01:03:32 +02:00
Paul Sokolovsky
08fed6992f extmod/vfs_fat_misc: Add func prototype for pedantic warnings. 2016-02-29 00:48:45 +02:00
Paul Sokolovsky
6ef65e70af extmod/vfs_fat: Add fat_vfs_import_stat(), reusable import stat routine.
Moved from stmhal.
2016-02-29 00:44:32 +02:00
Paul Sokolovsky
eaa96a7610 tests/vfs_fat_ramdisk: Add testcase for .mkdir(). 2016-02-29 00:06:44 +02:00
Paul Sokolovsky
bbe832a0b2 extmod/vfs_fat: Add .mkdir() method. 2016-02-29 00:03:20 +02:00
Paul Sokolovsky
6f469209e9 extmod/vfs_fat: Fix unused param warning/error. 2016-02-28 20:45:51 +02:00
Paul Sokolovsky
57425b648f tests/vfs_fat_ramdisk: Add testcase for .remove(). 2016-02-28 20:30:59 +02:00
Paul Sokolovsky
19749db7bf extmod/vfs_fat: Add .remove() method.
Based on stmhal implementation - rather small, so just duplicating.
2016-02-28 20:30:07 +02:00
Paul Sokolovsky
9c081b740b tests/vfs_fat_ramdisk: Add .listdir() testcase. 2016-02-28 17:19:12 +02:00
Paul Sokolovsky
cd6d189f48 extmod/vfs_fat: Move listdir() method from stmhal for reuse. 2016-02-28 17:17:24 +02:00
danicampora
8a18084571 cc3200: Update WiPy software version to 1.2.0 2016-02-27 00:19:53 +01:00
Damien George
ac23662550 unix: Enabled importing of persistent bytecode (.mpy files). 2016-02-25 10:12:30 +00:00
Damien George
476c15290d stmhal: Enabled importing of persistent bytecode (.mpy files). 2016-02-25 10:12:30 +00:00
Damien George
56f76b873a mpy-cross: Add new component, a cross compiler for MicroPython bytecode.
This component allows to generate .mpy files (pre compiled bytecode)
which can be executed within any MicroPython runtime/VM.
2016-02-25 10:12:21 +00:00
Damien George
ea23520403 py: Add MICROPY_DYNAMIC_COMPILER option to config compiler at runtime.
This new compile-time option allows to make the bytecode compiler
configurable at runtime by setting the fields in the mp_dynamic_compiler
structure.  By using this feature, the compiler can generate bytecode
that targets any MicroPython runtime/VM, regardless of the host and
target compile-time settings.

Options so far that fall under this dynamic setting are:
- maximum number of bits that a small int can hold;
- whether caching of lookups is used in the bytecode;
- whether to use unicode strings or not (lexer behaviour differs, and
  therefore generated string constants differ).
2016-02-25 10:05:46 +00:00
danicampora
57b96a7be2 docs: Correct machine.Timer code examples related to duty cycle. 2016-02-23 20:22:26 +01:00
danicampora
8e1fdf2eb3 docs: Add note on machine.Timer class regarding PWM output pins. 2016-02-23 19:53:59 +01:00
Damien George
28adab36c7 py/emitinlinethumb: Use qstrs instead of char* for names of asm ops.
Reduces code size by 112 bytes on Thumb2 arch, and makes assembler faster
because comparison can be a simple equals instead of a string compare.

Not all ops have been converted, only those that were simple to convert
and reduced code size.
2016-02-23 15:20:39 +00:00
Damien George
e9d1a94bf0 py/malloc: Provide a proper malloc-based implementation of realloc_ext. 2016-02-23 13:53:38 +00:00
Damien George
d6c558c0aa py/parse: Use m_renew_maybe to ensure that memory is shrunk in-place.
The chunks of memory that the parser allocates contain parse nodes and
are pointed to from many places, so these chunks cannot be relocated
by the memory manager.  This patch makes it so that when a chunk is
shrunk to fit, it is not relocated.
2016-02-23 13:44:29 +00:00
danicampora
add930c4b5 cc3200: Rename 'server' class to 'Server' for consistency. 2016-02-22 22:54:34 +01:00
danicampora
12547ce737 docs: Minor change to improve clarity in machine.Timer docs. 2016-02-22 19:16:30 +01:00
danicampora
cc7a4d7db2 tests/wipy: Correct machine test expected result. 2016-02-22 00:42:05 +01:00
danicampora
5148860332 tests: Skip uctypes and urandom tests not supported byt the WiPy. 2016-02-21 22:30:35 +01:00
danicampora
495e7cfebc cc3200: Improve robustness of WLAN during sleep modes. 2016-02-21 22:01:18 +01:00
danicampora
f5248a087a cc3200: Fix "debug" build. 2016-02-21 21:53:21 +01:00
danicampora
0d210a0be8 docs: Correct WiPy Timer docs. 2016-02-21 21:53:20 +01:00
danicampora
fe9620a2bd test/wipy: Add Timer class tests. 2016-02-21 21:53:20 +01:00
danicampora
73c9f85b4c cc3200: Simplify the Timer API and correct the documents.
Make the PWM duty cycle configurable from 0.00 to 100.00 by
accepting values from 0 to 10000.
Add automatic Pin assignment when operating in PWM mode.
2016-02-21 21:53:16 +01:00
danicampora
562bcffd3a cc3200: Improve robustness of the I2C driver.
When scanning for devices, try reading then writing. Increase the
timeout of the transactions from 10 to 20 ms.
2016-02-21 21:41:06 +01:00
danicampora
ed8db2e371 cc3200: Finally fix the Timer class API.
Properly calculate the period and the prescaler, this now allows to
set the PWM frequency down to 5Hz. Make Timer IDs go from 0 to 3.
Add the trigger definitions for the channel IRQ.
2016-02-21 21:41:06 +01:00
Damien George
53fec1ef48 README.md: Add link to micropython.org. 2016-02-17 23:01:49 +00:00
Damien George
40d8430ee3 py/vm: Add macros to hook into various points in the VM.
These can be used to insert arbitrary checks, polling, etc into the VM.
They are left general because the VM is a highly tuned loop and it should
be up to a given port how that port wants to modify the VM internals.

One common use would be to insert a polling check, but only done after
a certain number of opcodes were executed, so as not to slow down the VM
too much.  For example:

 #define MICROPY_VM_HOOK_COUNT (30)
 #define MICROPY_VM_HOOK_INIT static uint vm_hook_divisor = MICROPY_VM_HOOK_COUNT
 #define MICROPY_VM_HOOK_POLL if (--vm_hook_divisor == 0) { \
     vm_hook_divisor = MICROPY_VM_HOOK_COUNT;
     extern void vm_hook_function(void);
     vm_hook_function();
 }
 #define MICROPY_VM_HOOK_LOOP MICROPY_VM_HOOK_POLL
 #define MICROPY_VM_HOOK_RETURN MICROPY_VM_HOOK_POLL
2016-02-17 09:02:19 +00:00
Alex March
69d9e7d27d py/repl: Check for an identifier char after the keyword.
- As described in the #1850.
- Add cmdline tests.
2016-02-17 08:56:15 +00:00
Paul Sokolovsky
dfc35afba1 tests/vfs_fat_ramdisk: Skip test if can't allocate ramdisk. 2016-02-15 17:27:57 +02:00
Paul Sokolovsky
6cee869feb py/qstrdefs.h: qstrs for VfsFat. 2016-02-15 12:49:32 +02:00
Dave Hylands
ec37239e53 stmhal: Improvements to the STM32F4DISC UART config settings. 2016-02-15 10:11:29 +00:00
Dave Hylands
4b2938a4b0 stmhal: Some NETDUINO_PLUS_2 cleanup
- Put the I2C bus on the corect pins
- Add the appropriate board_init to power the shield
2016-02-15 10:07:27 +00:00
Damien George
9598f36a84 py/emitnative: Add check that RHS of viper store is of integral type. 2016-02-15 09:38:02 +00:00
Damien George
94e4bd456f py/asmx64: Support all 16 regs in reg to memory move instructions. 2016-02-15 09:05:50 +00:00
Damien George
46fc7a3d75 py/asmx64: Add helper macro for generating REX_[WRXB] bits from a reg64. 2016-02-15 09:02:13 +00:00
Paul Sokolovsky
4cd45f48b1 cc3200: Fix breakage after VfsFat refactor. 2016-02-15 10:39:56 +02:00
Paul Sokolovsky
46a0ac02c5 extmod/vfs_fat_ffconf: Reusable FatFs module, move from stmhal/ffconf.
TODO: Probably merge into vfs_fat_diskio.
2016-02-15 00:19:27 +02:00
Paul Sokolovsky
6b0c88256b extmod/vfs_fat_file: Reusable FatFs module, move from stmhal/file. 2016-02-15 00:16:46 +02:00
Paul Sokolovsky
8cb78e0e53 extmod/vfs_fat_diskio: Reusable FatFs module, move from stmhal/diskio. 2016-02-15 00:08:37 +02:00
Paul Sokolovsky
72085a669b py/mpstate.h: fs_user_mount is now standard, reusable uPy functionality. 2016-02-15 00:02:03 +02:00
Paul Sokolovsky
9fdac9144d tests/vfs_fat_ramdisk: Allow to override sector size. 2016-02-14 20:52:38 +02:00
Paul Sokolovsky
9d0525182d tests/vfs_fat_ramdisk: Switch to ioctl-based blockdev API. 2016-02-14 20:45:08 +02:00
Paul Sokolovsky
9e0478a902 stmhal/diskio: Add provision for default returns for ioctl INIT/SEC_SIZE.
If None was returned for such requests (which likely means that user simply
didn't handle them), it means successful init and default sector size of 512
bytes respectively. This makes only BP_IOCTL_SEC_COUNT a mandatory request,
and thus re-establishes parity with old interface, where only .count() is
mandatory().
2016-02-14 20:34:30 +02:00
Paul Sokolovsky
0ee1d0f407 tests/vfs_fat_ramdisk: Add test for VfsFat. 2016-02-14 19:15:22 +02:00
Paul Sokolovsky
e3c66a5a67 stmhal/file: Paranoid compiler warnings cleanness. 2016-02-14 19:15:22 +02:00
Paul Sokolovsky
baf47c84c4 stmhal/diskio,file: Nanbox cleanness. 2016-02-14 19:15:22 +02:00
Paul Sokolovsky
1bb15ca427 extmod/fsusermount,vfs_fat: Nanbox cleanness. 2016-02-14 19:15:22 +02:00
Paul Sokolovsky
8a43a41b3a unix: Enable VfsFat support. 2016-02-14 19:15:22 +02:00
Paul Sokolovsky
e9be6a378c extmod/vfs_fat: Object-oriented encapsulation of FatFs VFS.
This implements OO interface based on existing fsusermount code and with
minimal changes to it, to serve as a proof of concept of OO interface.

Examle of usage:

bdev = RAMFS(48)
uos.VfsFat.mkfs(bdev)
vfs = uos.VfsFat(bdev, "/ramdisk")
f = vfs.open("foo", "w")
f.write("hello!")
f.close()
2016-02-14 19:15:21 +02:00
Paul Sokolovsky
dc3eb55e6a py/obj.h: If not float support is enabled, define mp_obj_is_float(o) to false.
We have so many configuration options, that finally having shortcuts like
this is helpful and cuts on number of ifdef's.
2016-02-14 19:12:57 +02:00
Paul Sokolovsky
e5cff5b223 tests/bytearray1: Add testcases for "in" operator. 2016-02-14 18:57:18 +02:00
Paul Sokolovsky
c38809e26b py/objarray: Implement "in" operator for bytearray. 2016-02-14 18:57:11 +02:00
Paul Sokolovsky
609a9c6b71 eagle.rom.addr.v6.ld: More symbols from SDK 1.5.0. 2016-02-14 13:09:42 +02:00
Paul Sokolovsky
bf904b238d extmod/fsusermount: umount: Add NULL pointer checks. 2016-02-13 22:55:35 +02:00
Paul Sokolovsky
d4315a6caf float/string_format: Split large test in 2. 2016-02-13 17:18:55 +02:00
Paul Sokolovsky
2850e7cd97 tests/run-tests: Add esp8266 target. 2016-02-13 17:03:12 +02:00
Paul Sokolovsky
dc587a3623 test/float2int: Make test output clearer. 2016-02-13 17:03:02 +02:00
Paul Sokolovsky
a2e39a756c esp8266/modpybrtc: Simplify multiplication by fixed-point value. 2016-02-12 23:20:52 +02:00
Dave Hylands
32b7e93535 stmhal: NUCLEO 401 - Add definitions for I2C2 and I2C3 2016-02-10 21:26:14 -08:00
Dave Hylands
f791e14750 stmhal: CERB40 - Add pins defines for I2C3 2016-02-10 21:25:30 -08:00
Dave Hylands
38ac23c942 stmhal: NUCLEO 401 - Add a bunch of missing pins and reorder the pins
This groups the pins for a port together and puts them in numerical
order. It also adds ARDUINO pin names.
2016-02-10 21:23:45 -08:00
Dave Hylands
7bb501ef9f stmhal: Add a function for setting the pin alternate function
mp_hal_gpio_set_af will search for a given function and unit
and set the alternate function to the alternate function index
found.
2016-02-10 21:20:14 -08:00
Damien George
e372e83b30 extmod/fsusermount: Move BP_IOCTL_xxx constants to fsusermount.h. 2016-02-10 23:40:35 +00:00
Damien George
b33a770596 extmod/fsusermount: Support mounting of multiple block devices.
This patch adds support to fsusermount for multiple block devices
(instead of just one).  The maximum allowed is fixed at compile time by
the size of the fs_user_mount array accessed via MP_STATE_PORT, which
in turn is set by MICROPY_FATFS_VOLUMES.

With this patch, stmhal (which is still tightly coupled to fsusermount)
is also modified to support mounting multiple devices   And the flash and
SD card are now just two block devices that are mounted at start up if
they exist (and they have special native code to make them more
efficient).
2016-02-10 23:40:10 +00:00
Damien George
34023eb673 stmhal: Add mount/umount/mkfs to os module. 2016-02-10 23:40:10 +00:00
Damien George
0e0ce47e65 extmod/fsusermount: Expose umount as a public function. 2016-02-10 23:40:10 +00:00
Damien George
3770cd2e70 stmhal: Expose flash and SD card as proper objects with block protocol.
You can now create (singleton) objects representing the flash and SD
card, using:

    flash = pyb.Flash()
    sdcard = pyb.SDCard()

These objects provide the block protocol.
2016-02-10 23:40:10 +00:00
Damien George
f7e5e677df tests/pyb: Add simple test for stm module on pyboard. 2016-02-10 17:06:07 +00:00
Damien George
3a042fb921 extmod/modmachine: Truncate integers that are to be stored using mem*.
Addresses issue #1835.
2016-02-10 17:05:03 +00:00
Dave Hylands
a888d5ab91 stmhal: Improve NUCLEO-F401RE build, with UART2 as REPL.
This enables MICROPY_HW_HAS_FLASH which got missed.

The HW has UART2 on the 401 connected to the STLINK procesor
which exposes it as USB serial. This connects that up so that
you can get a REPL using the USB serial.
2016-02-10 16:50:05 +00:00
Damien George
13a4c120ce lib/fatfs: Add support for sector sizes larger than 512 bytes.
If MICROPY_FATFS_MAX_SS is defined to power of 2 value between 1024 and
4096, support for dynamic sector size in FatFs will be enabled.  Note
that FatFs reserves static buffer of MICROPY_FATFS_MAX_SS size for each
filesystem in use, so that value should be set sparingly.

Initial patch provided by @pfalcon.
2016-02-10 08:59:58 +00:00
Damien George
c33ad60a67 extmod/fsusermount: Change block protocol to support ioctl method.
The new block protocol is:
- readblocks(self, n, buf)
- writeblocks(self, n, buf)
- ioctl(self, cmd, arg)

The new ioctl method handles the old sync and count methods, as well as
a new "get sector size" method.

The old protocol is still supported, and used if the device doesn't have
the ioctl method.
2016-02-10 08:59:31 +00:00
Paul Sokolovsky
3846fd56c1 extmod/fsusermount: Implement separate umount() function. 2016-02-10 00:51:47 +02:00
Paul Sokolovsky
5b85a86ce3 extmod/fsusermount: Introduce separate mkfs() function.
Per the previously discussed plan. mount() still stays backward-compatible,
and new mkfs() is rought and takes more args than needed. But is a step
in a forward direction.
2016-02-10 00:50:07 +02:00
Damien George
a2e5e4c3d8 py/viper: Allow uint as index to load/store, and give better error msg. 2016-02-09 13:46:49 +00:00
Damien George
3e02b1d19a py/viper: Allow casting of Python integers to viper pointers.
This allows you to pass a number (being an address) to a viper function
that expects a pointer, and also allows casting of integers to pointers
within viper functions.

This was actually the original behaviour, but it regressed due to native
type identifiers being promoted to 4 bits in width.
2016-02-09 13:29:20 +00:00
Paul Sokolovsky
9e78ab4b86 esp8266/README: Add hint about adding toolchain to PATH. 2016-02-08 22:35:24 +02:00
Paul Sokolovsky
814b1ae3a9 esp8266/modpybrtc: pyb_rtc_memory(): Fix copy-paste error. 2016-02-08 21:39:33 +02:00
Alex March
81407729a5 esp8266/modesp: Implement flash_write(), flash_erase(). 2016-02-08 11:42:24 +02:00
Paul Sokolovsky
96688de601 cc3200: Add stmhal/builtin_open.c to build. 2016-02-07 01:26:01 +02:00
Paul Sokolovsky
ab0e36b3da stmhal/file: For self-contained usecase, don't define global types.
If MICROPY_VFS_FAT is defined, mp_type_fileio & mp_type_textio won't be
defined, as these may be alredy defined elsewhere. The idea is to have
compartmentalized VFS FatFs class, which can work in parallel with some
other "main" filesystem. E.g., for unix port, mp_type_fileio, etc. will
be defined for the main POSIX filesystem, while stmhal/file.c will be
a self-contained VFS file class.
2016-02-07 01:25:28 +02:00
Paul Sokolovsky
350ab0f570 stmhal/file: Recast as "FatFs file" class, to support other VFS types.
Move definition of mp_builtin_open_obj to a separate module, then file.c
becomes more or less compartmentalized FatFs file class, which can be used
together with file class implementations for other (V)FSes.
2016-02-07 01:25:28 +02:00
Paul Sokolovsky
103fbaaf27 extmod/fsusermount: Common subexpression elimination.
Don't repeat MP_STATE_PORT(fs_user_mount), use local var.
2016-02-06 22:26:34 +02:00
Paul Sokolovsky
5bf6eba845 tests/open_plus: Add tests for "r+", "w+" open modes. 2016-02-06 21:59:54 +02:00
Paul Sokolovsky
a63a4761cd unix/file: Stop assuming that O_RDWR == O_RDONLY | O_WRONLY.
That's not true e.g. on Linux.
2016-02-06 21:59:44 +02:00
Paul Sokolovsky
71206f02c3 stmhal: Move stmhal-specific FatFs routines/structs to fatfs_port.c. 2016-02-06 15:31:00 +02:00
Paul Sokolovsky
97a0846af9 stmhal/diskio: Introduce MICROPY_HW_HAS_FLASH setting.
To allow to reuse stmhal/diskio for ports which don't have flash but have
other storage devices.
2016-02-06 15:07:01 +02:00
Damien George
ff1a96ce2c py/mpz: Add commented-out mpz_pow3_inpl function, to compute (x**y)%z.
This function computes (x**y)%z in an efficient way.  For large arguments
this operation is otherwise not computable by doing x**y and then %z.

It's currently not used, but is added in case it's useful one day.
2016-02-03 22:30:49 +00:00
Doug Currie
2e2e15cec2 py/mpz: Complete implementation of mpz_{and,or,xor} for negative args.
For these 3 bitwise operations there are now fast functions for
positive-only arguments, and general functions for arbitrary sign
arguments (the fast functions are the existing implementation).

By default the fast functions are not used (to save space) and instead
the general functions are used for all operations.

Enable MICROPY_OPT_MPZ_BITWISE to use the fast functions for positive
arguments.
2016-02-03 22:13:39 +00:00
Damien George
5f3e005b67 py: Extend native type-sig to use 4 bits, so uint is separate to ptr.
Before this patch, the native types for uint and ptr/ptr8/ptr16/ptr32
all overlapped and it was possible to make a mistake in casting.  Now,
these types are all separate and any coding mistakes will be raised
as runtime errors.
2016-02-02 23:16:05 +00:00
Damien George
086d98cbde py/objstr: Make mp_obj_str_format_helper static. 2016-02-02 16:51:52 +00:00
Damien George
87e07ea943 py/objstr: For str.format, don't allocate on the heap for field name. 2016-02-02 16:26:21 +00:00
pohmelie
e3a29de1dc py/objstr: For str.format, add nested/computed fields support.
Eg: '{:{}}'.format(123, '>20')

@pohmelie was the original author of this patch, but @dpgeorge made
significant changes to reduce code size and improve efficiency.
2016-02-02 16:25:24 +00:00
Peter Hinch
2bd758fe96 drivers/sdcard: Add support for multi-block read/write; add SD test. 2016-02-02 11:16:15 +00:00
Paul Sokolovsky
67e8108345 extmod: Update uzlib to 1.2.2.
Fixes use of uninitialized structure field by tinf_uncompress().
2016-02-01 23:05:45 +02:00
Damien George
93bb7dffd2 py/vm: Fix popping of exception block in UNWIND_JUMP opcode.
Fixes issue #1812.
2016-02-01 16:07:21 +00:00
Damien George
9e677114e4 py/mpprint: Fix sign extension when printf'ing %u, %x and %X. 2016-02-01 15:08:42 +00:00
510 changed files with 108945 additions and 5928 deletions

View File

@@ -11,7 +11,7 @@ before_script:
# - sudo add-apt-repository -y ppa:ubuntu-toolchain-r/test
- sudo add-apt-repository -y ppa:terry.guo/gcc-arm-embedded
- sudo dpkg --add-architecture i386
- sudo apt-get update -qq
- sudo apt-get update -qq || true
- sudo apt-get install -y python3 gcc-multilib gcc-arm-none-eabi pkg-config libffi-dev libffi-dev:i386 qemu-system mingw32
# For teensy build
- sudo apt-get install realpath

View File

@@ -912,3 +912,854 @@ today. The names appear in order of pledging.
1955 Pieter Röhling
1957 uomorando, Italy
1959 Acacio Cruz
The MicroPython project raised further funds through a second
Kickstarter campaign that was primarily targeted at porting the
code to the ESP8266 WiFi chip. The campaign ended on 2nd March
2016 and gained the support of 1384 fantastic backers who believed
in the project and the principles of Open Source code. Those
backers who asked to be named are listed below, with an asterisk
indicating that they also supported the first campaign.
* 1 Gabriel, Seattle
* 2 @robberwick
* 6 Dave Hylands
7 Les, UK
8 Ryanteck LTD., UK
10 karlsruhe, HU
* 11 Turbinenreiter
13 Ben Nuttall, UK
* 14 Bryan Morrissey, MA, USA
* 15 Jogy, Qatar
* 16 BOB63,IT
19 ReaBoyd
* 20 Andrew, MK
* 21 chrisq, NO
22 Pascal RENOU, France
23 Javier G, ES
25 Forrest, US
26 Filip Korling, Sweden
27 roberthh - Rhineland
* 28 Herbert Graef, Stuttgart, thanking the MicroPython Team for this great project
* 29 johnsonfamily38, UK
30 CympleCy
31 OJ, PK
32 Daniel, SVK
33 Shabaz Mohammad
* 35 Kenneth Henderick, BE
* 37 Daniel Mouritzen, DK
39 Torntrousers, UK
* 44 Scanner
45 Radomir Dopieralski
46 Nick, UK
* 47 Jon Hylands, Canada
* 48 Ben Barwise Clacktronics
50 Rob Kent, UK
52 Carlos Pereira Atencio
54 Andy, UK
* 55 WMinarik, Canada
57 Hauffe, Germany
58 HyperTaz, IT
* 61 Michael Kovacs, AT
62 Erick Navarro, PE
69 Karan,US
* 71 Nick B, UK
* 72 Anthony Lister, NZ
* 73 Bryan Lyon
76 Miguel Angel Ajo, ES
* 78 Sebastian, Regensburg (GER)
* 80 iv3unm
81 Thierry BÉNET, FR
84 Jannis, Germany
86 Nathan Jeffrey
88 Cory Benfield, UK
90 Carlo, IT
* 91 Wojciech Bederski (@wuub)
92 Steve Holden, UK
93 Tristan Roddis, UK
94 Balder, Sweden
* 95 Rhys, UK
96 Rowan, UK
* 97 Gary Martin, Edinburgh
* 100 Mikael Eiman
* 101 torwag
* 102 Craig Barnes, UK
103 Andrea Grandi, UK
105 Piers, UK
* 109 Wayne Keenan
110 makuk66
111 Hamine,DZ
112 Arahavica,JP
* 113 Bill Eubanks, USA
114 Jonathan, UK
115 ghickman
* 117 Christian Lange, Germany
119 Jonty Wareing
121 TheHetman
123 Víctor R. Ruiz, Spain
* 124 Laurynas Paukste, Norway
* 125 Taki
126 André Milette, Canada
* 127 Ron Cromberge,NL
128 IJ, Thailand
* 130 IGOR VIZIR
132 Bill Saturno
134 scibi
136 Timbo, AU
137 Raphael Vogel, DE
* 139 jasonkirk, US
141 Linköping, Sweden
* 142 Dugres
144 DarioS, UK
146 NelisW
* 148 _Mark_
* 149 Folke Berglund, Sweden
150 Deniz Dag/Belgium
152 Jacques Thomas
153 Dag Henrik, Norway
* 154 Alexander Steppke
158 stavros.io
* 161 Seong-Woo Kim, KR
162 Aaron H, Seattle
164 Iwan, CZ
165 Jenning, DE
167 Oliver Z, Germany
* 168 Chris Mason, Australia
169 Fabio P. Italy
171 Jonathan, Ireland
173 Philipp B., DE
174 Mancho, IT
175 Mikkel Sørensen, DK
176 Raphael Lullis
* 177 Tim, China
179 JasperS, NL
180 Scott, AU
181 Roland Kay, UK
182 Adam Baxter
184 Hugo Herter
185 Simon AM, Malta
186 Leif Denby
190 Maxious
* 192 Guido, GER
* 193 Pierre Rousseau, Canada
195 Pete Hinch
* 198 KoalaBear,USA. TRUMPED 2016!
* 200 Pimoroni, UK
201 jpwsutton, UK
203 Felix, Sweden
204 Dmitri Don, Tallinn Estonia
205 PeteDemiSwede, UK
* 207 Serge GUILLAUME
208 Gurtubay, ES
209 Geir-Olav, NO
210 RayDeo, Germany
215 DIYAbility
216 Josef Dunbar, USA
* 217 Enrico, BE/IT
219 Damian Moore, UK
220 Wayne and Layne, LLC
221 The Old Crow, USA
224 Hackscribble, UK
* 225 Alex March, UK
226 @rdslw
227 Mike, Canada
* 228 Adrian Smith
229 Dinu Gherman, Germany
230 Tinamous.com
* 231 Nikesh, US
* 232 chrisallick.com
234 Daniel Von Fange
* 235 Michal Muhlpachr, CZ
* 236 Petr Viktorin
237 Ryan Aldredge
238 Patrik Wallström, SE
* 239 MobiusNexus
240 Stray, US
* 241 BOFG, no
244 Issac Kelly
* 247 David Prime
249 James Marsh, UK
* 250 BezouwenR
252 Avinash Magdum, India
253 Greg Abbas, Menlo Park CA
254 Jorge, ES
256 JohanP, swe
* 258 Ben Doan
259 Jan van Haarst, NL
* 263 JoshT, Los Angeles
264 cstuder, Switzerland
266 Jon Armani
* 270 Liam Welsh
271 Jason Peacock
272 Alejandro Lopez
275 Dan O'Donovan, UK
276 N1TWC
277 Roland Tanglao, Vancouver
278 Twpsyn
280 Robert, ME-US
* 282 Thomas, UK
283 Jeff Schroeder, USA
284 Paulus Schoutsen
* 287 Neon22, NZ
290 kbmeister
291 Gary Hahn
292 Dave Matsumoto, USA
296 Sam Lee, SG
304 Poul Borg, Denmark
307 MightyPork
308 Dale
* 312 Anton Kraft, Germany
315 Kism3t, UK
317 NateM
* 318 N&T, Calvijn Meerpaal, NL
322 Andreas Monitzer
323 Rikard, SE
328 Olaf, DE
* 329 John Boudreaux
330 DOCE, Germany
331 feilipu
332 Stefan Schwetschke
333 Wayneji, NZ
337 Alain de Lamirande, Canada
338 Hori, TW
340 Azmodie, UK
341 Lygon, UK
* 342 JRM in STL, USA
344 R Colistete-Jr., BR
* 345 ChristianG, DE
347 Nis Sarup, DK.
350 Nickedynick
351 Dazza, Oz
352 lispmeister, NL
355 Tomas Lubkowitz, SE
357 Mark, UK
* 358 Team ME
363 Papahabla
364 Greg Chevalley
365 Maic Striepe, Germany
369 Ian McMahon
371 A. DARGA, Fr
372 Ernesto Maranesi, BR
373 Steve Lyon
374 James Cloos
375 Bas Zeppenfeldt, The Netherlands
378 Pycom Ltd
380 Wade Christensen, USA
382 Justin Wing Chung Hui, UK
383 C Paulson
384 Ian Tickle
386 Danny, Seattle
388 Erik Moe, Chicago, IL
* 389 Eric B. Wertz, USA
390 Michael. CH
391 Christopher Baughman
392 James Churchill
393 Rob, DC
395 Whee Min, Singapore
* 396 Jason Doege, TX
401 MrFish
403 Thejesh GN
404 Markus, Sweden
405 AMR, Spain
407 Svet, ES
* 408 Thoralt, Germany
409 Emil, Sweden
410 David Moloney, ireland
411 Marco S, DE
415 Peter W., Austria
417 emendo A/S
* 419 Kalestis, Switzerland
421 Ondra, CZ
422 Elheffe
423 thinkl33t, UK
424 TonyF
425 Herr Robert Linder, PA, USA
* 426 Anders Astrom S(E|G)
* 428 Jussi Ylanen, CT, USA
431 Neil H., USA
434 Rod Perez, MX
435 Carol, US
436 Gina Haeussge, DE
438 Weilinger, GER
* 439 Ron Ward, Australia
441 Rex, UT, USA
* 444 Slush, CZ
445 Bruce, Florida
* 448 Patrick Di Justo
449 ScubaBearLA
450 Mike Causer, Sydney AU
451 Joel Fries, USA
* 452 Andrew Bernstein, US
454 EAS, Seattle, WA, USA
* 456 Christopher J. Morrone, USA
* 457 Anthony Gilley, Sweden
458 Andre Breiler, DE
* 460 Fuffkin, UK
* 461 adent, CZ
462 Samuel Pickard
463 Mirko, Germany
* 464 Ramin/US
465 Mike, Grenoble
466 Rolf, DE
* 467 Dave Haynes
* 469 Mac Ha, Vietnam
* 470 Enno, DE
* 473 Smudo, DE
* 474 Duncan, Scotland
475 Chris, UK
476 Peter Groen, NL
478 Gertjan Geerling, Nijmegen
* 479 Benjamin Eberle
* 480 Mechanical Men Sweden
* 482 Rémi de Chazelles, FR
483 mager, Bremen
484 jurekh, NL
* 485 Craig Burkhead
487 JohanHartman, SouthAfrica
* 489 Viktor, NL
491 Jean-Denis Carre
492 Jesse, Canada
493 Alex C. MacDonald, USA
* 494 GustavoV, MX
495 Sebastian, Berlin
497 Bernard, Feluy
* 500 Ron H, USA
501 Gregg "Cabe" Bond, UK
502 Colin, NI
504 Robin, USA
* 507 pkropf
* 510 6LhasaCo Canada
511 Tom Sepe, USA
513 Andrew McKenna
515 tom46037
516 G2, USA
* 517 Pauline Middelink, NL
* 518 Brush Technology, Ltd
520 Pierre Meyitang, USA
521 Stephanie Maks, Canada
526 John McClain
* 527 Sigadore, US
528 Richard Hudspeth, US
530 Martin, Austria
531 Stephen Eaton, Australia
* 533 RJCE, UK
535 Teiste, Finland
536 Pio, UK
537 DirtyHarry, DE
* 540 Dom G. UK
* 541 Nial, UK
543 Andreas, AUT
545 WisdomWolf
* 549 MrMx,ES
552 Daniel Soto, Landscape.
554 Claus Fischer, DK
557 Aleksi Määttä
560 Justin Wilcott, USA
562 LoneTone, UK
567 Cameron, US
568 Dirck, Germany
569 Michael Keirnan
571 Harry, CN
* 572 Ward Wouts
573 Dan Anaya, USA
574 Ben Bennett
575 nirvana2165, US
576 PDG, BZH
* 581 Visit, Thailand
582 John Carr, UK
* 583 Klankschap
587 jacky,FR
588 JD Marsters
591 Ryan Jarvis, US
595 Claudio Hediger, CH
* 597 Bambam, Sweden
598 Timothé, FR
* 599 Luís Manuel, Portugal
601 Eric, DE
602 Olaf, Cambridge, UK
* 603 Tim, Dubai
604 Tyndell, US
606 Ciellt AB, SE
607 Ömer Boratav
609 Guy Molinari, US
614 Freek Dijkstra
615 Carlos Camargo CO
616 Michael Nemecky, Norway
618 Ovidiu G.
619 arobg, USA
* 621 Geoff Shilling, US
623 EliotB, NZ
624 slos UK
625 Montreal, CA
* 626 Peter Korcz
627 Kodi
628 Jim, Valdosta, USA
629 Sander Boele, NL
630 Max Lupo
631 Daniel.B, Newcastle Australia
632 Andrés Suárez García, Vigo (Spain)
633 Rens, NL
634 Max Petrich, DE
635 Fabian Affolter, CH
636 Cadair
* 637 Mike Karliner
638 Daniel T, UK
639 Mark Campbell, UK
640 James S, Australia
641 PBTX!
* 642 amaza,SP
644 se4mus
* 645 Alexander Steffen
* 647 Jim Richards Maine, USA
649 Doug D, US
650 Keaton Walker
* 651 Scott Winder, USA
653 Jeff Fischer, USA
654 Andrej Mosat
655 Mohd Faizal Mansor, Malaysia
657 Mike "Cutter" Shievitz, US
* 658 Daniel Andersson, SE
659 Alexander, NL
660 François, CH
* 661 AndrewS, UK
662 Denisae, PT
663 KC8KZN
664 Angelo, Wales
665 BlueberryE, Germany
667 fvlmurat
668 Adam Wilson
675 Ulrich Norbisrath (http://ulno.net)
676 Daniel, Portland OR
* 677 Andreas Lindquist, SE
680 Jason, NL
682 lapawa, GER
683 John Batty, UK
685 Addy, Netherlands
686 Marc, CA
690 APapantonatos
691 gmorell, US
* 692 Jamie Mackenzie, Adelaide, SA
* 693 Dave Dean, US
697 woojay, US
698 Webabot, NY
* 699 Jason Fehr, Canada
700 Hadi (AU)
* 701 Abraham Arce
* 703 Must Be Art
712 Thanks for the great work!/datax-holding/Stuttgart
* 714 Thomas Pr., BE
715 Black Country Atelier BCA
718 Don W, Arlington VA
721 Xavier C. (EU)
722 Chad P. Lung, U.S.A
726 Alexander Lash (@lexlash)
727 Sven, MX
728 Terence, PL
* 730 Mauro De Giorgi, USA
735 Jay Ward, Canada
736 Fabian Topfstedt, AT
739 sjoerdDOTcom
740 David, Australia
743 Michael Niewiera, Germany
745 cbenhagen
746 berserck, CH
748 Lars Hansson, Sweden
750 Landrash
751 Richard B., CT USA
752 Neil Chandler, UK
* 753 John Griessen US
* 755 Caminiti, Mexico
757 Mikael Trieb, Sweden
760 S1GM9, MX
761 Dave C, US
* 763 Su Zhou, China
765 Caitlyn - USA
769 Will, NZ
770 CJB,UK
771 Victor Claessen, NL
772 Antal, CH
773 Tokyo, Japan
* 774 Join Business & Technology AB, Sweden
777 Overspeed Innovation
* 778 Bruce, Chanute KS
779 TOPALIS, RO
780 klaas2
781 Matthias Schmitz, Berlin
783 Jan Studený wishes "Python everywhere"
788 Ian, USA
789 Mark K, UK
791 DerFlob, Germany
792 Staffan Johansson, Sweden
793 Stefan W., DE
795 Mark S. Harris, Small Dog Electronics
796 Kittikun, TH
* 798 aerialist, Japan
799 Sweta
* 800 Mark Shuttleworth
802 Kim Thostrup
803 Andy Fundinger
810 Matt Vallevand, Detroit MI
813 Jim McDonald
816 Rob Dobson
817 Rafał Zieliński, PL
* 818 Shaun Walker, AUS
819 Timothy R, Belgium
820 clem
825 JuanB, ES
826 Randall Gaz, Colorado USA
827 Dick van Ginkel, The Netherlands
829 Jan-Pieter Van Impe
831 David Kirkpatrick, AU
832 Ravi Teja, India
833 AkosLukacs, HU
834 Dave Desson, CAN
837 LWQ.CZ, CZ
838 Robert W., Issaquah, WA
839 Daniel Hrynczenko
840 Martin Filtenborg, DK
841 InnHuchen, Ger
845 Raju Pillai,India
847 cfus/DE
* 851 Juli H.
853 David Monterroso Cabello , SP
857 24x8, LLC, US
860 Sebastian, DE
861 pajusmar
864 Ronnie, UK
* 867 Travis Travelstead, USA
* 870 Woodat, US/UK
872 Gary Bake, UK
873 Ernesto Martinez
* 874 Scottt, USA
876 Ronnie Kizzle, LA
880 Harish, Singapore
882 Wacht, Pittsburgh
883 PatrickF, US
886 Paolo, IT
888 Defragster
889 Rachel Rayns, UK
* 890 Peak Data LLC
891 Mindwarp, AU
892 Vincent Smedley, UK
* 894 Bailey & Brayden
898 Jacek Artymiak, UK
900 John Hudson, USA
* 901 ReneS, NL
* 902 B Stevens
903 Cptnslick, US
904 janlj@me.com
905 São Caetano do Sul, SP, Brazil
906 Lenz Hirsch
907 SerSher, RU
908 Florian, DE
909 Mathias Svendsen, DK
* 910 Jeremiah Dey-Oh
911 Allan Joseph Medwick
913 Matt, Australia
914 Christian Pedersen
* 915 SPIN
916 Denis M., Russia
917 Ahmed Alboori, Saudi Arabia
918 Luciano, Italy
919 Ragdehl
* 921 Artur, HU
922 Greg, NC - USA
924 Gurzixo
* 927 Gregg, Oregon
928 cwschroeder, BY
929 W. Bush - NY, USA.
932 ddparker
933 Enkion
* 934 Eric G. Barron
936 thomasDOTwtf
940 mifous, cucurbitae.eu
942 VFL68, FR
943 Casey, Hong Kong
* 945 Kean Electronics
946 Nima, UK
947 Klosinski, USA
948 PieWiE, NL
* 949 Rui Carmo, PT
* 950 basbrun.com
951 Aashu, UK
* 952 vk2nq - Brian
954 gojimmypi
955 Jack, USA
* 957 @SteveBattle
* 958 Beshr, Sweden
962 PeterR, UK
964 Russell Calbert
965 LAurent_B, Fr
967 Qazi, USA
971 Jonas, FR
973 PK Shiu
* 974 sea_kev
976 Radhika, USA
977 Chris Gibson, US
* 978 Mike, AU
* 979 Geeky Pete
981 Timmy the wonderdog
983 An Ostler it IT
984 Frank Ray Robles
985 Kurtsik
987 Johan, SE
988 NJBerland, Norway
992 Leon Noel - @leonnoel
994 Kjell, SE
995 boriskourt
997 Bartek B., CANADA
999 Thomas Wiradikusuma, Indonesia
1000 Trey, NOLA
1002 Jori, FI
1005 nmmarkin
1006 Mattias Fornander
1007 Panayot Daskalov, Bulgaria
*1009 AndyP, UK
1011 TSD
1013 Chris, Berlin
1017 Gareth Edwards, UK
1018 Trixam,DE
1019 César from Makespace Madrid, Spain
1020 Prajwal, Australia
*1024 Fred Dart - FTDI
1025 bsx
*1026 Regis, FR
1027 Adrian Hill
1029 Alice, UK
1030 Erkan Shakir, BG
1031 Alexander, EE
1033 Patric, Luxembourg
1034 For my beloved mother, Colleen Clancy.
1035 NigelB
1037 François, Aus/Fr
*1039 Thanura Siribaddana, Australia
1041 Harald, USA
1042 Jeremy Utting, NZ
1043 bejuryu, KR
*1044 Daniel Wood, UK
1046 C. J. Blocker
*1047 Rodrigo Benenson, Germany
1048 Håvard Gulldahl
1049 SeB, Belgium
1054 Ryan Miller, Austin TX
1055 Gianluca Cancelmi
1057 Francesco, IT
1058 RockTractor!
1060 Bill G., Atlanta GA USA
1061 joenotjoe
1064 ATrivedi, USA
1067 Jim Chandler, UK
1068 Aria Sabeti
1069 Noah Rosamilia, USA
1070 GAKgDavid, CA
1072 Markus, Austria
*1073 Tarwin, MUC
*1077 Balazs Kinszler, HU
*1080 pfh
*1082 Ovidiu Hossu, SG
*1083 mmhanif, NJ
*1084 Wincent Balin, DE
*1086 Anatoly Verkhovsky
*1087 Greg, Plano
*1089 Angelo Compagnucci
1090 Ryan Shaw (ryannathans), AU
1092 Dries007, BE
*1093 Dave Snowdon, UK
*1094 halfpress
*1096 DeuxVis, FR
*1097 Your Creative Solutions
1099 Emanuele Goldoni, IT
*1100 Tendayi Mawushe
1101 Rob, Tikitere
*1102 SolidStateSoul
*1103 Michael, GER
*1106 Paul, San Francisco
*1107 Oddvar Lovaas
*1108 Doc Savage, Man of Bronze
1109 Stijn Debrouwere
1111 Ark Nieckarz, USA
*1112 ECS87.com, USA
*1114 Gary P. Wolfe, USA
1117 Tom Hodson
*1118 @arikb (twitter)
1123 Piotr Gryko UK
*1125 Cantalaweb, Spain
1126 Edward of Clovis
1127 Jim G
*1128 billbr, Loveland, CO, USA
1129 dalanmiller
*1130 StephenH, UK
*1132 Thomas Sarlandie - @sarfata
1133 Doug Rohm, US
*1134 Eric Floehr, Ohio, USA
*1135 Sven Haiges
1136 relix42
*1137 Ralf Nyren
*1138 nickgb
1139 zwack, DE
1140 Michal B., PL
1141 Matt, Australia
1143 slv, Mi2
1144 Pawel, CH
*1145 James Saffery
*1147 nekomatic
*1149 @nt1, Earth
*1150 Alister Galpin, NZ
1151 Jayemel, UK
1152 Koalabs
1153 James Myatt, UK
*1154 DanS, Norway
1155 Sandeep, US
*1156 Anil Kavipurapu
*1158 Frederik Werner, DE
1160 Erik J, Canada
1164 bluezebra, Ireland
1168 Birk, DE
1169 Gabi, FR
*1173 mliberty, USA
1174 Jamie Smith, Scotland
1175 Sebastian, Germany
*1176 John Cooper, UK
1177 Moritz, DE
1178 Kevin, DE
*1179 Ming Leung, Canada
1180 Laird Popkin
1181 tasmaniac, GA
*1183 RichardW, UK
*1187 Thomas Quinlan, London, UK
1188 LGnap, BE
*1189 bloater, Edinburgh UK
1192 pakt, SE
1194 Sandsmark, NO
*1195 Gert Menke
1197 Emsi88, SK
1199 GTtronics HK Ltd.
1200 Jo, Bergen
*1202 MarkS, Australia
1203 Igor, HR
1204 Lord Nightmare
1205 Great Uncle Bulgaria, UK
*1206 salomonderossi
1208 Master_Ipse, DE
1209 Luis G.F, ES
1211 Harald, FO
*1212 Kimmo, Finland
*1213 P. Perreijn, Netherlands
1214 jcea, Spain
1215 simon holmes à court
1217 Bill M, Newcastle
*1218 snowball
*1221 Georges, CDN
1222 JPLa
1225 Erik Gullberg, Sweden
1226 Matthias Fuchs, IN, Germany
1229 Majed, CA
1230 Michiel, Reeuwijk
1231 Clive, Essex UK
1232 Jan Kalina, CZ
1234 MBBest, Australia
*1235 Reinoud de Lange, NL
1237 Jeffrey Park, South Korea
1238 David Olson
1239 Nathan Battan
1240 Marcus, TW
1241 randyrrt, USA
1242 Holger, Germany
1243 Dmitri Chapkine, FRANCE
1244 Ceyhun Kapucu, TR
1245 Hong Kong
*1246 gPozo, US
1247 Peter M, Sweden
*1249 Duncan, Cambridge
*1251 Schaeferling, DE
1252 Christian Prior, DE
*1256 ovig
1257 Kerry Channing, UK
1258 Exception42, GER
*1259 nchalikias
1261 Kittie, US
1263 Alex, Norway
1264 wats0n, TW
*1265 Henner
*1266 Mike M, AZ, USA
1268 Bobby Ly, USA
*1269 Espen STO, Norway
1270 arduware.cc
1274 Christopher Flynn, NH USA
*1275 Bruce Boyes, USA
1276 DCH
1278 McGinkel, Netherlands
1279 Dieter, Wien
1280 R. Tummers, NL
1283 Pranav Maddula, USA
1286 Dusan, SLovakia
1290 Stephen Youndt
*1291 Lertsenem, FR
1292 NuclearTide, London
1293 Ben Gift, USA
1294 rmg
1295 jmaybe, USA
1296 Allan G, Georgia
1297 Duncan Brassington, UK
1300 Hans, NL
1301 Valerio "valdez" Paolini, IT
1303 Neotreat, DE
1306 tomtoump
1307 Edward B Cox, England
1310 Oliver Steele
1311 merps, AUS
1313 n8henrie, USA
*1314 YGA-KSD n7/ULB, FR-BE
1317 Adrian, Romania
*1318 Luca "Loop", ITA
*1319 Michael Twomey, Ireland
1321 Trey Aughenbaugh
1322 Marcel Hecko, SK
1323 Hugo Neira, CL
1326 JH, US
*1330 Luthander, SE
1331 Rickard Dahlstrand, Sweden
1333 Olivier M., France
1334 DWVL, UK
1335 MRZANE, Sweden
1336 Benedikt, DE
*1338 Tiegeng, US
*1339 arthoo Eindhoven Nederland
1340 Magnus Gustavsson, Sweden
1341 Jan Bednařík
1344 Mike McGary: US
1346 mp3tobi
*1350 Cyberhippy
1351 Sandro, PT
1355 Kwabena W. Agyeman
1357 Ryan Young
*1358 Chiang Mai, Thailand
1359 AKLitman, USA
1360 JASK Enterprises, Ltd-John
*1361 Tom Gidden, UK
1362 AdamT, USA
1363 Jose de la Campa, BOL
1365 Steve Laguna, U.S.A
*1368 Walrusklasse, NL
1370 Timofei Korostelev, Belarus
1374 Janos,HU
*1375 Paul Cunnane
1377 IanE, UK
1378 Hans, NL
1379 Jose Angel Jimenez Vadillo, Spain
*1380 PaulT, Lancs
1383 Lutz; DE
1385 AnRkey
1387 Fredrik, FIN
1388 Matt W (funkyHat)
1389 Zeev Rotshtein, Israel
1391 joostd, NL
1392 Lukasz Blaszczyk, USA
*1397 Wei-Ning Huang, TW
1398 myu
*1399 Thorsten, Germany
1401 sm0ihr
1403 Xiaotian, Seattle US
*1406 -gt-, Czech Republic
1407 Mike Y. Diallo, US
1409 ubii, US

View File

@@ -16,16 +16,18 @@ The MicroPython project
This is the MicroPython project, which aims to put an implementation
of Python 3.x on microcontrollers and small embedded systems.
You can find the official website at [micropython.org](http://www.micropython.org).
WARNING: this project is in beta stage and is subject to changes of the
code-base, including project-wide name changes and API changes.
MicroPython implements the entire Python 3.4 syntax (including exceptions,
"with", "yield from", etc.). The following core datatypes are provided:
str (including basic Unicode support), bytes, bytearray, tuple, list, dict,
set, frozenset, array.array, collections.namedtuple, classes and instances.
Builtin modules include sys, time, and struct. Note that only subset of
Python 3.4 functionality implemented for the data types and modules.
"with", "yield from", etc., and additionally "async" keyword from Python 3.5).
The following core datatypes are provided: str (including basic Unicode
support), bytes, bytearray, tuple, list, dict, set, frozenset, array.array,
collections.namedtuple, classes and instances. Builtin modules include sys,
time, and struct. Note that only subset of Python 3.4 functionality
implemented for the data types and modules.
See the repository www.github.com/micropython/pyboard for the Micro
Python board, the officially supported reference electronic circuit board.
@@ -38,6 +40,8 @@ Major components in this repository:
with an STM32F405RG (using ST's Cube HAL drivers).
- minimal/ -- a minimal MicroPython port. Start with this if you want
to port MicroPython to another microcontroller.
- tests/ -- test framework and test scripts.
- docs/ -- user documentation in Sphinx reStructuredText format.
Additional components:
- bare-arm/ -- a bare minimum version of MicroPython for ARM MCUs. Used
@@ -47,10 +51,8 @@ Additional components:
- pic16bit/ -- a version of MicroPython for 16-bit PIC microcontrollers.
- cc3200/ -- a version of MicroPython that runs on the CC3200 from TI.
- esp8266/ -- an experimental port for ESP8266 WiFi modules.
- tests/ -- test framework and test scripts.
- tools/ -- various tools, including the pyboard.py module.
- examples/ -- a few example Python scripts.
- docs/ -- official documentation in RST format.
"make" is used to build the components, or "gmake" on BSD-based systems.
You will also need bash and Python (at least 2.7 or 3.3).
@@ -64,7 +66,7 @@ as ARM and MIPS. Making full-featured port to another architecture requires
writing some assembly code for the exception handling and garbage collection.
Alternatively, fallback implementation based on setjmp/longjmp can be used.
To build (*):
To build (see section below for required dependencies):
$ cd unix
$ make
@@ -129,7 +131,7 @@ The STM version
The "stmhal" port requires an ARM compiler, arm-none-eabi-gcc, and associated
bin-utils. For those using Arch Linux, you need arm-none-eabi-binutils and
arm-none-eabi-gcc packages from the AUR. Otherwise, try here:
arm-none-eabi-gcc packages. Otherwise, try here:
https://launchpad.net/gcc-arm-embedded
To build:
@@ -145,9 +147,7 @@ Then to flash the code via USB DFU to your device:
$ make deploy
You will need the dfu-util program, on Arch Linux it's dfu-util-git in the
AUR. If the above does not work it may be because you don't have the
correct permissions. Try then:
$ sudo dfu-util -a 0 -d 0483:df11 -D build-PYBV10/firmware.dfu
This will use the included `tools/pydfu.py` script. If flashing the firmware
does not work it may be because you don't have the correct permissions, and
need to use `sudo make deploy`.
See the README.md file in the stmhal/ directory for further details.

View File

@@ -34,9 +34,6 @@ int main(int argc, char **argv) {
return 0;
}
void gc_collect(void) {
}
mp_lexer_t *mp_lexer_new_from_file(const char *filename) {
return NULL;
}

View File

@@ -20,6 +20,7 @@
#define MICROPY_ENABLE_DOC_STRING (0)
#define MICROPY_ERROR_REPORTING (MICROPY_ERROR_REPORTING_TERSE)
#define MICROPY_BUILTIN_METHOD_CHECK_SELF_ARG (0)
#define MICROPY_PY_ASYNC_AWAIT (0)
#define MICROPY_PY_BUILTINS_BYTEARRAY (0)
#define MICROPY_PY_BUILTINS_MEMORYVIEW (0)
#define MICROPY_PY_BUILTINS_ENUMERATE (0)

View File

@@ -17,7 +17,7 @@ include ../py/mkenv.mk
CROSS_COMPILE ?= arm-none-eabi-
CFLAGS_CORTEX_M4 = -mthumb -mtune=cortex-m4 -march=armv7e-m -mabi=aapcs -mcpu=cortex-m4 -msoft-float -mfloat-abi=soft -fsingle-precision-constant -Wdouble-promotion
CFLAGS = -Wall -Wpointer-arith -Werror -ansi -std=gnu99 -nostdlib $(CFLAGS_CORTEX_M4)
CFLAGS = -Wall -Wpointer-arith -Werror -ansi -std=gnu99 -nostdlib $(CFLAGS_CORTEX_M4) -Os
CFLAGS += -g -ffunction-sections -fdata-sections -fno-common -fsigned-char -mno-unaligned-access
CFLAGS += -Iboards/$(BOARD)

View File

@@ -24,7 +24,7 @@
* THE SOFTWARE.
*/
__stack_size__ = 3K; /* interrupts are handled within this stack */
__stack_size__ = 2K; /* interrupts are handled within this stack */
__min_heap_size__ = 8K;
MEMORY

View File

@@ -152,12 +152,13 @@ APP_LIB_SRC_C = $(addprefix lib/,\
netutils/netutils.c \
timeutils/timeutils.c \
utils/pyexec.c \
utils/pyhelp.c \
utils/printf.c \
)
APP_STM_SRC_C = $(addprefix stmhal/,\
bufhelper.c \
file.c \
builtin_open.c \
import.c \
input.c \
irq.c \
@@ -171,6 +172,12 @@ OBJ += $(addprefix $(BUILD)/, $(APP_MODS_SRC_C:.c=.o) $(APP_CC3100_SRC_C:.c=.o)
OBJ += $(addprefix $(BUILD)/, $(APP_MAIN_SRC_C:.c=.o) $(APP_LIB_SRC_C:.c=.o) $(APP_STM_SRC_C:.c=.o))
OBJ += $(BUILD)/pins.o
# List of sources for qstr extraction
SRC_QSTR += $(APP_MODS_SRC_C) $(APP_MISC_SRC_C) $(APP_STM_SRC_C)
# Append any auto-generated sources that are needed by sources listed in
# SRC_QSTR
SRC_QSTR_AUTO_DEPS +=
# Add the linker script
LINKER_SCRIPT = application.lds
LDFLAGS += -T $(LINKER_SCRIPT)
@@ -183,31 +190,10 @@ $(BUILD)/drivers/cc3100/src/driver.o: CFLAGS += -fno-strict-aliasing
# Check if we would like to debug the port code
ifeq ($(BTYPE), release)
# Optimize everything and define the NDEBUG flag
CFLAGS += -Os -DNDEBUG
CFLAGS += -DNDEBUG
else
ifeq ($(BTYPE), debug)
# Define the DEBUG flag
CFLAGS += -DDEBUG=DEBUG
# Optimize the stable sources only
$(BUILD)/extmod/%.o: CFLAGS += -Os
$(BUILD)/lib/%.o: CFLAGS += -Os
$(BUILD)/fatfs/src/%.o: CFLAGS += -Os
$(BUILD)/FreeRTOS/Source/%.o: CFLAGS += -Os
$(BUILD)/ftp/%.o: CFLAGS += -Os
$(BUILD)/hal/%.o: CFLAGS += -Os
$(BUILD)/misc/%.o: CFLAGS += -Os
$(BUILD)/mods/%.o: CFLAGS += -Os
$(BUILD)/py/%.o: CFLAGS += -Os
$(BUILD)/simplelink/%.o: CFLAGS += -Os
$(BUILD)/drivers/cc3100/%.o: CFLAGS += -Os
$(BUILD)/stmhal/%.o: CFLAGS += -Os
$(BUILD)/telnet/%.o: CFLAGS += -Os
$(BUILD)/util/%.o: CFLAGS += -Os
$(BUILD)/pins.o: CFLAGS += -Os
$(BUILD)/main.o: CFLAGS += -Os
$(BUILD)/mptask.o: CFLAGS += -Os
$(BUILD)/servertask.o: CFLAGS += -Os
CFLAGS += -DNDEBUG
else
$(error Invalid BTYPE specified)
endif

View File

@@ -1,11 +1,11 @@
Pin,Name,Default,AF0,AF1,AF2,AF3,AF4,AF5,AF6,AF7,AF8,AF9,AF10,AF11,AF12,AF13,AF14,AF15,ADC
1,GP10,GP10,GP10,I2C0_SCL,,TIM3_PWM0,,,SD0_CLK,UART1_TX,,,,,TIM0_CC1,,,,
2,GP11,GP11,GP11,I2C0_SDA,,TIM3_PWM1,pXCLK(XVCLK),,SD0_CMD,UART1_RX,,,,,TIM1_CC0,I2S0_FS,,,
3,GP12,GP12,GP12,,,I2S0_CLK,pVS(VSYNC),I2C0_SCL,,UART0_TX,,,,,TIM1_CC1,,,,
4,GP13,GP13,GP13,,,,pHS(HSYNC),I2C0_SDA,,UART0_RX,,,,,TIM2_CC0,,,,
5,GP14,GP14,GP14,,,,pDATA8(CAM_D4),I2C0_SCL,,SPI0_CLK,,,,,TIM2_CC1,,,,
6,GP15,GP15,GP15,,,,pDATA9(CAM_D5),I2C0_SDA,,SPI0_MISO,SD0_DAT0,,,,,TIM3_CC0,,,
7,GP16,GP16,GP16,,,,pDATA10(CAM_D6),UART1_TX,,SPI0_MOSI,SD0_CLK,,,,,TIM3_CC1,,,
1,GP10,GP10,GP10,I2C0_SCL,,TIM3_PWM,,,SD0_CLK,UART1_TX,,,,,TIM0_CC,,,,
2,GP11,GP11,GP11,I2C0_SDA,,TIM3_PWM,pXCLK(XVCLK),,SD0_CMD,UART1_RX,,,,,TIM1_CC,I2S0_FS,,,
3,GP12,GP12,GP12,,,I2S0_CLK,pVS(VSYNC),I2C0_SCL,,UART0_TX,,,,,TIM1_CC,,,,
4,GP13,GP13,GP13,,,,pHS(HSYNC),I2C0_SDA,,UART0_RX,,,,,TIM2_CC,,,,
5,GP14,GP14,GP14,,,,pDATA8(CAM_D4),I2C0_SCL,,SPI0_CLK,,,,,TIM2_CC,,,,
6,GP15,GP15,GP15,,,,pDATA9(CAM_D5),I2C0_SDA,,SPI0_MISO,SD0_DAT0,,,,,TIM3_CC,,,
7,GP16,GP16,GP16,,,,pDATA10(CAM_D6),UART1_TX,,SPI0_MOSI,SD0_CLK,,,,,TIM3_CC,,,
8,GP17,GP17,GP17,,,,pDATA11(CAM_D7),UART1_RX,,SPI0_CS0,SD0_CMD,,,,,,,,
9,VDD_DIG1,VDD_DIG1,VDD_DIG1,,,,,,,,,,,,,,,,
10,VIN_IO1,VIN_IO1,VIN_IO1,,,,,,,,,,,,,,,,
@@ -13,13 +13,13 @@ Pin,Name,Default,AF0,AF1,AF2,AF3,AF4,AF5,AF6,AF7,AF8,AF9,AF10,AF11,AF12,AF13,AF1
12,FLASH_SPI_DOUT,FLASH_SPI_DOUT,FLASH_SPI_DOUT,,,,,,,,,,,,,,,,
13,FLASH_SPI_DIN,FLASH_SPI_DIN,FLASH_SPI_DIN,,,,,,,,,,,,,,,,
14,FLASH_SPI_CS,FLASH_SPI_CS,FLASH_SPI_CS,,,,,,,,,,,,,,,,
15,GP22,GP22,GP22,,,,,TIM2_CC0,,I2S0_FS,,,,,,,,,
15,GP22,GP22,GP22,,,,,TIM2_CC,,I2S0_FS,,,,,,,,,
16,GP23,TDI,GP23,TDI,UART1_TX,,,,,,,I2C0_SCL,,,,,,,
17,GP24,TDO,GP24,TDO,UART1_RX,,TIM3_CC0,TIM0_PWM0,I2S0_FS,,,I2C0_SDA,,,,,,,
17,GP24,TDO,GP24,TDO,UART1_RX,,TIM3_CC,TIM0_PWM,I2S0_FS,,,I2C0_SDA,,,,,,,
18,GP28,GP28,GP28,,,,,,,,,,,,,,,,
19,TCK,TCK,,TCK,,,,,,,TIM1_PWM2,,,,,,,,
19,TCK,TCK,,TCK,,,,,,,TIM1_PWM,,,,,,,,
20,GP29,TMS,GP29,TMS,,,,,,,,,,,,,,,
21,GP25,SOP2,GP25,,I2S0_FS,,,,,,,TIM1_PWM0,,,,,,,
21,GP25,SOP2,GP25,,I2S0_FS,,,,,,,TIM1_PWM,,,,,,,
22,WLAN_XTAL_N,WLAN_XTAL_N,WLAN_XTAL_N,,,,,,,,,,,,,,,,
23,WLAN_XTAL_P,WLAN_XTAL_P,WLAN_XTAL_P,,,,,,,,,,,,,,,,
24,VDD_PLL,VDD_PLL,VDD_PLL,,,,,,,,,,,,,,,,
@@ -48,19 +48,19 @@ Pin,Name,Default,AF0,AF1,AF2,AF3,AF4,AF5,AF6,AF7,AF8,AF9,AF10,AF11,AF12,AF13,AF1
47,VDD_ANA2,VDD_ANA2,VDD_ANA2,,,,,,,,,,,,,,,,
48,VDD_ANA1,VDD_ANA1,VDD_ANA1,,,,,,,,,,,,,,,,
49,VDD_RAM,VDD_RAM,VDD_RAM,,,,,,,,,,,,,,,,
50,GP0,GP0,GP0,,,UART0_RTS,I2S0_DAT0,,I2S0_DAT1,TIM0_CC0,,SPI0_CS0,UART1_RTS,,UART0_CTS,,,,
50,GP0,GP0,GP0,,,UART0_RTS,I2S0_DAT0,,I2S0_DAT1,TIM0_CC,,SPI0_CS0,UART1_RTS,,UART0_CTS,,,,
51,RTC_XTAL_P,RTC_XTAL_P,RTC_XTAL_P,,,,,,,,,,,,,,,,
52,RTC_XTAL_N,RTC_XTAL_N,GP32,,I2S0_CLK,,I2S0_DAT0,,UART0_RTS,,SPI0_MOSI,,,,,,,,
53,GP30,GP30,GP30,,I2S0_CLK,I2S0_FS,TIM2_CC1,,,SPI0_MISO,,UART0_TX,,,,,,,
53,GP30,GP30,GP30,,I2S0_CLK,I2S0_FS,TIM2_CC,,,SPI0_MISO,,UART0_TX,,,,,,,
54,VIN_IO2,VIN_IO2,VIN_IO2,,,,,,,,,,,,,,,,
55,GP1,GP1,GP1,,,UART0_TX,pCLK (PIXCLK),,UART1_TX,TIM0_CC1,,,,,,,,,
55,GP1,GP1,GP1,,,UART0_TX,pCLK (PIXCLK),,UART1_TX,TIM0_CC,,,,,,,,,
56,VDD_DIG2,VDD_DIG2,VDD_DIG2,,,,,,,,,,,,,,,,
57,GP2,GP2,GP2,,,UART0_RX,,,UART1_RX,TIM1_CC0,,,,,,,,,ADC0_CH0
57,GP2,GP2,GP2,,,UART0_RX,,,UART1_RX,TIM1_CC,,,,,,,,,ADC0_CH0
58,GP3,GP3,GP3,,,,pDATA7(CAM_D3),,UART1_TX,,,,,,,,,,ADC0_CH1
59,GP4,GP4,GP4,,,,pDATA6(CAM_D2),,UART1_RX,,,,,,,,,,ADC0_CH2
60,GP5,GP5,GP5,,,,pDATA5(CAM_D1),,I2S0_DAT1,TIM2_CC1,,,,,,,,,ADC0_CH3
61,GP6,GP6,GP6,,,UART1_CTS,pDATA4(CAM_D0),UART0_RTS,UART0_CTS,TIM3_CC0,,,,,,,,,
60,GP5,GP5,GP5,,,,pDATA5(CAM_D1),,I2S0_DAT1,TIM2_CC,,,,,,,,,ADC0_CH3
61,GP6,GP6,GP6,,,UART1_CTS,pDATA4(CAM_D0),UART0_RTS,UART0_CTS,TIM3_CC,,,,,,,,,
62,GP7,GP7,GP7,,,UART1_RTS,,,,,,,UART0_RTS,UART0_TX,,I2S0_CLK,,,
63,GP8,GP8,GP8,,,,,,SD0_IRQ,I2S0_FS,,,,,TIM3_CC0,,,,
64,GP9,GP9,GP9,,,TIM2_PWM1,,,SD0_DAT0,I2S0_DAT0,,,,,TIM0_CC0,,,,
63,GP8,GP8,GP8,,,,,,SD0_IRQ,I2S0_FS,,,,,TIM3_CC,,,,
64,GP9,GP9,GP9,,,TIM2_PWM,,,SD0_DAT0,I2S0_DAT0,,,,,TIM0_CC,,,,
65,GND_TAB,GND_TAB,GND_TAB,,,,,,,,,,,,,,,,
1 Pin Name Default AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 ADC
2 1 GP10 GP10 GP10 I2C0_SCL TIM3_PWM0 TIM3_PWM SD0_CLK UART1_TX TIM0_CC1 TIM0_CC
3 2 GP11 GP11 GP11 I2C0_SDA TIM3_PWM1 TIM3_PWM pXCLK(XVCLK) SD0_CMD UART1_RX TIM1_CC0 TIM1_CC I2S0_FS
4 3 GP12 GP12 GP12 I2S0_CLK pVS(VSYNC) I2C0_SCL UART0_TX TIM1_CC1 TIM1_CC
5 4 GP13 GP13 GP13 pHS(HSYNC) I2C0_SDA UART0_RX TIM2_CC0 TIM2_CC
6 5 GP14 GP14 GP14 pDATA8(CAM_D4) I2C0_SCL SPI0_CLK TIM2_CC1 TIM2_CC
7 6 GP15 GP15 GP15 pDATA9(CAM_D5) I2C0_SDA SPI0_MISO SD0_DAT0 TIM3_CC0 TIM3_CC
8 7 GP16 GP16 GP16 pDATA10(CAM_D6) UART1_TX SPI0_MOSI SD0_CLK TIM3_CC1 TIM3_CC
9 8 GP17 GP17 GP17 pDATA11(CAM_D7) UART1_RX SPI0_CS0 SD0_CMD
10 9 VDD_DIG1 VDD_DIG1 VDD_DIG1
11 10 VIN_IO1 VIN_IO1 VIN_IO1
13 12 FLASH_SPI_DOUT FLASH_SPI_DOUT FLASH_SPI_DOUT
14 13 FLASH_SPI_DIN FLASH_SPI_DIN FLASH_SPI_DIN
15 14 FLASH_SPI_CS FLASH_SPI_CS FLASH_SPI_CS
16 15 GP22 GP22 GP22 TIM2_CC0 TIM2_CC I2S0_FS
17 16 GP23 TDI GP23 TDI UART1_TX I2C0_SCL
18 17 GP24 TDO GP24 TDO UART1_RX TIM3_CC0 TIM3_CC TIM0_PWM0 TIM0_PWM I2S0_FS I2C0_SDA
19 18 GP28 GP28 GP28
20 19 TCK TCK TCK TIM1_PWM2 TIM1_PWM
21 20 GP29 TMS GP29 TMS
22 21 GP25 SOP2 GP25 I2S0_FS TIM1_PWM0 TIM1_PWM
23 22 WLAN_XTAL_N WLAN_XTAL_N WLAN_XTAL_N
24 23 WLAN_XTAL_P WLAN_XTAL_P WLAN_XTAL_P
25 24 VDD_PLL VDD_PLL VDD_PLL
48 47 VDD_ANA2 VDD_ANA2 VDD_ANA2
49 48 VDD_ANA1 VDD_ANA1 VDD_ANA1
50 49 VDD_RAM VDD_RAM VDD_RAM
51 50 GP0 GP0 GP0 UART0_RTS I2S0_DAT0 I2S0_DAT1 TIM0_CC0 TIM0_CC SPI0_CS0 UART1_RTS UART0_CTS
52 51 RTC_XTAL_P RTC_XTAL_P RTC_XTAL_P
53 52 RTC_XTAL_N RTC_XTAL_N GP32 I2S0_CLK I2S0_DAT0 UART0_RTS SPI0_MOSI
54 53 GP30 GP30 GP30 I2S0_CLK I2S0_FS TIM2_CC1 TIM2_CC SPI0_MISO UART0_TX
55 54 VIN_IO2 VIN_IO2 VIN_IO2
56 55 GP1 GP1 GP1 UART0_TX pCLK (PIXCLK) UART1_TX TIM0_CC1 TIM0_CC
57 56 VDD_DIG2 VDD_DIG2 VDD_DIG2
58 57 GP2 GP2 GP2 UART0_RX UART1_RX TIM1_CC0 TIM1_CC ADC0_CH0
59 58 GP3 GP3 GP3 pDATA7(CAM_D3) UART1_TX ADC0_CH1
60 59 GP4 GP4 GP4 pDATA6(CAM_D2) UART1_RX ADC0_CH2
61 60 GP5 GP5 GP5 pDATA5(CAM_D1) I2S0_DAT1 TIM2_CC1 TIM2_CC ADC0_CH3
62 61 GP6 GP6 GP6 UART1_CTS pDATA4(CAM_D0) UART0_RTS UART0_CTS TIM3_CC0 TIM3_CC
63 62 GP7 GP7 GP7 UART1_RTS UART0_RTS UART0_TX I2S0_CLK
64 63 GP8 GP8 GP8 SD0_IRQ I2S0_FS TIM3_CC0 TIM3_CC
65 64 GP9 GP9 GP9 TIM2_PWM1 TIM2_PWM SD0_DAT0 I2S0_DAT0 TIM0_CC0 TIM0_CC
66 65 GND_TAB GND_TAB GND_TAB

View File

@@ -12,7 +12,7 @@ SUPPORTED_AFS = { 'UART': ('TX', 'RX', 'RTS', 'CTS'),
'SPI': ('CLK', 'MOSI', 'MISO', 'CS0'),
#'I2S': ('CLK', 'FS', 'DAT0', 'DAT1'),
'I2C': ('SDA', 'SCL'),
'TIM': ('PWM0', 'PWM1', 'CC0', 'CC1'),
'TIM': ('PWM'),
'SD': ('CLK', 'CMD', 'DAT0'),
'ADC': ('CH0', 'CH1', 'CH2', 'CH3')
}
@@ -44,6 +44,7 @@ class AF:
def print(self):
print (' AF({:16s}, {:4d}, {:8s}, {:4d}, {:8s}), // {}'.format(self.name, self.idx, self.fn, self.unit, self.type, self.name))
class Pin:
"""Holds the information associated with a pin."""
def __init__(self, name, port, gpio_bit, pin_num):

View File

@@ -27,21 +27,12 @@
#include <stdio.h>
#include "py/mpconfig.h"
#include "py/obj.h"
#include "lib/utils/pyhelp.h"
STATIC const char help_text[] = "Welcome to MicroPython!\n"
"For online help please visit http://micropython.org/help/.\n"
"For further help on a specific object, type help(obj)\n";
STATIC void pyb_help_print_info_about_object(mp_obj_t name_o, mp_obj_t value) {
printf(" ");
mp_obj_print(name_o, PRINT_STR);
printf(" -- ");
mp_obj_print(value, PRINT_STR);
printf("\n");
}
STATIC mp_obj_t pyb_help(uint n_args, const mp_obj_t *args) {
if (n_args == 0) {
// print a general help message
@@ -49,31 +40,7 @@ STATIC mp_obj_t pyb_help(uint n_args, const mp_obj_t *args) {
}
else {
// try to print something sensible about the given object
printf("object ");
mp_obj_print(args[0], PRINT_STR);
printf(" is of type %s\n", mp_obj_get_type_str(args[0]));
mp_map_t *map = NULL;
if (MP_OBJ_IS_TYPE(args[0], &mp_type_module)) {
map = mp_obj_dict_get_map(mp_obj_module_get_globals(args[0]));
} else {
mp_obj_type_t *type;
if (MP_OBJ_IS_TYPE(args[0], &mp_type_type)) {
type = args[0];
} else {
type = mp_obj_get_type(args[0]);
}
if (type->locals_dict != MP_OBJ_NULL && MP_OBJ_IS_TYPE(type->locals_dict, &mp_type_dict)) {
map = mp_obj_dict_get_map(type->locals_dict);
}
}
if (map != NULL) {
for (uint i = 0; i < map->alloc; i++) {
if (map->table[i].key != MP_OBJ_NULL) {
pyb_help_print_info_about_object(map->table[i].key, map->table[i].value);
}
}
}
pyhelp_print_obj(args[0]);
}
return mp_const_none;
}

View File

@@ -196,6 +196,10 @@ void nlr_jump_fail(void *val) {
void mperror_enable_heartbeat (bool enable) {
if (enable) {
#ifndef BOOTLOADER
// configure the led again
pin_config ((pin_obj_t *)&MICROPY_SYS_LED_GPIO, PIN_MODE_0, GPIO_DIR_MODE_OUT, PIN_TYPE_STD, 0, PIN_STRENGTH_6MA);
#endif
mperror_heart_beat.enabled = true;
mperror_heart_beat.do_disable = false;
mperror_heartbeat_switch_off();

View File

@@ -153,7 +153,7 @@ STATIC const mp_map_elem_t mp_module_network_globals_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR_WLAN), (mp_obj_t)&mod_network_nic_type_wlan },
#if (MICROPY_PORT_HAS_TELNET || MICROPY_PORT_HAS_FTP)
{ MP_OBJ_NEW_QSTR(MP_QSTR_server), (mp_obj_t)&network_server_type },
{ MP_OBJ_NEW_QSTR(MP_QSTR_Server), (mp_obj_t)&network_server_type },
#endif
};
@@ -177,7 +177,7 @@ STATIC MP_DEFINE_CONST_DICT(network_server_locals_dict, network_server_locals_di
STATIC const mp_obj_type_t network_server_type = {
{ &mp_type_type },
.name = MP_QSTR_server,
.name = MP_QSTR_Server,
.make_new = network_server_make_new,
.locals_dict = (mp_obj_t)&network_server_locals_dict,
};

View File

@@ -37,7 +37,7 @@
#include "moduos.h"
#include "diskio.h"
#include "sflash_diskio.h"
#include "file.h"
#include "extmod/vfs_fat_file.h"
#include "random.h"
#include "mpexception.h"
#include "version.h"

View File

@@ -106,8 +106,10 @@ void modusocket_enter_sleep (void) {
}
}
// wait for any of the sockets to become ready...
sl_Select(maxfd + 1, &socketset, NULL, NULL, NULL);
if (maxfd > 0) {
// wait for any of the sockets to become ready...
sl_Select(maxfd + 1, &socketset, NULL, NULL, NULL);
}
}
void modusocket_close_all_user_sockets (void) {

View File

@@ -33,6 +33,7 @@
#include "py/obj.h"
#include "py/objstr.h"
#include "py/runtime.h"
#include "py/stream.h"
#include "py/mphal.h"
#include "inc/hw_types.h"
#include "inc/hw_ints.h"
@@ -149,8 +150,8 @@ STATIC wlan_obj_t wlan_obj = {
.ssid = MICROPY_PORT_WLAN_AP_SSID,
.key = MICROPY_PORT_WLAN_AP_KEY,
.mac = {0},
.ssid_o = {0},
.bssid = {0},
//.ssid_o = {0},
//.bssid = {0},
#if (MICROPY_PORT_HAS_TELNET || MICROPY_PORT_HAS_FTP)
.servers_enabled = false,
#endif
@@ -210,11 +211,11 @@ void SimpleLinkWlanEventHandler(SlWlanEvent_t *pWlanEvent) {
{
case SL_WLAN_CONNECT_EVENT:
{
slWlanConnectAsyncResponse_t *pEventData = &pWlanEvent->EventData.STAandP2PModeWlanConnected;
//slWlanConnectAsyncResponse_t *pEventData = &pWlanEvent->EventData.STAandP2PModeWlanConnected;
// copy the new connection data
memcpy(wlan_obj.bssid, pEventData->bssid, SL_BSSID_LENGTH);
memcpy(wlan_obj.ssid_o, pEventData->ssid_name, pEventData->ssid_len);
wlan_obj.ssid_o[pEventData->ssid_len] = '\0';
//memcpy(wlan_obj.bssid, pEventData->bssid, SL_BSSID_LENGTH);
//memcpy(wlan_obj.ssid_o, pEventData->ssid_name, pEventData->ssid_len);
//wlan_obj.ssid_o[pEventData->ssid_len] = '\0';
SET_STATUS_BIT(wlan_obj.status, STATUS_BIT_CONNECTION);
#if (MICROPY_PORT_HAS_TELNET || MICROPY_PORT_HAS_FTP)
// we must reset the servers in case that the last connection
@@ -228,15 +229,16 @@ void SimpleLinkWlanEventHandler(SlWlanEvent_t *pWlanEvent) {
CLR_STATUS_BIT(wlan_obj.status, STATUS_BIT_IP_ACQUIRED);
#if (MICROPY_PORT_HAS_TELNET || MICROPY_PORT_HAS_FTP)
servers_reset();
servers_wlan_cycle_power();
#endif
break;
case SL_WLAN_STA_CONNECTED_EVENT:
{
slPeerInfoAsyncResponse_t *pEventData = &pWlanEvent->EventData.APModeStaConnected;
//slPeerInfoAsyncResponse_t *pEventData = &pWlanEvent->EventData.APModeStaConnected;
// get the mac address and name of the connected device
memcpy(wlan_obj.bssid, pEventData->mac, SL_BSSID_LENGTH);
memcpy(wlan_obj.ssid_o, pEventData->go_peer_device_name, pEventData->go_peer_device_name_len);
wlan_obj.ssid_o[pEventData->go_peer_device_name_len] = '\0';
//memcpy(wlan_obj.bssid, pEventData->mac, SL_BSSID_LENGTH);
//memcpy(wlan_obj.ssid_o, pEventData->go_peer_device_name, pEventData->go_peer_device_name_len);
//wlan_obj.ssid_o[pEventData->go_peer_device_name_len] = '\0';
SET_STATUS_BIT(wlan_obj.status, STATUS_BIT_CONNECTION);
#if (MICROPY_PORT_HAS_TELNET || MICROPY_PORT_HAS_FTP)
// we must reset the servers in case that the last connection
@@ -249,6 +251,7 @@ void SimpleLinkWlanEventHandler(SlWlanEvent_t *pWlanEvent) {
CLR_STATUS_BIT(wlan_obj.status, STATUS_BIT_CONNECTION);
#if (MICROPY_PORT_HAS_TELNET || MICROPY_PORT_HAS_FTP)
servers_reset();
servers_wlan_cycle_power();
#endif
break;
case SL_WLAN_P2P_DEV_FOUND_EVENT:
@@ -547,6 +550,12 @@ void wlan_set_current_time (uint32_t seconds_since_2000) {
sl_DevSet(SL_DEVICE_GENERAL_CONFIGURATION, SL_DEVICE_GENERAL_CONFIGURATION_DATE_TIME, sizeof(SlDateTime_t), (_u8 *)(&sl_datetime));
}
void wlan_off_on (void) {
// no need to lock the WLAN object on every API call since the servers and the MicroPtyhon
// task have the same priority
wlan_reenable(wlan_obj.mode);
}
//*****************************************************************************
// DEFINE STATIC FUNCTIONS
//*****************************************************************************
@@ -554,8 +563,8 @@ void wlan_set_current_time (uint32_t seconds_since_2000) {
STATIC void wlan_clear_data (void) {
CLR_STATUS_BIT_ALL(wlan_obj.status);
wlan_obj.ip = 0;
memset(wlan_obj.ssid_o, 0, sizeof(wlan_obj.ssid));
memset(wlan_obj.bssid, 0, sizeof(wlan_obj.bssid));
//memset(wlan_obj.ssid_o, 0, sizeof(wlan_obj.ssid));
//memset(wlan_obj.bssid, 0, sizeof(wlan_obj.bssid));
}
STATIC void wlan_reenable (SlWlanMode_t mode) {

View File

@@ -95,6 +95,7 @@ extern void wlan_get_mac (uint8_t *macAddress);
extern void wlan_get_ip (uint32_t *ip);
extern bool wlan_is_connected (void);
extern void wlan_set_current_time (uint32_t seconds_since_2000);
extern void wlan_off_on (void);
extern int wlan_gethostbyname(const char *name, mp_uint_t len, uint8_t *out_ip, uint8_t family);
extern int wlan_socket_socket(mod_network_socket_obj_t *s, int *_errno);

View File

@@ -63,7 +63,7 @@ typedef struct _pyb_i2c_obj_t {
#define PYBI2C_MIN_BAUD_RATE_HZ (50000)
#define PYBI2C_MAX_BAUD_RATE_HZ (400000)
#define PYBI2C_TRANSC_TIMEOUT_MS (10)
#define PYBI2C_TRANSC_TIMEOUT_MS (20)
#define PYBI2C_TRANSAC_WAIT_DELAY_US (10)
#define PYBI2C_TIMEOUT_TO_COUNT(to_us, baud) (((baud) * to_us) / 16000000)
@@ -78,9 +78,13 @@ typedef struct _pyb_i2c_obj_t {
DECLARE PRIVATE DATA
******************************************************************************/
STATIC pyb_i2c_obj_t pyb_i2c_obj = {.baudrate = 0};
STATIC const mp_obj_t pyb_i2c_def_pin[2] = {&pin_GP13, &pin_GP23};
/******************************************************************************
DECLARE PRIVATE FUNCTIONS
******************************************************************************/
STATIC bool pyb_i2c_write(byte addr, byte *data, uint len, bool stop);
/******************************************************************************
DEFINE PRIVATE FUNCTIONS
******************************************************************************/
@@ -107,13 +111,13 @@ STATIC bool pyb_i2c_transaction(uint cmd) {
// Wait until the current byte has been transferred.
// Poll on the raw interrupt status.
while ((MAP_I2CMasterIntStatusEx(I2CA0_BASE, false) & (I2C_MASTER_INT_DATA | I2C_MASTER_INT_TIMEOUT)) == 0) {
// wait for a few microseconds
UtilsDelay(UTILS_DELAY_US_TO_COUNT(PYBI2C_TRANSAC_WAIT_DELAY_US));
timeout -= PYBI2C_TRANSAC_WAIT_DELAY_US;
if (timeout < 0) {
// the peripheral is not responding, so stop
return false;
}
// wait for a few microseconds
UtilsDelay(UTILS_DELAY_US_TO_COUNT(PYBI2C_TRANSAC_WAIT_DELAY_US));
timeout -= PYBI2C_TRANSAC_WAIT_DELAY_US;
}
// Check for any errors in the transfer
@@ -145,13 +149,22 @@ STATIC void pyb_i2c_check_init(pyb_i2c_obj_t *self) {
}
STATIC bool pyb_i2c_scan_device(byte devAddr) {
// Set I2C codec slave address
bool ret = false;
// Set the I2C slave address
MAP_I2CMasterSlaveAddrSet(I2CA0_BASE, devAddr, true);
// Initiate the transfer.
RET_IF_ERR(pyb_i2c_transaction(I2C_MASTER_CMD_SINGLE_RECEIVE));
// Since this is a hack, send the stop bit anyway
if (pyb_i2c_transaction(I2C_MASTER_CMD_SINGLE_RECEIVE)) {
ret = true;
}
// Send the stop bit to cancel the read transaction
MAP_I2CMasterControl(I2CA0_BASE, I2C_MASTER_CMD_BURST_SEND_ERROR_STOP);
return true;
if (!ret) {
uint8_t data = 0;
if (pyb_i2c_write(devAddr, &data, sizeof(data), true)) {
ret = true;
}
}
return ret;
}
STATIC bool pyb_i2c_mem_addr_write (byte addr, byte *mem_addr, uint mem_addr_len) {
@@ -364,8 +377,8 @@ STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_i2c_deinit_obj, pyb_i2c_deinit);
STATIC mp_obj_t pyb_i2c_scan(mp_obj_t self_in) {
pyb_i2c_check_init(&pyb_i2c_obj);
mp_obj_t list = mp_obj_new_list(0, NULL);
for (uint addr = 1; addr <= 127; addr++) {
for (int i = 0; i < 7; i++) {
for (uint addr = 0x08; addr <= 0x77; addr++) {
for (int i = 0; i < 3; i++) {
if (pyb_i2c_scan_device(addr)) {
mp_obj_list_append(list, mp_obj_new_int(addr));
break;

View File

@@ -60,7 +60,6 @@ DECLARE PRIVATE FUNCTIONS
STATIC pin_obj_t *pin_find_named_pin(const mp_obj_dict_t *named_pins, mp_obj_t name);
STATIC pin_obj_t *pin_find_pin_by_port_bit (const mp_obj_dict_t *named_pins, uint port, uint bit);
STATIC int8_t pin_obj_find_af (const pin_obj_t* pin, uint8_t fn, uint8_t unit, uint8_t type);
STATIC int8_t pin_find_af_index (const pin_obj_t* pin, uint8_t fn, uint8_t unit, uint8_t type);
STATIC void pin_free_af_from_pins (uint8_t fn, uint8_t unit, uint8_t type);
STATIC void pin_deassign (pin_obj_t* pin);
STATIC void pin_obj_configure (const pin_obj_t *self);
@@ -199,6 +198,14 @@ uint8_t pin_find_peripheral_type (const mp_obj_t pin, uint8_t fn, uint8_t unit)
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, mpexception_value_invalid_arguments));
}
int8_t pin_find_af_index (const pin_obj_t* pin, uint8_t fn, uint8_t unit, uint8_t type) {
int8_t af = pin_obj_find_af(pin, fn, unit, type);
if (af < 0) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, mpexception_value_invalid_arguments));
}
return af;
}
/******************************************************************************
DEFINE PRIVATE FUNCTIONS
******************************************************************************/
@@ -231,14 +238,6 @@ STATIC int8_t pin_obj_find_af (const pin_obj_t* pin, uint8_t fn, uint8_t unit, u
return -1;
}
STATIC int8_t pin_find_af_index (const pin_obj_t* pin, uint8_t fn, uint8_t unit, uint8_t type) {
int8_t af = pin_obj_find_af(pin, fn, unit, type);
if (af < 0) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, mpexception_value_invalid_arguments));
}
return af;
}
STATIC void pin_free_af_from_pins (uint8_t fn, uint8_t unit, uint8_t type) {
mp_map_t *named_map = mp_obj_dict_get_map((mp_obj_t)&pin_board_pins_locals_dict);
for (uint i = 0; i < named_map->used - 1; i++) {
@@ -248,7 +247,7 @@ STATIC void pin_free_af_from_pins (uint8_t fn, uint8_t unit, uint8_t type) {
// check if the pin supports the target af
int af = pin_obj_find_af(pin, fn, unit, type);
if (af > 0 && af == pin->af) {
// the pin is assigned to the target af, de-assign it
// the pin supports the target af, de-assign it
pin_deassign (pin);
}
}

View File

@@ -72,10 +72,7 @@ enum {
};
enum {
PIN_TYPE_TIM_PWM0 = 0,
PIN_TYPE_TIM_PWM1,
PIN_TYPE_TIM_CC0,
PIN_TYPE_TIM_CC1,
PIN_TYPE_TIM_PWM = 0,
};
enum {
@@ -139,5 +136,6 @@ pin_obj_t *pin_find(mp_obj_t user_obj);
void pin_assign_pins_af (mp_obj_t *pins, uint32_t n_pins, uint32_t pull, uint32_t fn, uint32_t unit);
uint8_t pin_find_peripheral_unit (const mp_obj_t pin, uint8_t fn, uint8_t type);
uint8_t pin_find_peripheral_type (const mp_obj_t pin, uint8_t fn, uint8_t unit);
int8_t pin_find_af_index (const pin_obj_t* pin, uint8_t fn, uint8_t unit, uint8_t type);;
#endif // PYBPIN_H_

View File

@@ -43,7 +43,10 @@
#include "interrupt.h"
#include "prcm.h"
#include "timer.h"
#include "pin.h"
#include "pybtimer.h"
#include "pybpin.h"
#include "pins.h"
#include "mpirq.h"
#include "pybsleep.h"
#include "mpexception.h"
@@ -55,30 +58,8 @@
/// Each timer consists of a counter that counts up at a certain rate. The rate
/// at which it counts is the peripheral clock frequency (in Hz) divided by the
/// timer prescaler. When the counter reaches the timer period it triggers an
/// event, and the counter resets back to zero. By using the callback method,
/// event, and the counter resets back to zero. By using the irq method,
/// the timer event can call a Python function.
///
/// Example usage to toggle an LED at a fixed frequency:
///
/// tim = pyb.Timer(4) # create a timer object using timer 4
/// tim.init(mode=Timer.PERIODIC) # initialize it in periodic mode
/// tim_ch = tim.channel(Timer.A, freq=2) # configure channel A at a frequency of 2Hz
/// tim_ch.callback(handler=lambda t:led.toggle()) # toggle a LED on every cycle of the timer
///
/// Further examples:
///
/// tim1 = pyb.Timer(2, mode=Timer.EVENT_COUNT) # initialize it capture mode
/// tim2 = pyb.Timer(1, mode=Timer.PWM) # initialize it in PWM mode
/// tim_ch = tim1.channel(Timer.A, freq=1, polarity=Timer.POSITIVE) # start the event counter with a frequency of 1Hz and triggered by positive edges
/// tim_ch = tim2.channel(Timer.B, freq=10000, duty_cycle=50) # start the PWM on channel B with a 50% duty cycle
/// tim_ch.time() # get the current time in usec (can also be set)
/// tim_ch.freq(20) # set the frequency (can also get)
/// tim_ch.duty_cycle(30) # set the duty cycle to 30% (can also get)
/// tim_ch.duty_cycle(30, Timer.NEGATIVE) # set the duty cycle to 30% and change the polarity to negative
/// tim_ch.event_count() # get the number of captured events
/// tim_ch.event_time() # get the the time of the last captured event
/// tim_ch.period(2000000) # change the period to 2 seconds
///
/******************************************************************************
DECLARE PRIVATE CONSTANTS
@@ -87,6 +68,9 @@
#define PYBTIMER_POLARITY_POS (0x01)
#define PYBTIMER_POLARITY_NEG (0x02)
#define PYBTIMER_TIMEOUT_TRIGGER (0x01)
#define PYBTIMER_MATCH_TRIGGER (0x02)
#define PYBTIMER_SRC_FREQ_HZ HAL_FCPU_HZ
/******************************************************************************
@@ -108,8 +92,8 @@ typedef struct _pyb_timer_channel_obj_t {
uint32_t frequency;
uint32_t period;
uint16_t channel;
uint16_t duty_cycle;
uint8_t polarity;
uint8_t duty_cycle;
} pyb_timer_channel_obj_t;
/******************************************************************************
@@ -121,12 +105,14 @@ STATIC pyb_timer_obj_t pyb_timer_obj[PYBTIMER_NUM_TIMERS] = {{.timer = TIMERA0_B
{.timer = TIMERA2_BASE, .peripheral = PRCM_TIMERA2},
{.timer = TIMERA3_BASE, .peripheral = PRCM_TIMERA3}};
STATIC const mp_obj_type_t pyb_timer_channel_type;
STATIC const mp_obj_t pyb_timer_pwm_pin[8] = {&pin_GP24, MP_OBJ_NULL, &pin_GP25, MP_OBJ_NULL, MP_OBJ_NULL, &pin_GP9, &pin_GP10, &pin_GP11};
/******************************************************************************
DECLARE PRIVATE FUNCTIONS
******************************************************************************/
STATIC mp_obj_t pyb_timer_channel_irq (mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args);
STATIC void timer_disable (pyb_timer_obj_t *tim);
STATIC void timer_channel_init (pyb_timer_channel_obj_t *ch);
STATIC void TIMER0AIntHandler(void);
STATIC void TIMER0BIntHandler(void);
STATIC void TIMER1AIntHandler(void);
@@ -177,6 +163,8 @@ STATIC void pyb_timer_channel_remove (pyb_timer_channel_obj_t *ch) {
pyb_timer_channel_obj_t *channel;
if ((channel = pyb_timer_channel_find(ch->timer->timer, ch->channel))) {
mp_obj_list_remove(&MP_STATE_PORT(pyb_timer_channel_obj_list), channel);
// unregister it with the sleep module
pyb_sleep_remove((const mp_obj_t)channel);
}
}
@@ -184,6 +172,8 @@ STATIC void pyb_timer_channel_add (pyb_timer_channel_obj_t *ch) {
// remove it in case it already exists
pyb_timer_channel_remove(ch);
mp_obj_list_append(&MP_STATE_PORT(pyb_timer_channel_obj_list), ch);
// register it with the sleep module
pyb_sleep_add((const mp_obj_t)ch, (WakeUpCB_t)timer_channel_init);
}
STATIC void timer_disable (pyb_timer_obj_t *tim) {
@@ -191,8 +181,15 @@ STATIC void timer_disable (pyb_timer_obj_t *tim) {
MAP_TimerDisable(tim->timer, TIMER_A | TIMER_B);
MAP_TimerIntDisable(tim->timer, tim->irq_trigger);
MAP_TimerIntClear(tim->timer, tim->irq_trigger);
pyb_timer_channel_obj_t *ch;
// disable its channels
if ((ch = pyb_timer_channel_find (tim->timer, TIMER_A))) {
pyb_sleep_remove(ch);
}
if ((ch = pyb_timer_channel_find (tim->timer, TIMER_B))) {
pyb_sleep_remove(ch);
}
MAP_PRCMPeripheralClkDisable(tim->peripheral, PRCM_RUN_MODE_CLK | PRCM_SLP_MODE_CLK);
memset(&pyb_timer_obj[tim->id], 0, sizeof(pyb_timer_obj_t));
}
// computes prescaler period and match value so timer triggers at freq-Hz
@@ -205,20 +202,23 @@ STATIC uint32_t compute_prescaler_period_and_match_value(pyb_timer_channel_obj_t
if (period_c == 0) {
goto error;
}
prescaler = period_c >> 16;
prescaler = period_c >> 16; // The prescaler is an extension of the timer counter
*period_out = period_c;
if (prescaler > 0xFF && maxcount == 0xFFFF) {
goto error;
}
// check limit values for the duty cycle
if (ch->duty_cycle == 0) {
*match_out = period_c - 1;
}
else {
*match_out = period_c - ((period_c * ch->duty_cycle) / 100);
}
if ((ch->timer->config & 0x0F) == TIMER_CFG_A_PWM && (*match_out > 0xFFFF)) {
goto error;
} else {
if (period_c > 0xFFFF) {
uint32_t match = (period_c * 100) / 10000;
*match_out = period_c - ((match * ch->duty_cycle) / 100);
} else {
*match_out = period_c - ((period_c * ch->duty_cycle) / 10000);
}
}
return prescaler;
@@ -250,17 +250,7 @@ STATIC void timer_channel_init (pyb_timer_channel_obj_t *ch) {
MAP_TimerControlLevel(ch->timer->timer, ch->channel, (ch->polarity == PYBTIMER_POLARITY_NEG) ? true : false);
// set the match value (which is simply the duty cycle translated to ticks)
MAP_TimerMatchSet(ch->timer->timer, ch->channel, match);
}
// configure the event edge type if we are in such mode
else if ((ch->timer->config & 0x0F) == TIMER_CFG_A_CAP_COUNT || (ch->timer->config & 0x0F) == TIMER_CFG_A_CAP_TIME) {
uint32_t polarity = TIMER_EVENT_BOTH_EDGES;
if (ch->polarity == PYBTIMER_POLARITY_POS) {
polarity = TIMER_EVENT_POS_EDGE;
}
else if (ch->polarity == PYBTIMER_POLARITY_NEG) {
polarity = TIMER_EVENT_NEG_EDGE;
}
MAP_TimerControlEvent(ch->timer->timer, ch->channel, polarity);
MAP_TimerPrescaleMatchSet(ch->timer->timer, ch->channel, match >> 16);
}
#ifdef DEBUG
@@ -282,37 +272,18 @@ STATIC void pyb_timer_print(const mp_print_t *print, mp_obj_t self_in, mp_print_
// timer mode
qstr mode_qst = MP_QSTR_PWM;
switch(mode) {
case TIMER_CFG_A_ONE_SHOT:
case TIMER_CFG_A_ONE_SHOT_UP:
mode_qst = MP_QSTR_ONE_SHOT;
break;
case TIMER_CFG_A_PERIODIC:
case TIMER_CFG_A_PERIODIC_UP:
mode_qst = MP_QSTR_PERIODIC;
break;
case TIMER_CFG_A_CAP_COUNT:
mode_qst = MP_QSTR_EDGE_COUNT;
break;
case TIMER_CFG_A_CAP_TIME:
mode_qst = MP_QSTR_EDGE_TIME;
break;
default:
break;
}
mp_printf(print, "<Timer%u, mode=Timer.%q>", (tim->id + 1), mode_qst);
mp_printf(print, "Timer(%u, mode=Timer.%q)", tim->id, mode_qst);
}
/// \method init(mode, *, width)
/// Initialise the timer. Initialisation must give the desired mode
/// and an optional timer width
///
/// tim.init(mode=Timer.ONE_SHOT, width=32) # one shot mode
/// tim.init(mode=Timer.PERIODIC) # configure in free running periodic mode
/// split into two 16-bit independent timers
///
/// Keyword arguments:
///
/// - `width` - specifies the width of the timer. Default is 32 bit mode. When in 16 bit mode
/// the timer is splitted into 2 independent channels.
///
STATIC mp_obj_t pyb_timer_init_helper(pyb_timer_obj_t *tim, mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_mode, MP_ARG_REQUIRED | MP_ARG_INT, },
@@ -325,8 +296,7 @@ STATIC mp_obj_t pyb_timer_init_helper(pyb_timer_obj_t *tim, mp_uint_t n_args, co
// check the mode
uint32_t _mode = args[0].u_int;
if (_mode != TIMER_CFG_A_ONE_SHOT && _mode != TIMER_CFG_A_PERIODIC && _mode != TIMER_CFG_A_CAP_COUNT &&
_mode != TIMER_CFG_A_CAP_TIME && _mode != TIMER_CFG_A_PWM) {
if (_mode != TIMER_CFG_A_ONE_SHOT_UP && _mode != TIMER_CFG_A_PERIODIC_UP && _mode != TIMER_CFG_A_PWM) {
goto error;
}
@@ -336,7 +306,7 @@ STATIC mp_obj_t pyb_timer_init_helper(pyb_timer_obj_t *tim, mp_uint_t n_args, co
}
bool is16bit = (args[1].u_int == 16);
if (!is16bit && (_mode != TIMER_CFG_A_ONE_SHOT && _mode != TIMER_CFG_A_PERIODIC)) {
if (!is16bit && _mode == TIMER_CFG_A_PWM) {
// 32-bit mode is only available when in free running modes
goto error;
}
@@ -352,16 +322,12 @@ error:
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, mpexception_value_invalid_arguments));
}
/// \classmethod \constructor(id, ...)
/// Construct a new timer object of the given id. If additional
/// arguments are given, then the timer is initialised by `init(...)`.
/// `id` can be 1 to 4
STATIC mp_obj_t pyb_timer_make_new(const mp_obj_type_t *type, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
// check arguments
mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);
// create a new Timer object
int32_t timer_idx = mp_obj_get_int(args[0]) - 1;
int32_t timer_idx = mp_obj_get_int(args[0]);
if (timer_idx < 0 || timer_idx > (PYBTIMER_NUM_TIMERS - 1)) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, mpexception_os_resource_not_avaliable));
}
@@ -379,15 +345,11 @@ STATIC mp_obj_t pyb_timer_make_new(const mp_obj_type_t *type, mp_uint_t n_args,
return (mp_obj_t)tim;
}
// \method init()
/// initializes the timer
STATIC mp_obj_t pyb_timer_init(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
return pyb_timer_init_helper(args[0], n_args - 1, args + 1, kw_args);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_timer_init_obj, 1, pyb_timer_init);
// \method deinit()
/// disables the timer
STATIC mp_obj_t pyb_timer_deinit(mp_obj_t self_in) {
pyb_timer_obj_t *self = self_in;
timer_disable(self);
@@ -395,24 +357,6 @@ STATIC mp_obj_t pyb_timer_deinit(mp_obj_t self_in) {
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_timer_deinit_obj, pyb_timer_deinit);
/// \method channel(channel, *, freq, period, polarity, duty_cycle)
/// Initialise the timer channel. Initialization requires at least a frequency param. With no
/// extra params given besides the channel id, the channel is returned with the previous configuration
/// os 'None', if it hasn't been initialized before.
///
/// tim1.channel(Timer.A, freq=1000) # set channel A frequency to 1KHz
/// tim2.channel(Timer.AB, freq=10) # both channels (because it's a 32 bit timer) combined to create a 10Hz timer
///
/// when initialiazing the channel of a 32-bit timer, channel ID MUST be = Timer.AB
///
/// Keyword arguments:
///
/// - `freq` - specifies the frequency in Hz.
/// - `period` - specifies the period in microseconds.
/// - `polarity` - in PWM specifies the polarity of the pulse. In capture mode specifies the edge to capture.
/// in order to capture on both negative and positive edges, make it = Timer.POSITIVE | Timer.NEGATIVE.
/// - `duty_cycle` - sets the duty cycle value
///
STATIC mp_obj_t pyb_timer_channel(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_freq, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
@@ -474,12 +418,21 @@ STATIC mp_obj_t pyb_timer_channel(mp_uint_t n_args, const mp_obj_t *pos_args, mp
ch->frequency = args[0].u_int;
ch->period = args[1].u_int;
ch->polarity = args[2].u_int;
ch->duty_cycle = MIN(100, MAX(0, args[3].u_int));
ch->duty_cycle = MIN(10000, MAX(0, args[3].u_int));
timer_channel_init(ch);
// register it with the sleep module
pyb_sleep_add ((const mp_obj_t)ch, (WakeUpCB_t)timer_channel_init);
// assign the pin
if ((ch->timer->config & 0x0F) == TIMER_CFG_A_PWM) {
uint32_t ch_idx = (ch->channel == TIMER_A) ? 0 : 1;
// use the default pin if available
mp_obj_t pin_o = (mp_obj_t)pyb_timer_pwm_pin[(ch->timer->id * 2) + ch_idx];
if (pin_o != MP_OBJ_NULL) {
pin_obj_t *pin = pin_find(pin_o);
pin_config (pin, pin_find_af_index(pin, PIN_FN_TIM, ch->timer->id, PIN_TYPE_TIM_PWM),
0, PIN_TYPE_STD, -1, PIN_STRENGTH_4MA);
}
}
// add the timer to the list
pyb_timer_channel_add(ch);
@@ -500,13 +453,13 @@ STATIC const mp_map_elem_t pyb_timer_locals_dict_table[] = {
// class constants
{ MP_OBJ_NEW_QSTR(MP_QSTR_A), MP_OBJ_NEW_SMALL_INT(TIMER_A) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_B), MP_OBJ_NEW_SMALL_INT(TIMER_B) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_ONE_SHOT), MP_OBJ_NEW_SMALL_INT(TIMER_CFG_A_ONE_SHOT) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PERIODIC), MP_OBJ_NEW_SMALL_INT(TIMER_CFG_A_PERIODIC) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_EDGE_COUNT), MP_OBJ_NEW_SMALL_INT(TIMER_CFG_A_CAP_COUNT) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_EDGE_TIME), MP_OBJ_NEW_SMALL_INT(TIMER_CFG_A_CAP_TIME) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_ONE_SHOT), MP_OBJ_NEW_SMALL_INT(TIMER_CFG_A_ONE_SHOT_UP) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PERIODIC), MP_OBJ_NEW_SMALL_INT(TIMER_CFG_A_PERIODIC_UP) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PWM), MP_OBJ_NEW_SMALL_INT(TIMER_CFG_A_PWM) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_POSITIVE), MP_OBJ_NEW_SMALL_INT(PYBTIMER_POLARITY_POS) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_NEGATIVE), MP_OBJ_NEW_SMALL_INT(PYBTIMER_POLARITY_NEG) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_TIMEOUT), MP_OBJ_NEW_SMALL_INT(PYBTIMER_TIMEOUT_TRIGGER) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_MATCH), MP_OBJ_NEW_SMALL_INT(PYBTIMER_MATCH_TRIGGER) },
};
STATIC MP_DEFINE_CONST_DICT(pyb_timer_locals_dict, pyb_timer_locals_dict_table);
@@ -528,7 +481,6 @@ STATIC const mp_irq_methods_t pyb_timer_channel_irq_methods = {
STATIC void TIMERGenericIntHandler(uint32_t timer, uint16_t channel) {
pyb_timer_channel_obj_t *self;
uint32_t status;
if ((self = pyb_timer_channel_find(timer, channel))) {
status = MAP_TimerIntStatus(self->timer->timer, true) & self->channel;
MAP_TimerIntClear(self->timer->timer, status);
@@ -574,16 +526,14 @@ STATIC void pyb_timer_channel_print(const mp_print_t *print, mp_obj_t self_in, m
// timer channel
if (ch->channel == TIMER_A) {
ch_id = "A";
}
else if (ch->channel == TIMER_B) {
} else if (ch->channel == TIMER_B) {
ch_id = "B";
}
mp_printf(print, "<%q %s, timer=%u, %q=%u", MP_QSTR_TimerChannel,
ch_id, (ch->timer->id + 1), MP_QSTR_freq, ch->frequency);
mp_printf(print, "timer.channel(Timer.%s, %q=%u", ch_id, MP_QSTR_freq, ch->frequency);
uint32_t mode = ch->timer->config & 0xFF;
if (mode == TIMER_CFG_A_CAP_COUNT || mode == TIMER_CFG_A_CAP_TIME || mode == TIMER_CFG_A_PWM) {
if (mode == TIMER_CFG_A_PWM) {
mp_printf(print, ", %q=Timer.", MP_QSTR_polarity);
switch (ch->polarity) {
case PYBTIMER_POLARITY_POS:
@@ -596,15 +546,11 @@ STATIC void pyb_timer_channel_print(const mp_print_t *print, mp_obj_t self_in, m
mp_printf(print, "BOTH");
break;
}
if (mode == TIMER_CFG_A_PWM) {
mp_printf(print, ", %q=%u", MP_QSTR_duty_cycle, ch->duty_cycle);
}
mp_printf(print, ", %q=%u.%02u", MP_QSTR_duty_cycle, ch->duty_cycle / 100, ch->duty_cycle % 100);
}
mp_printf(print, ">");
mp_printf(print, ")");
}
/// \method freq([value])
/// get or set the frequency of the timer channel
STATIC mp_obj_t pyb_timer_channel_freq(mp_uint_t n_args, const mp_obj_t *args) {
pyb_timer_channel_obj_t *ch = args[0];
if (n_args == 1) {
@@ -624,8 +570,6 @@ STATIC mp_obj_t pyb_timer_channel_freq(mp_uint_t n_args, const mp_obj_t *args) {
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_channel_freq_obj, 1, 2, pyb_timer_channel_freq);
/// \method period([value])
/// get or set the period of the timer channel in microseconds
STATIC mp_obj_t pyb_timer_channel_period(mp_uint_t n_args, const mp_obj_t *args) {
pyb_timer_channel_obj_t *ch = args[0];
if (n_args == 1) {
@@ -645,74 +589,17 @@ STATIC mp_obj_t pyb_timer_channel_period(mp_uint_t n_args, const mp_obj_t *args)
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_channel_period_obj, 1, 2, pyb_timer_channel_period);
/// \method time([value])
/// get or set the value of the timer channel in microseconds
STATIC mp_obj_t pyb_timer_channel_time(mp_uint_t n_args, const mp_obj_t *args) {
pyb_timer_channel_obj_t *ch = args[0];
uint32_t value;
// calculate the period, the prescaler and the match value
uint32_t period_c;
uint32_t match;
(void)compute_prescaler_period_and_match_value(ch, &period_c, &match);
if (n_args == 1) {
// get
value = (ch->channel == TIMER_B) ? HWREG(ch->timer->timer + TIMER_O_TBV) : HWREG(ch->timer->timer + TIMER_O_TAV);
// return the current timer value in microseconds
// substract value to period since we are always operating in count-down mode
uint32_t time_t = (1000 * (period_c - value)) / period_c;
return mp_obj_new_int((time_t * 1000) / ch->frequency);
}
else {
// set
value = (mp_obj_get_int(args[1]) * ((ch->frequency * period_c) / 1000)) / 1000;
if ((value > 0xFFFF) && (ch->timer->config & TIMER_CFG_SPLIT_PAIR)) {
// this exceeds the maximum value of a 16-bit timer
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, mpexception_value_invalid_arguments));
}
// write period minus value since we are always operating in count-down mode
TimerValueSet (ch->timer->timer, ch->channel, (period_c - value));
return mp_const_none;
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_channel_time_obj, 1, 2, pyb_timer_channel_time);
/// \method event_count()
/// get the number of events triggered by the configured edge
STATIC mp_obj_t pyb_timer_channel_event_count(mp_obj_t self_in) {
pyb_timer_channel_obj_t *ch = self_in;
return mp_obj_new_int(MAP_TimerValueGet(ch->timer->timer, ch->channel == (TIMER_A | TIMER_B) ? TIMER_A : ch->channel));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_timer_channel_event_count_obj, pyb_timer_channel_event_count);
/// \method event_time()
/// get the time at which the last event was triggered
STATIC mp_obj_t pyb_timer_channel_event_time(mp_obj_t self_in) {
pyb_timer_channel_obj_t *ch = self_in;
// calculate the period, the prescaler and the match value
uint32_t period_c;
uint32_t match;
(void)compute_prescaler_period_and_match_value(ch, &period_c, &match);
uint32_t value = MAP_TimerValueGet(ch->timer->timer, ch->channel == (TIMER_A | TIMER_B) ? TIMER_A : ch->channel);
// substract value to period since we are always operating in count-down mode
uint32_t time_t = (1000 * (period_c - value)) / period_c;
return mp_obj_new_int((time_t * 1000) / ch->frequency);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_timer_channel_event_time_obj, pyb_timer_channel_event_time);
/// \method duty_cycle()
/// get or set the duty cycle when in PWM mode
STATIC mp_obj_t pyb_timer_channel_duty_cycle(mp_uint_t n_args, const mp_obj_t *args) {
pyb_timer_channel_obj_t *ch = args[0];
if (n_args == 1) {
// get
return mp_obj_new_int(ch->duty_cycle);
}
else {
} else {
// duty cycle must be converted from percentage to ticks
// calculate the period, the prescaler and the match value
uint32_t period_c;
uint32_t match;
ch->duty_cycle = MIN(100, MAX(0, mp_obj_get_int(args[1])));
ch->duty_cycle = MIN(10000, MAX(0, mp_obj_get_int(args[1])));
compute_prescaler_period_and_match_value(ch, &period_c, &match);
if (n_args == 3) {
// set the new polarity if requested
@@ -720,13 +607,12 @@ STATIC mp_obj_t pyb_timer_channel_duty_cycle(mp_uint_t n_args, const mp_obj_t *a
MAP_TimerControlLevel(ch->timer->timer, ch->channel, (ch->polarity == PYBTIMER_POLARITY_NEG) ? true : false);
}
MAP_TimerMatchSet(ch->timer->timer, ch->channel, match);
MAP_TimerPrescaleMatchSet(ch->timer->timer, ch->channel, match >> 16);
return mp_const_none;
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_channel_duty_cycle_obj, 1, 3, pyb_timer_channel_duty_cycle);
/// \method irq(trigger, priority, handler, wake)
/// FIXME triggers!!
STATIC mp_obj_t pyb_timer_channel_irq (mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
mp_arg_val_t args[mp_irq_INIT_NUM_ARGS];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, mp_irq_INIT_NUM_ARGS, mp_irq_init_args, args);
@@ -741,25 +627,28 @@ STATIC mp_obj_t pyb_timer_channel_irq (mp_uint_t n_args, const mp_obj_t *pos_arg
goto invalid_args;
}
// get the trigger
uint trigger = mp_obj_get_int(args[0].u_obj);
// disable the callback first
pyb_timer_channel_irq_disable(ch);
uint8_t shift = (ch->channel == TIMER_B) ? 8 : 0;
uint32_t _config = (ch->channel == TIMER_B) ? ((ch->timer->config & TIMER_B) >> 8) : (ch->timer->config & TIMER_A);
switch (_config) {
case TIMER_CFG_A_ONE_SHOT:
case TIMER_CFG_A_PERIODIC:
case TIMER_CFG_A_ONE_SHOT_UP:
case TIMER_CFG_A_PERIODIC_UP:
ch->timer->irq_trigger |= TIMER_TIMA_TIMEOUT << shift;
break;
case TIMER_CFG_A_CAP_COUNT:
ch->timer->irq_trigger |= TIMER_CAPA_MATCH << shift;
break;
case TIMER_CFG_A_CAP_TIME:
ch->timer->irq_trigger |= TIMER_CAPA_EVENT << shift;
if (trigger != PYBTIMER_TIMEOUT_TRIGGER) {
goto invalid_args;
}
break;
case TIMER_CFG_A_PWM:
// special case for the PWM match interrupt
ch->timer->irq_trigger |= ((ch->channel & TIMER_A) == TIMER_A) ? TIMER_TIMA_MATCH : TIMER_TIMB_MATCH;
if (trigger != PYBTIMER_MATCH_TRIGGER) {
goto invalid_args;
}
break;
default:
break;
@@ -831,9 +720,6 @@ STATIC const mp_map_elem_t pyb_timer_channel_locals_dict_table[] = {
// instance methods
{ MP_OBJ_NEW_QSTR(MP_QSTR_freq), (mp_obj_t)&pyb_timer_channel_freq_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_period), (mp_obj_t)&pyb_timer_channel_period_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_time), (mp_obj_t)&pyb_timer_channel_time_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_event_count), (mp_obj_t)&pyb_timer_channel_event_count_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_event_time), (mp_obj_t)&pyb_timer_channel_event_time_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_duty_cycle), (mp_obj_t)&pyb_timer_channel_duty_cycle_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_irq), (mp_obj_t)&pyb_timer_channel_irq_obj },
};

View File

@@ -70,10 +70,12 @@
#define MICROPY_FATFS_REENTRANT (1)
#define MICROPY_FATFS_TIMEOUT (2500)
#define MICROPY_FATFS_SYNC_T SemaphoreHandle_t
#define MICROPY_FSUSERMOUNT_ADHOC (1)
#define MICROPY_STREAMS_NON_BLOCK (1)
#define MICROPY_MODULE_WEAK_LINKS (1)
#define MICROPY_CAN_OVERRIDE_BUILTINS (1)
#define MICROPY_PY_ASYNC_AWAIT (0)
#define MICROPY_PY_BUILTINS_TIMEOUTERROR (1)
#define MICROPY_PY_ALL_SPECIAL_METHODS (1)
#ifndef DEBUG
@@ -112,9 +114,6 @@
#define MICROPY_EMERGENCY_EXCEPTION_BUF_SIZE (0)
// extra built in names to add to the global namespace
extern const struct _mp_obj_fun_builtin_t mp_builtin_help_obj;
extern const struct _mp_obj_fun_builtin_t mp_builtin_input_obj;
extern const struct _mp_obj_fun_builtin_t mp_builtin_open_obj;
#define MICROPY_PORT_BUILTINS \
{ MP_OBJ_NEW_QSTR(MP_QSTR_help), (mp_obj_t)&mp_builtin_help_obj }, \
{ MP_OBJ_NEW_QSTR(MP_QSTR_input), (mp_obj_t)&mp_builtin_input_obj }, \

View File

@@ -26,370 +26,7 @@
*/
// for machine module
Q(umachine)
#ifdef DEBUG
Q(info)
#endif
Q(reset)
Q(main)
Q(sync)
Q(rng)
Q(freq)
Q(unique_id)
Q(disable_irq)
Q(enable_irq)
Q(idle)
Q(sleep)
Q(deepsleep)
Q(reset_cause)
Q(wake_reason)
Q(IDLE)
Q(SLEEP)
Q(DEEPSLEEP)
Q(POWER_ON)
Q(HARD_RESET)
Q(WDT_RESET)
Q(DEEPSLEEP_RESET)
Q(SOFT_RESET)
Q(WLAN_WAKE)
Q(PIN_WAKE)
Q(RTC_WAKE)
// for wipy module
Q(wipy)
Q(heartbeat)
Q(/)
// entries for sys.path
Q(/flash)
Q(/flash/lib)
// interactive help
Q(help)
// for module weak links
Q(struct)
Q(binascii)
Q(re)
Q(json)
Q(heapq)
//Q(hashlib)
// for os module
Q(os)
Q(uos)
Q(sysname)
Q(nodename)
Q(release)
Q(version)
Q(machine)
Q(uname)
Q(/)
Q(flash)
Q(chdir)
Q(getcwd)
Q(listdir)
Q(mkdir)
Q(rename)
Q(remove)
Q(rmdir)
Q(unlink)
Q(sep)
Q(stat)
Q(urandom)
Q(mkfs)
Q(mount)
Q(unmount)
Q(dupterm)
Q(readonly)
Q(readblocks)
Q(writeblocks)
Q(sync)
Q(count)
// for file class
Q(seek)
Q(tell)
Q(input)
Q(flush)
// for Pin class
Q(Pin)
Q(board)
Q(init)
Q(value)
Q(toggle)
Q(id)
Q(mode)
Q(pull)
Q(drive)
Q(alt)
Q(alt_list)
Q(IN)
Q(OUT)
Q(OPEN_DRAIN)
Q(ALT)
Q(ALT_OPEN_DRAIN)
Q(PULL_UP)
Q(PULL_DOWN)
Q(LOW_POWER)
Q(MED_POWER)
Q(HIGH_POWER)
Q(IRQ_RISING)
Q(IRQ_FALLING)
Q(IRQ_LOW_LEVEL)
Q(IRQ_HIGH_LEVEL)
// for UART class
Q(UART)
Q(init)
Q(deinit)
Q(any)
Q(sendbreak)
Q(id)
Q(baudrate)
Q(bits)
Q(stop)
Q(parity)
Q(pins)
Q(EVEN)
Q(ODD)
Q(RX_ANY)
// for I2C class
Q(I2C)
Q(id)
Q(mode)
Q(baudrate)
Q(pins)
Q(addr)
Q(nbytes)
Q(buf)
Q(stop)
Q(memaddr)
Q(addrsize)
Q(init)
Q(deinit)
Q(scan)
Q(readfrom)
Q(readfrom_into)
Q(writeto)
Q(readfrom_mem)
Q(readfrom_mem_into)
Q(writeto_mem)
Q(MASTER)
// for ADC class
Q(ADC)
Q(ADCChannel)
Q(value)
Q(init)
Q(deinit)
Q(channel)
Q(id)
Q(pin)
// for SD class
Q(SD)
Q(init)
Q(deinit)
Q(id)
Q(pins)
// for RTC class
Q(RTC)
Q(id)
Q(init)
Q(alarm)
Q(alarm_left)
Q(alarm_cancel)
Q(now)
Q(deinit)
Q(datetime)
Q(repeat)
Q(ALARM0)
// for time class
Q(time)
Q(utime)
Q(localtime)
Q(mktime)
Q(sleep)
Q(sleep_ms)
Q(sleep_us)
Q(ticks_ms)
Q(ticks_us)
Q(ticks_cpu)
Q(ticks_diff)
// for select class
Q(select)
Q(uselect)
Q(register)
Q(unregister)
Q(modify)
Q(poll)
Q(POLLIN)
Q(POLLOUT)
Q(POLLERR)
Q(POLLHUP)
// for socket class
Q(socket)
Q(usocket)
Q(getaddrinfo)
Q(family)
Q(type)
Q(send)
Q(sendall)
Q(sendto)
Q(recv)
Q(recvfrom)
Q(listen)
Q(accept)
Q(bind)
Q(settimeout)
Q(setblocking)
Q(setsockopt)
Q(close)
Q(makefile)
Q(protocol)
Q(error)
Q(timeout)
Q(AF_INET)
Q(SOCK_STREAM)
Q(SOCK_DGRAM)
Q(IPPROTO_SEC)
Q(IPPROTO_TCP)
Q(IPPROTO_UDP)
// for ssl class
Q(ssl)
Q(ussl)
Q(wrap_socket)
Q(sock)
Q(keyfile)
Q(certfile)
Q(server_side)
Q(cert_reqs)
Q(ca_certs)
Q(SSLError)
Q(CERT_NONE)
Q(CERT_OPTIONAL)
Q(CERT_REQUIRED)
// for network class
Q(network)
Q(server)
Q(init)
Q(deinit)
Q(login)
Q(timeout)
Q(isrunning)
// for WLAN class
Q(WLAN)
Q(id)
Q(init)
Q(mode)
Q(auth)
Q(ssid)
Q(bssid)
Q(mac)
Q(antenna)
Q(scan)
Q(connect)
Q(isconnected)
Q(disconnect)
Q(sec)
Q(channel)
Q(rssi)
Q(ifconfig)
Q(config)
//Q(connections)
//Q(urn)
Q(STA)
Q(AP)
Q(OPEN)
Q(WEP)
Q(WPA)
Q(WPA2)
Q(INT_ANT)
Q(EXT_ANT)
Q(ANY_EVENT)
// for WDT class
Q(WDT)
Q(feed)
Q(timeout)
// for irq class
Q(irq)
Q(init)
Q(enable)
Q(disable)
Q(flags)
Q(trigger)
Q(handler)
Q(priority)
Q(wake)
// for SPI class
Q(SPI)
Q(id)
Q(mode)
Q(baudrate)
Q(bits)
Q(polarity)
Q(phase)
Q(firstbit)
Q(init)
Q(deinit)
Q(write)
Q(read)
Q(readinto)
Q(write_readinto)
Q(nbytes)
Q(buf)
Q(MASTER)
Q(MSB)
// for Timer class
Q(Timer)
Q(TimerChannel)
Q(init)
Q(deinit)
Q(freq)
Q(period)
Q(mode)
Q(width)
Q(channel)
Q(polarity)
Q(duty_cycle)
Q(time)
Q(event_count)
Q(event_time)
Q(A)
Q(B)
Q(ONE_SHOT)
Q(PERIODIC)
Q(EDGE_COUNT)
Q(EDGE_TIME)
Q(PWM)
Q(POSITIVE)
Q(NEGATIVE)
// for uhashlib module
//Q(uhashlib)
//Q(update)
//Q(digest)
//Q(md5)
//Q(sha1)
//Q(sha256)
// for ubinascii module
Q(ubinascii)
Q(hexlify)
Q(unhexlify)
Q(a2b_base64)
Q(b2a_base64)

View File

@@ -39,7 +39,8 @@
#include "pybwdt.h"
#include "modusocket.h"
#include "mpexception.h"
#include "modnetwork.h"
#include "modwlan.h"
/******************************************************************************
DEFINE PRIVATE TYPES
@@ -50,13 +51,13 @@ typedef struct {
bool do_disable;
bool do_enable;
bool do_reset;
bool do_wlan_cycle_power;
} servers_data_t;
/******************************************************************************
DECLARE PRIVATE DATA
******************************************************************************/
static servers_data_t servers_data = {.timeout = SERVERS_DEF_TIMEOUT_MS, .enabled = false, .do_disable = false,
.do_enable = false, .do_reset = false};
static servers_data_t servers_data = {.timeout = SERVERS_DEF_TIMEOUT_MS};
static volatile bool sleep_sockets = false;
/******************************************************************************
@@ -120,10 +121,16 @@ void TASK_Servers (void *pvParameters) {
}
if (sleep_sockets) {
sleep_sockets = false;
pybwdt_srv_sleeping(true);
modusocket_enter_sleep();
pybwdt_srv_sleeping(false);
mp_hal_delay_ms(SERVERS_CYCLE_TIME_MS * 2);
if (servers_data.do_wlan_cycle_power) {
servers_data.do_wlan_cycle_power = false;
wlan_off_on();
}
sleep_sockets = false;
}
// set the alive flag for the wdt
@@ -152,6 +159,10 @@ void servers_reset (void) {
servers_data.do_reset = true;
}
void servers_wlan_cycle_power (void) {
servers_data.do_wlan_cycle_power = true;
}
bool servers_are_enabled (void) {
return servers_data.enabled;
}

View File

@@ -62,6 +62,7 @@ extern void TASK_Servers (void *pvParameters);
extern void servers_start (void);
extern void servers_stop (void);
extern void servers_reset (void);
extern void servers_wlan_cycle_power (void);
extern bool servers_are_enabled (void);
extern void servers_close_socket (int16_t *sd);
extern void servers_set_login (char *user, char *pass);

View File

@@ -27,6 +27,6 @@
#ifndef VERSION_H_
#define VERSION_H_
#define WIPY_SW_VERSION_NUMBER "1.1.1"
#define WIPY_SW_VERSION_NUMBER "1.2.0"
#endif /* VERSION_H_ */

View File

@@ -5,7 +5,7 @@
SPHINXOPTS =
SPHINXBUILD = sphinx-build
PAPER =
BUILDDIR = build
BUILDDIR = build/$(MICROPY_PORT)
# User-friendly check for sphinx-build
ifeq ($(shell which $(SPHINXBUILD) >/dev/null 2>&1; echo $$?), 1)

View File

@@ -21,7 +21,7 @@ preferably in a virtualenv:
In `micropython/docs`, build the docs:
make MICROPY_PORT=<port_name> BUILDDIR=build/<port_name> html
make MICROPY_PORT=<port_name> html
Where `<port_name>` can be `unix`, `pyboard`, `wipy` or `esp8266`.

View File

@@ -26,18 +26,28 @@ from collections import OrderedDict
micropy_port = os.getenv('MICROPY_PORT') or 'pyboard'
tags.add('port_' + micropy_port)
ports = OrderedDict((
("unix", "unix"),
("pyboard", "the pyboard"),
("wipy", "the WiPy"),
("esp8266", "esp8266"),
('unix', 'unix'),
('pyboard', 'the pyboard'),
('wipy', 'the WiPy'),
('esp8266', 'the ESP8266'),
))
# The members of the html_context dict are available inside topindex.html
url_prefix = os.getenv('MICROPY_URL_PREFIX') or '/'
micropy_version = os.getenv('MICROPY_VERSION') or 'latest'
micropy_all_versions = (os.getenv('MICROPY_ALL_VERSIONS') or 'latest').split(',')
url_pattern = '%s/en/%%s/%%s' % (os.getenv('MICROPY_URL_PREFIX') or '/',)
html_context = {
'port':micropy_port,
'port_name':ports[micropy_port],
'all_ports':[(n, url_prefix + p) for p, n in ports.items()],
'port_version':micropy_version,
'all_ports':[
(port_id, url_pattern % (micropy_version, port_id))
for port_id, port_name in ports.items()
],
'all_versions':[
(ver, url_pattern % (ver, micropy_port))
for ver in micropy_all_versions
],
}
@@ -74,16 +84,16 @@ source_suffix = '.rst'
# General information about the project.
project = 'MicroPython'
copyright = '2014, Damien P. George'
copyright = '2014-2016, Damien P. George and contributors'
# The version info for the project you're documenting, acts as replacement for
# |version| and |release|, also used in various other places throughout the
# built documents.
#
# The short X.Y version.
version = '1.6'
version = '1.8'
# The full version, including alpha/beta/rc tags.
release = '1.6'
release = '1.8'
# The language for content autogenerated by Sphinx. Refer to documentation
# for a list of supported languages.
@@ -306,5 +316,3 @@ exclude_patterns.extend([port + '*' for port in ports if port != micropy_port])
# Exclude pyb module if the port is the WiPy
if micropy_port == 'wipy':
exclude_patterns.append('library/pyb*')
else: # exclude machine
exclude_patterns.append('library/machine*')

93
docs/esp8266/general.rst Normal file
View File

@@ -0,0 +1,93 @@
General information about the ESP8266 port
==========================================
ESP8266 is a popular WiFi-enabled System-on-Chip (SoC) by Espressif Systems.
Multitude of boards
-------------------
There are multitude of modules and boards from different sources which carry
ESP8266 chip. MicroPython tries to provide a generic port which would run on
as many boards/modules as possible, but there may be limitations. Adafruit
Feather HUZZAH board is taken as a reference board for the port (for example,
testing is performed on it). If you have another board, please make sure you
have datasheet, schematics and other reference materials for your board
handy to look up various aspects of your board functioning.
To make a generic ESP8266 port and support as many boards as possible,
following design and implementation decision were made:
* GPIO pin numbering is based on ESP8266 chip numbering, not some "logical"
numbering of a particular board. Please have manual/pin diagram of your board
handy to find correspondce between your board pins and actual ESP8266 pins.
We also encourage users of various boards to share this mapping via MicroPython
forum, with the idea to collect community-maintained reference materials
eventually.
* All pins which make sense to support, are supported by MicroPython
(for example, we don't expose pins which are used to connect SPI flash
are not exposed, as they're unlikely useful for anything else, and
operating on them will lead to board lock-up). However, any particular
board may expose only subset of pins. Consult your board reference manual.
* Some boards may lack external pins/internal connectivity to support
ESP8266 deepsleep mode.
Technical specifications and SoC datasheets
-------------------------------------------
The datasheets and other reference material for ESP8266 chip are available
from the vendor site: http://bbs.espressif.com/viewtopic.php?f=67&t=225 .
The are primary reference for the chip technical specifications, capabilities,
operating modes, internal functioning, etc.
For your convinience, some of technical specifications are provided below:
* Architecture: Xtensa lx106
* CPU frequency: 80MHz overclockable to 160MHz
* Total RAM available: 96KB (part of it reserved for system)
* BootROM: 64KB
* Internal FlashROM: None
* External FlashROM: code and data, via SPI Flash. Normal sizes 512KB-4MB.
* GPIO: 16 + 1 (GPIOs are multiplexed with other functions, including
external FlashROM, UART, deep sleep wake-up, etc.)
* UART: One RX/TX UART (no hardware handshaking), one TX-only UART.
* SPI: 2 SPI interfaces (one used for FlashROM).
* I2C: No native extenal I2C (bitbang implementation available on any pins).
* I2S: 1.
* Programming: using BootROM bootloader from UART. Due to external FlashROM
and always-available BootROM bootloader, ESP8266 is not brickable.
Boot process
------------
On boot, MicroPython EPS8266 port executes ``_boot.py`` script from internal
frozen modules. It mounts filesystem in FlashROM, or if it's not available,
performs first-time setup of the module and creates the filesystem. This
part of boot process is considered fixed, and not available for customization
for end users (even if you build from source, please refrain from changes to
it; customization of early boot process is available only to advanced users
and developers, who can diagnose themselves any issues arising from
modifying the standard process).
Once filesystem is mounted, ``boot.py`` is executed from it. The standard
version of this file is created during first-time module set up and by
defaults starts up a WebREPL daemon to handle incoming connections. This
file is customizable by end users (for example, you may want to disable
WebREPL for extra security, or add other services which should be run on
module start-up). But keep in mind that incorrect modifications to boot.py
may still lead to boot loops or lock ups, requiring to reflash a module
from scratch.
As a final step of boot procedure, ``main.py`` is executed from filesystem,
if exists. This file is a hook to start up a user application each time
on boot (instead of going to REPL). For small test applications, you may
name them directly as ``main.py``, and upload to module, but instead it's
recommended to keep your application(s) in separate files, and have just
the following in ``main.py``::
import my_app
my_app.main()
This will allow to keep structure of your application clear, as well as
allow to install multiple applications on a board, and switch among them.

304
docs/esp8266/quickref.rst Normal file
View File

@@ -0,0 +1,304 @@
.. _quickref:
Quick reference for the ESP8266
===============================
.. image:: https://learn.adafruit.com/system/assets/assets/000/028/689/medium640/adafruit_products_pinoutstop.jpg
:alt: Adafruit Feather HUZZAH board
:width: 640px
The Adafruit Feather HUZZAH board (image attribution: Adafruit).
General board control
---------------------
The MicroPython REPL is on UART0 (GPIO1=TX, GPIO3=RX) at baudrate 115200.
Tab-completion is useful to find out what methods an object has.
Paste mode (ctrl-E) is useful to paste a large slab of Python code into
the REPL.
The ``machine`` module::
import machine
machine.freq() # get the current frequency of the CPU
machine.freq(160000000) # set the CPU frequency to 160 MHz
The ``esp`` module::
import esp
esp.osdebug(None) # turn off vendor O/S debugging messages
esp.osdebug(0) # redirect vendor O/S debugging messages to UART(0)
Networking
----------
The ``network`` module::
import network
wlan = network.WLAN(network.STA_IF) # create station interface
wlan.active(True) # activate the interface
wlan.scan() # scan for access points
wlan.isconnected() # check if the station is connected to an AP
wlan.connect('essid', 'password') # connect to an AP
wlan.mac() # get the interface's MAC adddress
wlan.ifconfig() # get the interface's IP/netmask/gw/DNS addresses
ap = network.WLAN(network.AP_IF) # create access-point interface
ap.active(True) # activate the interface
ap.config(essid='ESP-AP') # set the ESSID of the access point
A useful function for connecting to your local WiFi network is::
def do_connect():
import network
wlan = network.WLAN(network.STA_IF)
wlan.active(True)
if not wlan.isconnected():
print('connecting to network...')
wlan.connect('essid', 'password')
while not wlan.isconnected():
pass
print('network config:', wlan.ifconfig())
Once the network is established the ``socket`` module can be used
to create and use TCP/UDP sockets as usual.
Delay and timing
----------------
Use the ``time`` module::
import time
time.sleep(1) # sleep for 1 second
time.sleep_ms(500) # sleep for 500 milliseconds
time.sleep_us(10) # sleep for 10 microseconds
start = time.ticks_ms() # get millisecond counter
delta = time.ticks_diff(start, time.ticks_ms()) # compute time difference
Timers
------
Virtual (RTOS-based) timers are supported. Use the ``machine.Timer`` class
with timer ID of -1::
from machine import Timer
tim = Timer(-1)
tim.init(period=5000, mode=Timer.ONE_SHOT, callback=lambda t:print(1))
tim.init(period=2000, mode=Timer.PERIODIC, callback=lambda t:print(2))
The period is in milliseconds.
Pins and GPIO
-------------
Use the ``machine.Pin`` class::
from machine import Pin
p0 = Pin(0, Pin.OUT) # create output pin on GPIO0
p0.high() # set pin to high
p0.low() # set pin to low
p0.value(1) # set pin to high
p2 = Pin(2, Pin.IN) # create input pin on GPIO2
print(p2.value()) # get value, 0 or 1
p4 = Pin(4, Pin.IN, Pin.PULL_UP) # enable internal pull-up resistor
p5 = Pin(5, Pin.OUT, value=1) # set pin high on creation
Available pins are: 0, 1, 2, 3, 4, 5, 12, 13, 14, 15, 16, which correspond
to the actual GPIO pin numbers of ESP8266 chip. Note that many end-user
boards use their own adhoc pin numbering (marked e.g. D0, D1, ...). As
MicroPython supports different boards and modules, physical pin numbering
was chosen as the lowest common denominator. For mapping between board
logical pins and physical chip pins, consult your board documentation.
Note that Pin(1) and Pin(3) are REPL UART TX and RX respectively.
Also note that Pin(16) is a special pin (used for wakeup from deepsleep
mode) and may be not available for use with higher-level classes like
``Neopixel``.
PWM (pulse width modulation)
----------------------------
PWM can be enabled on all pins except Pin(16). There is a single frequency
for all channels, with range between 1 and 1000 (measured in Hz). The duty
cycle is between 0 and 1023 inclusive.
Use the ``machine.PWM`` class::
from machine import Pin, PWM
pwm0 = PWM(Pin(0)) # create PWM object from a pin
pwm0.freq() # get current frequency
pwm0.freq(1000) # set frequency
pwm0.duty() # get current duty cycle
pwm0.duty(200) # set duty cycle
pwm0.deinit() # turn off PWM on the pin
pwm2 = PWM(Pin(2), freq=500, duty=512) # create and configure in one go
ADC (analog to digital conversion)
----------------------------------
ADC is available on a dedicated pin.
Note that input voltages on the ADC pin must be between 0v and 1.0v.
Use the ``machine.ADC`` class::
from machine import ADC
adc = ADC(0) # create ADC object on ADC pin
adc.read() # read value, 0-1024
SPI bus
-------
The SPI driver is implemented in software and works on all pins::
from machine import Pin, SPI
# construct an SPI bus on the given pins
# polarity is the idle state of SCK
# phase=0 means sample on the first edge of SCK, phase=1 means the second
spi = SPI(baudrate=100000, polarity=1, phase=0, sck=Pin(0), mosi=Pin(2), miso=Pin(4))
spi.init(baudrate=200000) # set the baudrate
spi.read(10) # read 10 bytes on MISO
spi.read(10, 0xff) # read 10 bytes while outputing 0xff on MOSI
buf = bytearray(50) # create a buffer
spi.readinto(buf) # read into the given buffer (reads 50 bytes in this case)
spi.readinto(buf, 0xff) # read into the given buffer and output 0xff on MOSI
spi.write(b'12345') # write 5 bytes on MOSI
buf = bytearray(4) # create a buffer
spi.write_readinto(b'1234', buf) # write to MOSI and read from MISO into the buffer
spi.write_readinto(buf, buf) # write buf to MOSI and read MISO back into buf
I2C bus
-------
The I2C driver is implemented in software and works on all pins::
from machine import Pin, I2C
# construct an I2C bus
i2c = I2C(scl=Pin(5), sda=Pin(4), freq=100000)
i2c.readfrom(0x3a, 4) # read 4 bytes from slave device with address 0x3a
i2c.writeto(0x3a, '12') # write '12' to slave device with address 0x3a
buf = bytearray(10) # create a buffer with 10 bytes
i2c.writeto(0x3a, buf) # write the given buffer to the slave
i2c.readfrom(0x3a, 4, stop=False) # don't send a stop bit after reading
i2c.writeto(0x3a, buf, stop=False) # don't send a stop bit after writing
Deep-sleep mode
---------------
Connect GPIO16 to the reset pin (RST on HUZZAH). Then the following code
can be used to sleep, wake and check the reset cause::
import machine
# configure RTC.ALARM0 to be able to wake the device
rtc = machine.RTC()
rtc.irq(trigger=rtc.ALARM0, wake=machine.DEEPSLEEP)
# check if the device woke from a deep sleep
if machine.reset_cause() == machine.DEEPSLEEP_RESET:
print('woke from a deep sleep')
# set RTC.ALARM0 to fire after 10 seconds (waking the device)
rtc.alarm(rtc.ALARM0, 10000)
# put the device to sleep
machine.deepsleep()
OneWire driver
--------------
The OneWire driver is implemented in software and works on all pins::
from machine import Pin
import onewire
ow = onewire.OneWire(Pin(12)) # create a OneWire bus on GPIO12
ow.scan() # return a list of devices on the bus
ow.reset() # reset the bus
ow.readbyte() # read a byte
ow.read(5) # read 5 bytes
ow.writebyte(0x12) # write a byte on the bus
ow.write('123') # write bytes on the bus
ow.select_rom(b'12345678') # select a specific device by its ROM code
There is a specific driver for DS18B20 devices::
import time
ds = onewire.DS18B20(ow)
roms = ds.scan()
ds.convert_temp()
time.sleep_ms(750)
for rom in roms:
print(ds.read_temp(rom))
Be sure to put a 4.7k pull-up resistor on the data line. Note that
the ``convert_temp()`` method must be called each time you want to
sample the temperature.
NeoPixel driver
---------------
Use the ``neopixel`` module::
from machine import Pin
from neopixel import NeoPixel
pin = Pin(0, Pin.OUT) # set GPIO0 to output to drive NeoPixels
np = NeoPixel(pin, 8) # create NeoPixel driver on GPIO0 for 8 pixels
np[0] = (255, 255, 255) # set the first pixel to white
np.write() # write data to all pixels
r, g, b = np[0] # get first pixel colour
For low-level driving of a NeoPixel::
import esp
esp.neopixel_write(pin, grb_buf, is800khz)
WebREPL (web browser interactive prompt)
----------------------------------------
WebREPL (REPL over WebSockets, accessible via a web browser) is an
experimental feature available in ESP8266 port. Download web client
from https://github.com/micropython/webrepl , and start daemon using::
import webrepl
webrepl.start()
(Release version will have it started on boot by default.)
On a first connection, you will be prompted to set password for future
sessions to use.
The supported way to use WebREPL is by connecting to ESP8266 access point,
but the daemon is also started on STA interface if it is active, so if your
routers is set up and works correctly, you may also use it while connecting
to your normal Internet access point (use ESP8266 AP connection method if
face any issues).
WebREPL is an experimental feature and a work in progress, and has known
issues. There's also provision to transfer (both upload and download)
files over WebREPL connection, but it has unstable status (be ready to
reboot a module in case of issues). It still may be a practical way to
get script files onto ESP8266, so give it a try using ``webrepl_cli.py``
from the repository above. See forum for other community-supported
alternatives to transfer files to ESP8266.

View File

@@ -0,0 +1,19 @@
Analog to Digital Conversion
============================
The ESP8266 has a single pin (separate to the GPIO pins) which can be used to
read analog voltages and convert them to a digital value. You can construct
such an ADC pin object using::
>>> import machine
>>> adc = machine.ADC(0)
Then read its value with::
>>> adc.read()
58
The values returned from the ``read()`` function are between 0 (for 0.0 volts)
and 1024 (for 1.0 volts). Please note that this input can only tolerate a
maximum of 1.0 volts and you must use a voltage divider circuit to measure
larger voltages.

View File

@@ -0,0 +1,70 @@
The internal filesystem
=======================
If your devices has 1Mbyte or more of storage then it will be set up (upon first
boot) to contain a filesystem. This filesystem uses the FAT format and is
stored in the flash after the MicroPython firmware.
Creating and reading files
--------------------------
MicroPython on the ESP8266 supports the standard way of accessing files in
Python, using the built-in ``open()`` function.
To create a file try::
>>> f = open('data.txt', 'w')
>>> f.write('some data')
9
>>> f.close()
The "9" is the number of bytes that were written with the ``write()`` method.
Then you can read back the contents of this new file using::
>>> f = open('data.txt')
>>> f.read()
'some data'
>>> f.close()
Note that the default mode when opening a file is to open it in read-only mode,
and as a text file. Specify ``'wb'`` as the second argument to ``open()`` to
open for writing in binary mode, and ``'rb'`` to open for reading in binary
mode.
Listing file and more
---------------------
The os module can be used for further control over the filesystem. First
import the module::
>>> import os
Then try listing the contents of the filesystem::
>>> os.listdir()
['boot.py', 'port_config.py', 'data.txt']
You can make directories::
>>> os.mkdir('dir')
And remove entries::
>>> os.remove('data.txt')
Start up scripts
----------------
There are two files that are treated specially by the ESP8266 when it starts up:
boot.py and main.py. The boot.py script is executed first (if it exists) and
then once it completes the main.py script is executed. You can create these
files yourself and populate them with the code that you want to run when the
device starts up.
Accessing the filesystem via WebREPL
------------------------------------
You can access the filesystem over WebREPL using the provided command-line
tool. This tool is found at `<https://github.com/micropython/webrepl>`__
and is called webrepl_cli.py. Please refer to that program for information
on how to use it.

View File

@@ -0,0 +1,32 @@
.. _tutorial-index:
MicroPython tutorial for ESP8266
================================
This tutorial is intended to get you started using MicroPython on the ESP8266
system-on-a-chip. If it is your first time it is recommended to follow the
tutorial through in the order below. Otherwise the sections are mostly self
contained, so feel free to skip to those that interest you.
The tutorial does not assume that you know Python, but it also does not attempt
to explain any of the details of the Python language. Instead it provides you
with commands that are ready to run, and hopes that you will gain a bit of
Python knowledge along the way. To learn more about Python itself please refer
to `<https://www.python.org>`__.
.. toctree::
:maxdepth: 1
:numbered:
intro.rst
repl.rst
filesystem.rst
network_basics.rst
network_tcp.rst
pins.rst
pwm.rst
adc.rst
powerctrl.rst
onewire.rst
neopixel.rst
nextsteps.rst

View File

@@ -0,0 +1,102 @@
Introduction to MicroPython on the ESP8266
==========================================
Using MicroPython is a great way to get the most of your ESP8266 board. And
vice versa, the ESP8266 chip is a great platform for using MicroPython. This
tutorial will guide you through setting up MicroPython, getting a prompt, using
WebREPL, connecting to the network and communicating with the Internet, using
the hardware peripherals, and controlling some external components.
Let's get started!
Requirements
------------
The first thing you need is a board with an ESP8266 chip. The MicroPython
software supports the ESP8266 chip itself and any board should work. The main
characteristic of a board is how much flash it has, how the GPIO pins are
connected to the outside world, and whether it includes a built-in USB-serial
convertor to make the UART available to your PC.
The minimum requirement for flash size is 512k. A board with this amount of
flash will not have room for a filesystem, but otherwise is fully functional.
If your board has 1Mbyte or more of flash then it will support a filesystem.
Names of pins will be given in this tutorial using the chip names (eg GPIO0)
and it should be straightforward to find which pin this corresponds to on your
particular board.
Powering the board
------------------
If your board has a USB connector on it then most likely it is powered through
this when connected to your PC. Otherwise you will need to power it directly.
Please refer to the documentation for your board for further details.
Deploying the firmware
----------------------
The very first thing you need to do is put the MicroPython firmware (compiled
code) on your ESP8266 device. There are two main steps to do this: first you
need to put your device in boot-loader mode, and second you need to copy across
the firmware. The exact procedure for these steps is highly dependent on the
particular board and you will need to refer to its documentation for details.
If you have a board that has a USB connector, a USB-serial convertor, and has
the DTR and RTS pins wired in a special way then deploying the firmware should
be easy as all steps can be done automatically. Boards that have such features
include the Adafruit Feather HUZZAH and NodeMCU boards.
For best results it is recommended to first erase the entire flash of your
device before putting on new MicroPython firmware.
Currently we only support esptool.py to copy across the firmware. You can find
this tool here: `<https://github.com/themadinventor/esptool/>`__, or install it
using pip::
pip install esptool
It requires Python 2.7, so you may need to use ``pip2`` instead of ``pip`` in
the command above. Any other
flashing program should work, so feel free to try them out, or refer to the
documentation for your board to see its recommendations.
Using esptool.py you can erase the flash with the command::
esptool.py --port /dev/ttyUSB0 erase_flash
And then deploy the new firmware using::
esptool.py --port /dev/ttyUSB0 --baud 460800 write_flash --flash_size=8m 0 esp8266-2016-05-03-v1.8.bin
You might need to change the "port" setting to something else relevant for your
PC. You may also need to reduce the baudrate if you get errors when flashing
(eg down to 115200). The filename of the firmware should also match the file
that you have.
If you have a NodeMCU board, you may need to use the following command to deploy
the firmware (note the "-fm dio" option)::
esptool.py --port /dev/ttyUSB0 --baud 460800 write_flash --flash_size=8m -fm dio 0 esp8266-2016-05-03-v1.8.bin
If the above commands run without error then MicroPython should be installed on
your board!
Serial prompt
-------------
Once you have the firmware on the device you can access the REPL (Python prompt)
over UART0 (GPIO1=TX, GPIO3=RX), which might be connected to a USB-serial
convertor, depending on your board. The baudrate is 115200. The next part of
the tutorial will discuss the prompt in more detail.
WiFi
----
After a fresh install and boot the device configures itself as a WiFi access
point (AP) that you can connect to. The ESSID is of the form MicroPython-xxxxxx
where the x's are replaced with part of the MAC address of your device (so will
be the same everytime, and most likely different for all ESP8266 chips). The
password for the WiFi is micropythoN (note the upper-case N). Its IP address
will be 192.168.4.1 once you connect to its network. WiFi configuration will
be discussed in more detail later in the tutorial.

View File

@@ -0,0 +1,70 @@
Controlling NeoPixels
=====================
NeoPixels, also known as WS2812 LEDs, are full-colour LEDs that are connected in
serial, are individually addressable, and can have their red, green and blue
components set between 0 and 255. They require precise timing to control them
and there is a special neopixel module to do just this.
To create a NeoPixel object do the following::
>>> import machine, neopixel
>>> np = neopixel.NeoPixel(machine.Pin(4), 8)
This configures a NeoPixel strip on GPIO4 with 8 pixels. You can adjust the
"4" (pin number) and the "8" (number of pixel) to suit your set up.
To set the colour of pixels use::
>>> np[0] = (255, 0, 0) # set to red, full brightness
>>> np[1] = (0, 128, 0) # set to green, half brightness
>>> np[2] = (0, 0, 64) # set to blue, quarter brightness
Then use the ``write()`` method to output the colours to the LEDs::
>>> np.write()
The following demo function makes a fancy show on the LEDs::
import time
def demo(np):
n = np.n
# cycle
for i in range(4 * n):
for j in range(n):
np[j] = (0, 0, 0)
np[i % n] = (255, 255, 255)
np.write()
time.sleep_ms(25)
# bounce
for i in range(4 * n):
for j in range(n):
np[j] = (0, 0, 128)
if (i // n) % 2 == 0:
np[i % n] = (0, 0, 0)
else:
np[n - 1 - (i % n)] = (0, 0, 0)
np.write()
time.sleep_ms(60)
# fade in/out
for i in range(0, 4 * 256, 8):
for j in range(n):
if (i // 256) % 2 == 0:
val = i & 0xff
else:
val = 255 - (i & 0xff)
np[j] = (val, 0, 0)
np.write()
# clear
for i in range(n):
np[i] = (0, 0, 0)
np.write()
Execute it using::
>>> demo(np)

View File

@@ -0,0 +1,81 @@
Network basics
==============
The network module is used to configure the WiFi connection. There are two WiFi
interfaces, one for the station (when the ESP8266 connects to a router) and one
for the access point (for other devices to connect to the ESP8266). Create
instances of these objects using::
>>> import network
>>> sta_if = network.WLAN(network.STA_IF)
>>> ap_if = network.WLAN(network.AP_IF)
You can check if the interfaces are active by::
>>> sta_if.active()
False
>>> ap_if.active()
True
You can also check the network settings of the interface by::
>>> ap.ifconfig()
('192.168.4.1', '255.255.255.0', '192.168.4.1', '8.8.8.8')
The returned values are: IP address, netmask, gateway, DNS.
Configuration of the WiFi
-------------------------
Upon a fresh install the ESP8266 is configured in access point mode, so the
AP_IF interface is active and the STA_IF interface is inactive. You can
configure the module to connect to your own network using the STA_IF interface.
First activate the station interface::
>>> sta_if.active(True)
Then connect to your WiFi network::
>>> sta_if.connect('<your ESSID>', '<your password>')
To check if the connection is established use::
>>> sta_if.isconnected()
Once established you can check the IP address::
>>> sta_if.ifconfig()
('192.168.0.2', '255.255.255.0', '192.168.0.1', '8.8.8.8')
You can then disable the access-point interface if you no longer need it::
>>> ap_if.active(False)
Here is a function you can run (or put in your boot.py file) to automatically
connect to your WiFi network::
def do_connect():
import network
sta_if = network.WLAN(network.STA_IF)
if not sta_if.isconnected():
print('connecting to network...')
sta_if.active(True)
sta_if.connect('<essid>', '<password>')
while not network.isconnected():
pass
print('network config:', sta_if.ifconfig())
Sockets
-------
Once the WiFi is set up the way to access the network is by using sockets.
A socket represents an endpoint on a network device, and when two sockets are
connected together communication can proceed.
Internet protocols are built on top of sockets, such as email (SMTP), the web
(HTTP), telnet, ssh, among many others. Each of these protocols is assigned
a specific port, which is just an integer. Given an IP address and a port
number you can connect to a remote device and start talking with it.
The next part of the tutorial discusses how to use sockets to do some common
and useful network tasks.

View File

@@ -0,0 +1,121 @@
Network - TCP sockets
=====================
The building block of most of the internet is the TCP socket. These sockets
provide a reliable stream of bytes between the connected network devices.
This part of the tutorial will show how to use TCP sockets in a few different
cases.
Star Wars Asciimation
---------------------
The simplest thing to do is to download data from the internet. In this case
we will use the Star Wars Asciimation service provided by the blinkenlights.nl
website. It uses the telnet protocol on port 23 to stream data to anyone that
connects. It's very simple to use because it doesn't require you to
authenticate (give a username or password), you can just start downloading data
straight away.
The first thing to do is make sure we have the socket module available::
>>> import socket
Then get the IP address of the server::
>>> addr_info = socket.getaddrinfo("towel.blinkenlights.nl", 23)
The ``getaddrinfo`` function actually returns a list of addresses, and each
address has more information than we need. We want to get just the first valid
address, and then just the IP address and port of the server. To do this use::
>>> addr = addr_info[0][-1]
If you type ``addr_info`` and ``addr`` at the prompt you will see exactly what
information they hold.
Using the IP address we can make a socket and connect to the server::
>>> s = socket.socket()
>>> s.connect(addr[0][-1])
Now that we are connected we can download and display the data::
>>> while True:
... data = s.recv(500)
... print(str(data, 'utf8'), end='')
...
When this loop executes it should start showing the animation (use ctrl-C to
interrupt it).
You should also be able to run this same code on your PC using normal Python if
you want to try it out there.
HTTP GET request
----------------
The next example shows how to download a webpage. HTTP uses port 80 and you
first need to send a "GET" request before you can download anything. As part
of the request you need to specify the page to retrieve.
Let's define a function that can download and print a URL::
def http_get(url):
_, _, host, path = url.split('/', 3)
addr = socket.getaddrinfo(host, 80)[0][-1]
s = socket.socket()
s.connect(addr)
s.send(bytes('GET /%s HTTP/1.0\r\nHost: %s\r\n\r\n' % (path, host), 'utf8'))
while True:
data = s.recv(100)
if data:
print(str(data, 'utf8'), end='')
else:
break
Make sure that you import the socket module before running this function. Then
you can try::
>>> http_get('http://micropython.org/ks/test.html')
This should retrieve the webpage and print the HTML to the console.
Simple HTTP server
------------------
The following code creates an simple HTTP server which serves a single webpage
that contains a table with the state of all the GPIO pins::
import machine
pins = [machine.Pin(i, machine.Pin.IN) for i in (0, 2, 4, 5, 12, 13, 14, 15)]
html = """<!DOCTYPE html>
<html>
<head> <title>ESP8266 Pins</title> </head>
<body> <h1>ESP8266 Pins</h1>
<table border="1"> <tr><th>Pin</th><th>Value</th></tr> %s </table>
</body>
</html>
"""
import socket
addr = socket.getaddrinfo('0.0.0.0', 80)[0][-1]
s = socket.socket()
s.bind(addr)
s.listen(1)
print('listening on', addr)
while True:
cl, addr = s.accept()
print('client connected from', addr)
cl_file = cl.makefile('rwb', 0)
while True:
line = cl_file.readline()
if not line or line == b'\r\n':
break
rows = ['<tr><td>%s</td><td>%d</td></tr>' % (str(p), p.value()) for p in pins]
response = html % '\n'.join(rows)
cl.send(response)
cl.close()

View File

@@ -0,0 +1,12 @@
Next steps
==========
That brings us to the end of the tutorial! Hopefully by now you have a good
feel for the capabilities of MicroPython on the ESP8266 and understand how to
control both the WiFi and IO aspects of the chip.
There are many features that were not covered in this tutorial. The best way
to learn about them is to read the full documentation of the modules, and to
experiment!
Good luck creating your Internet of Things devices!

View File

@@ -0,0 +1,37 @@
Controlling 1-wire devices
==========================
The 1-wire bus is a serial bus that uses just a single wire for communication
(in addition to wires for ground and power). The DS18B20 temperature sensor
is a very popular 1-wire device, and here we show how to use the onewire module
to read from such a device.
For the following code to work you need to have at least one DS18B20 temperature
sensor with its data line connected to GPIO12. You must also power the sensors
and connect a 4.7k Ohm resistor between the data pin and the power pin. ::
import time
import machine
import onewire
# the device is on GPIO12
dat = machine.Pin(12)
# create the onewire object
ds = onewire.DS18B20(onewire.OneWire(dat))
# scan for devices on the bus
roms = ds.scan()
print('found devices:', roms)
# loop 10 times and print all temperatures
for i in range(10):
print('temperatures:', end=' ')
ds.convert_temp()
time.sleep_ms(750)
for rom in roms:
print(ds.read_temp(rom), end=' ')
print()
Note that you must execute the ``convert_temp()`` function to initiate a
temperature reading, then wait at least 750ms before reading the value.

View File

@@ -0,0 +1,75 @@
GPIO Pins
=========
The way to connect your board to the external world, and control other
components, is through the GPIO pins. Not all pins are available to use,
in most cases only pins 0, 2, 4, 5, 12, 13, 14, 15, and 16 can be used.
The pins are available in the machine module, so make sure you import that
first. Then you can create a pin using::
>>> pin = machine.Pin(0)
Here, the "0" is the pin that you want to access. Usually you want to
configure the pin to be input or output, and you do this when constructing
it. To make an input pin use::
>>> pin = machine.Pin(0, machine.Pin.OUT, machine.Pin.PULL_UP)
You can either use PULL_UP or None for the input pull-mode. If it's
not specified then it defaults to None, which is no pull resistor.
You can read the value on the pin using::
>>> pin.value()
0
The pin on your board may return 0 or 1 here, depending on what it's connected
to. To make an output pin use::
>>> pin = machine.Pin(0, machine.Pin.OUT)
Then set its value using::
>>> pin.value(0)
>>> pin.value(1)
Or::
>>> pin.low()
>>> pin.high()
External interrupts
-------------------
All pins except number 16 can be configured to trigger a hard interrupt if their
input changes. You can set code (a callback function) to be executed on the
trigger.
Let's first define a callback function, which must take a single argument,
being the pin that triggered the function. We will make the function just print
the pin::
>>> def callback(p):
... print('pin change', p)
Next we will create two pins and configure them as inputs::
>>> from machine import Pin
>>> p0 = Pin(0, Pin.IN)
>>> p2 = Pin(2, Pin.IN)
An finally we need to tell the pins when to trigger, and the function to call
when they detect an event::
>>> p0.irq(trigger=Pin.IRQ_FALLING, handler=callback)
>>> p2.irq(trigger=Pin.IRQ_RISING | Pin.IRQ_FALLING, handler=callback)
We set pin 0 to trigger only on a falling edge of the input (when it goes from
high to low), and set pin 2 to trigger on both a rising and falling edge. After
entering this code you can apply high and low voltages to pins 0 and 2 to see
the interrupt being executed.
A hard interrupt will trigger as soon as the event occurs and will interrupt any
running code, including Python code. As such your callback functions are
limited in what they can do (they cannot allocate memory, for example) and
should be as short and simple as possible.

View File

@@ -0,0 +1,61 @@
Power control
=============
The ESP8266 provides the ability to change the CPU frequency on the fly, and
enter a deep-sleep state. Both can be used to manage power consumption.
Changing the CPU frequency
--------------------------
The machine module has a function to get and set the CPU frequency. To get the
current frequency use::
>>> import machine
>>> machine.freq()
80000000
By default the CPU runs at 80MHz. It can be change to 160MHz if you need more
processing power, at the expense of current consumption::
>>> machine.freq(160000000)
>>> machine.freq()
160000000
You can change to the higher frequency just while your code does the heavy
processing and then change back when its finished.
Deep-sleep mode
---------------
The deep-sleep mode will shut down the ESP8266 and all its peripherals,
including the WiFi (but not including the real-time-clock, which is used to wake
the chip). This drastically reduces current consumption and is a good way to
make devices that can run for a while on a battery.
To be able to use the deep-sleep feature you must connect GPIO16 to the reset
pin (RST on the Adafruit Feather HUZZAH board). Then the following code can be
used to sleep and wake the device::
import machine
# configure RTC.ALARM0 to be able to wake the device
rtc = machine.RTC()
rtc.irq(trigger=rtc.ALARM0, wake=machine.DEEPSLEEP)
# set RTC.ALARM0 to fire after 10 seconds (waking the device)
rtc.alarm(rtc.ALARM0, 10000)
# put the device to sleep
machine.deepsleep()
Note that when the chip wakes from a deep-sleep it is completely reset,
including all of the memory. The boot scripts will run as usual and you can
put code in them to check the reset cause to perhaps do something different if
the device just woke from a deep-sleep. For example, to print the reset cause
you can use::
if machine.reset_cause() == machine.DEEPSLEEP_RESET:
print('woke from a deep sleep')
else:
print('power on or hard reset')

View File

@@ -0,0 +1,87 @@
Pulse Width Modulation
======================
Pulse width modulation (PWM) is a way to get an artificial analog output on a
digital pin. It achieves this by rapidly toggling the pin from low to high.
There are two parameters associated with this: the frequency of the toggling,
and the duty cycle. The duty cycle is defined to be how long the pin is high
compared with the length of a single period (low plus high time). Maximum
duty cycle is when the pin is high all of the time, and minimum is when it is
low all of the time.
On the ESP8266 the pins 0, 2, 4, 5, 12, 13, 14 and 15 all support PWM. The
limitation is that they must all be at the same frequency, and the frequency
must be between 1Hz and 1kHz.
To use PWM on a pin you must first create the pin object, for example::
>>> import machine
>>> p12 = machine.Pin(12)
Then create the PWM object using::
>>> pwm12 = machine.PWM(p12)
You can set the frequency and duty cycle using::
>>> pwm12.freq(500)
>>> pwm12.duty(512)
Note that the duty cycle is between 0 (all off) and 1023 (all on), with 512
being a 50% duty. If you print the PWM object then it will tell you its current
configuration::
>>> pwm12
PWM(12, freq=500, duty=512)
You can also call the ``freq()`` and ``duty()`` methods with no arguments to
get their current values.
The pin will continue to be in PWM mode until you deinitialise it using::
>>> pwm12.deinit()
Fading an LED
-------------
Let's use the PWM feature to fade an LED. Assuming your board has an LED
connected to pin 2 (ESP-12 modules do) we can create an LED-PWM object using::
>>> led = machine.PWM(machine.Pin(2), freq=1000)
Notice that we can set the frequency in the PWM constructor.
For the next part we will use timing and some math, so import these modules::
>>> import time, math
Then create a function to pulse the LED::
>>> def pulse(l, t):
... for i in range(20):
... l.duty(int(math.sin(i / 10 * math.pi) * 500 + 500))
... time.sleep_ms(t)
You can try this function out using::
>>> pulse(led, 50)
For a nice effect you can pulse many times in a row::
>>> for i in range(10):
... pulse(led, 20)
Remember you can use ctrl-C to interrupt the code.
Control a hobby servo
---------------------
Hobby servo motors can be controlled using PWM. They require a frequency of
50Hz and then a duty between about 40 and 115, with 77 being the centre value.
If you connect a servo to the power and ground pins, and then the signal line
to pin 12 (other pins will work just as well), you can control the motor using::
>>> servo = machine.PWM(machine.Pin(12), freq=50)
>>> servo.duty(40)
>>> servo.duty(115)
>>> servo.duty(77)

View File

@@ -0,0 +1,207 @@
Getting a MicroPython REPL prompt
=================================
REPL stands for Read Evaluate Print Loop, and is the name given to the
interactive MicroPython prompt that you can access on the ESP8266. Using the
REPL is by far the easiest way to test out your code and run commands.
There are two ways to access the REPL: either via a wired connection through the
UART serial port, or via WiFi.
REPL over the serial port
-------------------------
The REPL is always available on the UART0 serial peripheral, which is connected
to the pins GPIO1 for TX and GPIO3 for RX. The baudrate of the REPL is 115200.
If your board has a USB-serial convertor on it then you should be able to access
the REPL directly from your PC. Otherwise you will need to have a way of
communicating with the UART.
To access the prompt over USB-serial you need to use a terminal emulator program.
On Windows TeraTerm is a good choice, on Mac you can use the built-in screen
program, and Linux has picocom and minicom. Of course, there are many other
terminal programs that will work, so pick your favourite!
For example, on Linux you can try running::
picocom /dev/ttyUSB0
Once you have made the connection over the serial port you can test if it is
working by hitting enter a few times. You should see the Python REPL prompt,
indicated by ``>>>``.
WebREPL - a prompt over WiFi
----------------------------
WebREPL allows you to use the Python prompt over WiFi, connecting through a
browser. The latest versions of Firefox and Chrome are supported.
For your convinience, WebREPL client is hosted at
`<http://micropython.org/webrepl>`__ . Alternatively, you can install it
locally from the the GitHub repository
`<https://github.com/micropython/webrepl>`__ .
To use WebREPL connect your computer to the ESP8266's access point
(MicroPython-xxxxxx, see the previous section about this). If you have
already reconfigured your ESP8266 to connect to a router then you can
skip this part.
Once you are on the same network as the ESP8266 you click the "Connect" button
(if you are connecting via a router then you may need to change the IP address,
by default the IP address is correct when connected to the ESP8266's access
point). If the connection succeeds then you should see a welcome message.
On the first connection you need to set a password. Make sure that the
terminal widget is selected by clicking on it, and then follow prompts to
type in your password twice (they should match each other). Then ESP8266
will then reboot with the password applied (the WiFi will go down but come
back up again). Note that some modules may have troubles rebooting
automatically and need reset button press or power cycle (do this if
you don't see ESP8266 access point appearing in a minute or so).
You should then click the "Connect" button again, and enter your password
to connect. If you type in the correct password you should get a prompt
looking like ``>>>``. You can now start typing Python commands!
Using the REPL
--------------
Once you have a prompt you can start experimenting! Anything you type at the
prompt will be executed after you press the Enter key. MicroPython will run
the code that you enter and print the result (if there is one). If there is an
error with the text that you enter then an error message is printed.
Try typing the following at the prompt::
>>> print('hello esp8266!')
hello esp8266!
Note that you shouldn't type the ``>>>`` arrows, they are there to indicate that
you should type the text after it at the prompt. And then the line following is
what the device should respond with. In the end, once you have entered the text
``print("hello esp8266!")`` and pressed the Enter key, the output on your screen
should look exactly like it does above.
If you already know some python you can now try some basic commands here. For
example::
>>> 1 + 2
3
>>> 1 / 2
0.5
>>> 12**34
4922235242952026704037113243122008064
If your board has an LED attached to GPIO2 (the ESP-12 modules do) then you can
turn it on and off using the following code::
>>> import machine
>>> pin = machine.Pin(2, machine.Pin.OUT)
>>> pin.high()
>>> pin.low()
Note that ``high`` might turn the LED off and ``low`` might turn it on (or vice
versa), depending on how the LED is wired on your board.
Line editing
~~~~~~~~~~~~
You can edit the current line that you are entering using the left and right
arrow keys to move the cursor, as well as the delete and backspace keys. Also,
pressing Home or ctrl-A moves the cursor to the start of the line, and pressing
End or ctrl-E moves to the end of the line.
Input history
~~~~~~~~~~~~~
The REPL remembers a certain number of previous lines of text that you entered
(up to 8 on the ESP8266). To recall previous lines use the up and down arrow
keys.
Tab completion
~~~~~~~~~~~~~~
Pressing the Tab key will do an auto-completion of the current word that you are
entering. This can be very useful to find out functions and methods that a
module or object has. Try it out by typing "ma" and then pressing Tab. It
should complete to "machine" (assuming you imported machine in the above
example). Then type "." and press Tab again to see a list of all the functions
that the machine module has.
Line continuation and auto-indent
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Certain things that you type will need "continuing", that is, will need more
lines of text to make a proper Python statement. In this case the prompt will
change to ``...`` and the cursor will auto-indent the correct amount so you can
start typing the next line straight away. Try this by defining the following
function::
>>> def toggle(p):
... p.value(not p.value())
...
...
...
>>>
In the above, you needed to press the Enter key three times in a row to finish
the compound statement (that's the three lines with just dots on them). The
other way to finish a compound statement is to press backspace to get to the
start of the line, then press the Enter key. (If you did something wrong and
want to escape the continuation mode then press ctrl-C; all lines will be
ignored.)
The function you just defined allows you to toggle a pin. The pin object you
created earlier should still exist (recreate it if it doesn't) and you can
toggle the LED using::
>>> toggle(pin)
Let's now toggle the LED in a loop (if you don't have an LED then you can just
print some text instead of calling toggle, to see the effect)::
>>> import time
>>> while True:
... toggle(pin)
... time.sleep_ms(500)
...
...
...
>>>
This will toggle the LED at 1Hz (half a second on, half a second off). To stop
the toggling press ctrl-C, which will raise a KeyboardInterrupt exception and
break out of the loop.
The time module provides some useful functions for making delays and doing
timing. Use tab completion to find out what they are and play around with them!
Paste mode
~~~~~~~~~~
Pressing ctrl-E will enter a special paste mode. This allows you to copy and
paste a chunk of text into the REPL. If you press ctrl-E you will see the
paste-mode prompt::
paste mode; Ctrl-C to cancel, Ctrl-D to finish
===
You can then paste (or type) your text in. Note that none of the special keys
or commands work in paste mode (eg Tab or backspace), they are just accepted
as-is. Press ctrl-D to finish entering the text and execute it.
Other control commands
~~~~~~~~~~~~~~~~~~~~~~
There are four other control commands:
* Ctrl-A on a blank line will enter raw REPL mode. This is like a permanent
paste mode, except that characters are not echoed back.
* Ctrl-B on a blank like goes to normal REPL mode.
* Ctrl-C cancels any input, or interrupts the currently running code.
* Ctrl-D on a blank line will do a soft reset.
Note that ctrl-A and ctrl-D do not work with WebREPL.

View File

@@ -3,6 +3,9 @@ MicroPython documentation contents
.. toctree::
esp8266/quickref.rst
esp8266/general.rst
esp8266/tutorial/index.rst
library/index.rst
reference/index.rst
license.rst

View File

@@ -3,6 +3,7 @@ MicroPython documentation and references
.. toctree::
esp8266/quickref.rst
library/index.rst
license.rst
esp8266_contents.rst

View File

@@ -10,46 +10,6 @@ The ``esp`` module contains specific functions related to the ESP8266 module.
Functions
---------
.. function:: mac([address])
Get or set the network interface's MAC address.
If the ``address`` parameter is provided, sets the address to its value. If
the function is called wihout parameters, returns the current address.
.. function:: getaddrinfo((hostname, port, lambda))
Initiate resolving of the given hostname.
When the hostname is resolved, the provided ``lambda`` callback will be
called with two arguments, first being the hostname being resolved,
second a tuple with information about that hostname.
.. function:: wifi_mode([mode])
Get or set the wireless network operating mode.
If the ``mode`` parameter is provided, sets the mode to its value. If
the function is called wihout parameters, returns the current mode.
The possible modes are defined as constants:
* ``STA_MODE`` -- station mode,
* ``AP_MODE`` -- software access point mode,
* ``STA_AP_MODE`` -- mixed station and software access point mode.
.. function:: phy_mode([mode])
Get or set the network interface mode.
If the ``mode`` parameter is provided, sets the mode to its value. If
the function is called wihout parameters, returns the current mode.
The possible modes are defined as constants:
* ``MODE_11B`` -- IEEE 802.11b,
* ``MODE_11G`` -- IEEE 802.11g,
* ``MODE_11N`` -- IEEE 802.11n.
.. function:: sleep_type([sleep_type])
Get or set the sleep type.
@@ -80,10 +40,8 @@ Functions
Read the device ID of the flash memory.
Classes
-------
.. function:: flash_read(byte_offset, length_or_buffer)
.. toctree::
:maxdepth: 1
.. function:: flash_write(byte_offset, bytes)
esp.socket.rst
.. function:: flash_erase(sector_no)

View File

@@ -1,62 +1,13 @@
MicroPython libraries
=====================
Functionality specific to the MicroPython implementation is available in
the following library.
.. toctree::
:maxdepth: 1
micropython.rst
Python standard libraries
-------------------------
The following standard Python libraries are built in to MicroPython.
For additional libraries, please download them from the `micropython-lib repository
<https://github.com/micropython/micropython-lib>`_.
.. only:: port_unix
.. toctree::
:maxdepth: 1
cmath.rst
gc.rst
math.rst
os.rst
struct.rst
sys.rst
time.rst
.. only:: port_pyboard
.. toctree::
:maxdepth: 1
cmath.rst
gc.rst
math.rst
os.rst
select.rst
struct.rst
sys.rst
time.rst
.. only:: port_wipy
.. toctree::
:maxdepth: 1
gc.rst
os.rst
select.rst
sys.rst
time.rst
Python micro-libraries
----------------------
Python standard libraries and micro-libraries
---------------------------------------------
The following standard Python libraries have been "micro-ified" to fit in with
the philosophy of MicroPython. They provide the core functionality of that
@@ -71,19 +22,104 @@ library.
directory ``json`` and load that package if it is found. If nothing is found,
it will fallback to loading the built-in ``ujson`` module.
.. only:: port_pyboard or port_unix
.. only:: port_unix
.. toctree::
:maxdepth: 1
cmath.rst
gc.rst
math.rst
select.rst
sys.rst
ubinascii.rst
ucollections.rst
uhashlib.rst
uheapq.rst
uio.rst
ujson.rst
uos.rst
ure.rst
usocket.rst
ustruct.rst
utime.rst
uzlib.rst
.. only:: port_pyboard
.. toctree::
:maxdepth: 1
cmath.rst
gc.rst
math.rst
select.rst
sys.rst
ubinascii.rst
ucollections.rst
uhashlib.rst
uheapq.rst
uio.rst
ujson.rst
uos.rst
ure.rst
usocket.rst
ustruct.rst
utime.rst
uzlib.rst
.. only:: port_wipy
.. toctree::
:maxdepth: 1
gc.rst
select.rst
sys.rst
ubinascii.rst
ujson.rst
uos.rst
ure.rst
usocket.rst
ussl.rst
utime.rst
.. only:: port_esp8266
.. toctree::
:maxdepth: 1
gc.rst
math.rst
sys.rst
ubinascii.rst
ucollections.rst
uhashlib.rst
uheapq.rst
uio.rst
ujson.rst
uos.rst
ure.rst
usocket.rst
ustruct.rst
utime.rst
uzlib.rst
MicroPython-specific libraries
------------------------------
Functionality specific to the MicroPython implementation is available in
the following libraries.
.. toctree::
:maxdepth: 1
machine.rst
micropython.rst
network.rst
uctypes.rst
.. toctree::
:maxdepth: 1
ubinascii.rst
uctypes.rst
uhashlib.rst
uheapq.rst
ujson.rst
ure.rst
usocket.rst
uzlib.rst
.. only:: port_pyboard
@@ -96,18 +132,6 @@ library.
:maxdepth: 2
pyb.rst
network.rst
.. only:: port_wipy
.. toctree::
:maxdepth: 1
ubinascii.rst
ujson.rst
ure.rst
usocket.rst
ussl.rst
.. only:: port_wipy
@@ -119,8 +143,6 @@ library.
.. toctree::
:maxdepth: 2
machine.rst
network.rst
wipy.rst
@@ -134,6 +156,4 @@ library.
.. toctree::
:maxdepth: 2
pyb.rst
esp.rst
network.rst

View File

@@ -49,12 +49,15 @@ Constructors
Construct an I2C object on the given bus. `bus` can only be 0.
If the bus is not given, the default one will be selected (0).
Methods
-------
.. only:: port_esp8266
.. method:: i2c.deinit()
.. class:: machine.I2C(scl, sda, \*, freq=400000)
Turn off the I2C bus.
Construct and return a new I2C object.
See the init method below for a description of the arguments.
General Methods
---------------
.. only:: port_wipy
@@ -66,48 +69,131 @@ Methods
- ``baudrate`` is the SCL clock rate
- ``pins`` is an optional tuple with the pins to assign to the I2C bus.
.. method:: i2c.readfrom(addr, nbytes)
.. only:: port_esp8266
Read ``nbytes`` from the slave specified by ``addr``.
Returns a ``bytes`` object with the data read.
.. method:: i2c.init(scl, sda, \*, freq=400000)
.. method:: i2c.readfrom_into(addr, buf)
Initialise the I2C bus with the given arguments:
Read into ``buf`` from the slave specified by ``addr``.
Returns the number of bytes read.
- `scl` is a pin object for the SCL line
- `sda` is a pin object for the SDA line
- `freq` is the SCL clock rate
.. method:: i2c.writeto(addr, buf, \*, stop=True)
.. method:: i2c.deinit()
Write ``buf`` to the slave specified by ``addr``. Set ``stop`` to ``False``
if the transfer should be continued.
Returns the number of bytes written.
Turn off the I2C bus.
.. method:: i2c.readfrom_mem(addr, memaddr, nbytes, \*, addrsize=8)
Read ``nbytes`` from the slave specified by ``addr`` starting from the memory
address specified by ``memaddr``.
Param ``addrsize`` specifies the address size in bits.
Returns a ``bytes`` object with the data read.
.. method:: i2c.readfrom_mem_into(addr, memaddr, buf, \*, addrsize=8)
Read into ``buf`` from the slave specified by ``addr`` starting from the memory
address specified by ``memaddr``.
Param ``addrsize`` specifies the address size in bits.
Returns the number of bytes read.
.. method:: i2c.writeto_mem(addr, memaddr, buf, \*, addrsize=8)
Write ``buf`` to the slave specified by ``addr`` starting from the
memory address specified by ``memaddr``. Param ``addrsize`` specifies the
address size in bits.
Set ``stop`` to ``False`` if the transfer should be continued.
Returns the number of bytes written.
Availability: WiPy.
.. method:: i2c.scan()
Scan all I2C addresses from 0x01 to 0x7f and return a list of those that respond.
Only valid when in master mode.
Scan all I2C addresses between 0x08 and 0x77 inclusive and return a list of
those that respond. A device responds if it pulls the SDA line low after
its address (including a read bit) is sent on the bus.
Note: on WiPy the I2C object must be in master mode for this method to be valid.
Primitive I2C operations
------------------------
The following methods implement the primitive I2C master bus operations and can
be combined to make any I2C transaction. They are provided if you need more
control over the bus, otherwise the standard methods (see below) can be used.
.. method:: i2c.start()
Send a start bit on the bus (SDA transitions to low while SCL is high).
Availability: ESP8266.
.. method:: i2c.stop()
Send a stop bit on the bus (SDA transitions to high while SCL is high).
Availability: ESP8266.
.. method:: i2c.readinto(buf)
Reads bytes from the bus and stores them into `buf`. The number of bytes
read is the length of `buf`. An ACK will be sent on the bus after
receiving all but the last byte, and a NACK will be sent following the last
byte.
Availability: ESP8266.
.. method:: i2c.write(buf)
Write all the bytes from `buf` to the bus. Checks that an ACK is received
after each byte and raises an OSError if not.
Availability: ESP8266.
Standard bus operations
-----------------------
The following methods implement the standard I2C master read and write
operations that target a given slave device.
.. method:: i2c.readfrom(addr, nbytes)
Read `nbytes` from the slave specified by `addr`.
Returns a `bytes` object with the data read.
.. method:: i2c.readfrom_into(addr, buf)
Read into `buf` from the slave specified by `addr`.
The number of bytes read will be the length of `buf`.
On WiPy the return value is the number of bytes read. Otherwise the
return value is `None`.
.. method:: i2c.writeto(addr, buf, \*, stop=True)
Write the bytes from `buf` to the slave specified by `addr`.
The `stop` argument (only available on WiPy) tells if a stop bit should be
sent at the end of the transfer. If `False` the transfer should be
continued later on.
On WiPy the return value is the number of bytes written. Otherwise the
return value is `None`.
Memory operations
-----------------
Some I2C devices act as a memory device (or set of registers) that can be read
from and written to. In this case there are two addresses associated with an
I2C transaction: the slave address and the memory address. The following
methods are convenience functions to communicate with such devices.
.. method:: i2c.readfrom_mem(addr, memaddr, nbytes, \*, addrsize=8)
Read `nbytes` from the slave specified by `addr` starting from the memory
address specified by `memaddr`.
The argument `addrsize` specifies the address size in bits (on ESP8266
this argument is not recognised and the address size is always 8 bits).
Returns a `bytes` object with the data read.
.. method:: i2c.readfrom_mem_into(addr, memaddr, buf, \*, addrsize=8)
Read into `buf` from the slave specified by `addr` starting from the
memory address specified by `memaddr`. The number of bytes read is the
length of `buf`.
The argument `addrsize` specifies the address size in bits (on ESP8266
this argument is not recognised and the address size is always 8 bits).
On WiPy the return value is the number of bytes read. Otherwise the
return value is `None`.
.. method:: i2c.writeto_mem(addr, memaddr, buf, \*, addrsize=8)
Write `buf` to the slave specified by `addr` starting from the
memory address specified by `memaddr`.
The argument `addrsize` specifies the address size in bits (on ESP8266
this argument is not recognised and the address size is always 8 bits).
On WiPy the return value is the number of bytes written. Otherwise the
return value is `None`.
Constants
---------
@@ -115,3 +201,5 @@ Constants
.. data:: I2C.MASTER
for initialising the bus to master mode
Availability: WiPy.

View File

@@ -24,7 +24,7 @@ Usage Model:
print(pin.id())
pin_int = Pin('GP10', mode=Pin.IN, pull=Pin.PULL_DOWN)
pin_int.irq(mode=Pin.IRQ_RISING, handler=pincb)
pin_int.irq(trigger=Pin.IRQ_RISING, handler=pincb)
# the callback can be triggered manually
pin_int.irq()()
# to disable the callback
@@ -39,6 +39,21 @@ Usage Model:
All pin objects go through the pin mapper to come up with one of the
gpio pins.
.. only:: port_esp8266
::
from machine import Pin
# create an output pin on GPIO0
p0 = Pin(0, Pin.OUT)
p0.value(0)
p0.value(1)
# create an input pin on GPIO2
p2 = Pin(2, Pin.IN, Pin.PULL_UP)
print(p2.value())
Constructors
------------
@@ -86,6 +101,25 @@ Methods
Get the pin id.
.. only:: port_esp8266
.. method:: pin.init(mode, pull=None, \*, value)
Initialise the pin:
- `mode` can be one of:
- ``Pin.IN`` - input pin.
- ``Pin.OUT`` - output pin in push-pull mode.
- `pull` can be one of:
- ``None`` - no pull up or down resistor.
- ``Pin.PULL_UP`` - pull up resistor enabled.
- if `value` is given then it is the output value to set the pin
if it is in output mode.
.. method:: pin.value([value])
Get or set the digital logic level of the pin:
@@ -95,18 +129,20 @@ Methods
anything that converts to a boolean. If it converts to ``True``, the pin
is set high, otherwise it is set low.
.. method:: pin([value])
Pin objects are callable. The call method provides a (fast) shortcut to set and get the value of the pin.
See **pin.value** for more details.
.. method:: pin.alt_list()
Returns a list of the alternate functions supported by the pin. List items are
a tuple of the form: ``('ALT_FUN_NAME', ALT_FUN_INDEX)``
Availability: WiPy.
.. only:: port_wipy
.. method:: pin([value])
Pin objects are callable. The call method provides a (fast) shortcut to set and get the value of the pin.
See **pin.value** for more details.
.. method:: pin.toggle()
Toggle the value of the pin.
@@ -155,6 +191,23 @@ Methods
Returns a callback object.
.. only:: port_esp8266
.. method:: pin.irq(\*, trigger, handler=None)
Create a callback to be triggered when the input level at the pin changes.
- ``trigger`` configures the pin level which can generate an interrupt. Possible values are:
- ``Pin.IRQ_FALLING`` interrupt on falling edge.
- ``Pin.IRQ_RISING`` interrupt on rising edge.
The values can be OR'ed together to trigger on multiple events.
- ``handler`` is an optional function to be called when the interrupt triggers.
Returns a callback object.
Attributes
----------
@@ -166,44 +219,36 @@ Attributes
led = Pin(Pin.board.GP25, mode=Pin.OUT)
Pin.board.GP2.alt_list()
Availability: WiPy.
Constants
---------
.. only:: port_wipy
The following constants are used to configure the pin objects. Note that
not all constants are available on all ports.
.. data:: Pin.IN
.. data:: IN
OUT
OPEN_DRAIN
ALT
ALT_OPEN_DRAIN
.. data:: Pin.OUT
.. data:: Pin.OPEN_DRAIN
Selects the pin mode.
.. data:: Pin.ALT
.. data:: PULL_UP
PULL_DOWN
.. data:: Pin.ALT_OPEN_DRAIN
Selects the whether there is a pull up/down resistor.
Selects the pin mode.
.. data:: LOW_POWER
MED_POWER
HIGH_POWER
.. data:: Pin.PULL_UP
Selects the pin drive strength.
.. data:: Pin.PULL_DOWN
Selectes the wether there's pull up/down resistor.
.. data:: IRQ_FALLING
IRQ_RISING
IRQ_LOW_LEVEL
IRQ_HIGH_LEVEL
.. data:: Pin.LOW_POWER
.. data:: Pin.MED_POWER
.. data:: Pin.HIGH_POWER
Selects the drive strength.
.. data:: Pin.IRQ_FALLING
.. data:: Pin.IRQ_RISING
.. data:: Pin.IRQ_LOW_LEVEL
.. data:: Pin.IRQ_HIGH_LEVEL
Selects the IRQ trigger type.
Selects the IRQ trigger type.

View File

@@ -5,55 +5,49 @@ class Timer -- control internal timers
.. only:: port_wipy
.. note::
Contrary with the rest of the API, timer IDs start at 1, not a t zero. This is because
the ``Timer`` API is still provisional. A new MicroPython wide API will come soon.
Timers can be used for a great variety of tasks, calling a function periodically,
counting events, and generating a PWM signal are among the most common use cases.
Each timer consists of 2 16-bit channels and this channels can be tied together to
form 1 32-bit timer. The operating mode needs to be configured per timer, but then
Each timer consists of two 16-bit channels and this channels can be tied together to
form one 32-bit timer. The operating mode needs to be configured per timer, but then
the period (or the frequency) can be independently configured on each channel.
By using the callback method, the timer event can call a Python function.
Example usage to toggle an LED at a fixed frequency::
from machine import Timer
tim = Timer(4) # create a timer object using timer 4
from machine import Pin
led = Pin('GP16', mode=Pin.OUT) # enable GP16 as output to drive the LED
tim = Timer(3) # create a timer object using timer 3
tim.init(mode=Timer.PERIODIC) # initialize it in periodic mode
tim_ch = tim.channel(Timer.A, freq=2) # configure channel A at a frequency of 2Hz
tim_ch.callback(handler=lambda t:led.toggle()) # toggle a LED on every cycle of the timer
tim_ch = tim.channel(Timer.A, freq=5) # configure channel A at a frequency of 5Hz
tim_ch.irq(handler=lambda t:led.toggle(), trigger=Timer.TIMEOUT) # toggle a LED on every cycle of the timer
Example using named function for the callback::
from machine import Timer
tim = Timer(1, mode=Timer.PERIODIC)
tim_a = tim.channel(Timer.A, freq=1000)
from machine import Pin
tim = Timer(1, mode=Timer.PERIODIC, width=32)
tim_a = tim.channel(Timer.A | Timer.B, freq=1) # 1 Hz frequency requires a 32 bit timer
led = Pin('GPIO2', mode=Pin.OUT)
led = Pin('GP16', mode=Pin.OUT) # enable GP16 as output to drive the LED
def tick(timer): # we will receive the timer object when being called
print(timer.time()) # show current timer's time value (is microseconds)
global led
led.toggle() # toggle the LED
tim_a.callback(handler=tick)
tim_a.irq(handler=tick, trigger=Timer.TIMEOUT) # create the interrupt
Further examples::
from machine import Timer
tim1 = Timer(2, mode=Timer.EVENT_COUNT) # initialize it capture mode
tim2 = Timer(1, mode=Timer.PWM) # initialize it in PWM mode
tim_ch = tim1.channel(Timer.A, freq=1, polarity=Timer.POSITIVE) # start the event counter with a frequency of 1Hz and triggered by positive edges
tim_ch = tim2.channel(Timer.B, freq=10000, duty_cycle=50) # start the PWM on channel B with a 50% duty cycle
tim_ch.time() # get the current time in usec (can also be set)
tim_ch.freq(20) # set the frequency (can also get)
tim_ch.duty_cycle(30) # set the duty cycle to 30% (can also get)
tim_ch.duty_cycle(30, Timer.NEGATIVE) # set the duty cycle to 30% and change the polarity to negative
tim_ch.event_count() # get the number of captured events
tim_ch.event_time() # get the the time of the last captured event
tim_ch.period(2000000) # change the period to 2 seconds
tim1 = Timer(1, mode=Timer.ONE_SHOT) # initialize it in one shot mode
tim2 = Timer(2, mode=Timer.PWM) # initialize it in PWM mode
tim1_ch = tim1.channel(Timer.A, freq=10, polarity=Timer.POSITIVE) # start the event counter with a frequency of 10Hz and triggered by positive edges
tim2_ch = tim2.channel(Timer.B, freq=10000, duty_cycle=5000) # start the PWM on channel B with a 50% duty cycle
tim2_ch.freq(20) # set the frequency (can also get)
tim2_ch.duty_cycle(3010) # set the duty cycle to 30.1% (can also get)
tim2_ch.duty_cycle(3020, Timer.NEGATIVE) # set the duty cycle to 30.2% and change the polarity to negative
tim2_ch.period(2000000) # change the period to 2 seconds
.. note::
@@ -69,9 +63,7 @@ Constructors
.. only:: port_wipy
Construct a new timer object of the given id. If additional
arguments are given, then the timer is initialised by ``init(...)``.
``id`` can be 1 to 4.
Construct a new timer object of the given id. ``id`` can take values from 0 to 3.
Methods
@@ -94,10 +86,9 @@ Methods
period of the channel expires.
- ``Timer.PERIODIC`` - The timer runs periodically at the configured
frequency of the channel.
- ``Timer.EDGE_TIME`` - Meaure the time pin level changes.
- ``Timer.EDGE_COUNT`` - Count the number of pin level changes.
- ``Timer.PWM`` - Output a PWM signal on a pin.
- ``width`` must be either 16 or 32 (bits). For really low frequencies <= ~1Hz
- ``width`` must be either 16 or 32 (bits). For really low frequencies < 5Hz
(or large periods), 32-bit timers should be used. 32-bit mode is only available
for ``ONE_SHOT`` AND ``PERIODIC`` modes.
@@ -112,7 +103,7 @@ Methods
If only a channel identifier passed, then a previously initialized channel
object is returned (or ``None`` if there is no previous channel).
Othwerwise, a TimerChannel object is initialized and returned.
The operating mode is is the one configured to the Timer object that was used to
@@ -130,12 +121,22 @@ Methods
Either ``freq`` or ``period`` must be given, never both.
- ``polarity`` this is applicable for:
- ``PWM``, defines the polarity of the duty cycle
- ``EDGE_TIME`` and ``EDGE_COUNT``, defines the polarity of the pin level change to detect.
To detect both rising and falling edges, make ``polarity=Timer.POSITIVE | Timer.NEGATIVE``.
- ``duty_cycle`` only applicable to ``PWM``. It's a percentage (0-100)
- ``polarity`` this is applicable for ``PWM``, and defines the polarity of the duty cycle
- ``duty_cycle`` only applicable to ``PWM``. It's a percentage (0.00-100.00). Since the WiPy
doesn't support floating point numbers the duty cycle must be specified in the range 0-10000,
where 10000 would represent 100.00, 5050 represents 50.50, and so on.
.. note::
When the channel is in PWM mode, the corresponding pin is assigned automatically, therefore
there's no need to assign the alternate function of the pin via the ``Pin`` class. The pins which
support PWM functionality are the following:
- ``GP24`` on Timer 0 channel A.
- ``GP25`` on Timer 1 channel A.
- ``GP9`` on Timer 2 channel B.
- ``GP10`` on Timer 3 channel A.
- ``GP11`` on Timer 3 channel B.
class TimerChannel --- setup a channel for a timer
==================================================
@@ -166,31 +167,49 @@ Methods
- ``priority`` level of the interrupt. Can take values in the range 1-7.
Higher values represent higher priorities.
- ``handler`` is an optional function to be called when the interrupt is triggered.
- ``trigger`` must be ``Timer.TIMEOUT`` when the operating mode is either ``Timer.PERIODIC`` or
``Timer.ONE_SHOT``. In the case that mode is ``Timer.PWM`` then trigger must be equal to
``Timer.MATCH``.
Returns a callback object.
.. only:: port_wipy
.. method:: timerchannel.freq([value])
Get or set the timer channel frequency (in Hz).
.. method:: timerchannel.period([value])
Get or set the timer channel period (in microseconds).
.. method:: timerchannel.time([value])
Get or set the timer channel current **time** value (in microseconds).
.. method:: timerchannel.event_count()
Get the number of edge events counted.
.. method:: timerchannel.event_time()
Get the time of ocurrance of the last event.
.. method:: timerchannel.duty_cycle([value])
Get or set the duty cycle of the PWM signal (in the range of 0-100).
Get or set the duty cycle of the PWM signal. It's a percentage (0.00-100.00). Since the WiPy
doesn't support floating point numbers the duty cycle must be specified in the range 0-10000,
where 10000 would represent 100.00, 5050 represents 50.50, and so on.
Constants
---------
.. data:: Timer.ONE_SHOT
.. data:: Timer.PERIODIC
.. data:: Timer.PWM
Selects the timer operating mode.
.. data:: Timer.A
.. data:: Timer.B
Selects the timer channel. Must be ORed (``Timer.A`` | ``Timer.B``) when
using a 32-bit timer.
.. data:: Timer.POSITIVE
.. data:: Timer.NEGATIVE
Timer channel polarity selection (only relevant in PWM mode).
.. data:: Timer.TIMEOUT
.. data:: Timer.MATCH
Timer channel IRQ triggers.

View File

@@ -11,83 +11,97 @@ Reset related functions
.. function:: reset()
Resets the WiPy in a manner similar to pushing the external RESET
Resets the device in a manner similar to pushing the external RESET
button.
.. function:: reset_cause()
Get the reset cause. See :ref:`constants <machine_constants>` for the possible return values.
Interrupt related functions
---------------------------
.. only:: port_wipy
.. function:: disable_irq()
Interrupt related functions
---------------------------
Disable interrupt requests.
Returns the previous IRQ state: ``False``/``True`` for disabled/enabled IRQs
respectively. This return value can be passed to enable_irq to restore
the IRQ to its original state.
.. function:: disable_irq()
.. function:: enable_irq(state=True)
Disable interrupt requests.
Returns the previous IRQ state: ``False``/``True`` for disabled/enabled IRQs
respectively. This return value can be passed to enable_irq to restore
the IRQ to its original state.
Enable interrupt requests.
If ``state`` is ``True`` (the default value) then IRQs are enabled.
If ``state`` is ``False`` then IRQs are disabled. The most common use of
this function is to pass it the value returned by ``disable_irq`` to
exit a critical section.
.. function:: enable_irq(state=True)
Enable interrupt requests.
If ``state`` is ``True`` (the default value) then IRQs are enabled.
If ``state`` is ``False`` then IRQs are disabled. The most common use of
this function is to pass it the value returned by ``disable_irq`` to
exit a critical section.
Power related functions
-----------------------
.. function:: freq()
Returns a tuple of clock frequencies: ``(sysclk,)``
These correspond to:
.. only:: not port_wipy
- sysclk: frequency of the CPU
Returns CPU frequency in hertz.
.. only:: port_wipy
Returns a tuple of clock frequencies: ``(sysclk,)``
These correspond to:
- sysclk: frequency of the CPU
.. function:: idle()
Gates the clock to the CPU, useful to reduce power consumption at any time during
short or long periods. Peripherals continue working and execution resumes as soon
as any interrupt is triggered (including the systick which has a period of 1ms).
Current consumption is reduced to ~12mA (in WLAN STA mode)
as any interrupt is triggered (on many ports this includes system timer
interrupt occuring at regular intervals on the order of millisecond).
.. function:: sleep()
Stops the CPU and disables all peripherals except for WLAN. Execution is resumed from
the point where the sleep was requested. Wake sources are ``Pin``, ``RTC`` and ``WLAN``.
Current consumption is reduced to 950uA (in WLAN STA mode).
the point where the sleep was requested. For wake up to actually happen, wake sources
should be configured first.
.. function:: deepsleep()
Stops the CPU and all peripherals including WLAN. Execution is resumed from main, just
as with a reset. The reset cause can be checked to know that we are coming from
from ``machine.DEEPSLEEP``. Wake sources are ``Pin`` and ``RTC``. Current consumption
is reduced to ~5uA.
Stops the CPU and all peripherals (including networking interfaces, if any). Execution
is resumed from the main script, just as with a reset. The reset cause can be checked
to know that we are coming from ``machine.DEEPSLEEP``. For wake up to actually happen,
wake sources should be configured first, like ``Pin`` change or ``RTC`` timeout.
.. function:: wake_reason()
.. only:: port_wipy
Get the wake reason. See :ref:`constants <machine_constants>` for the possible return values.
.. function:: wake_reason()
Get the wake reason. See :ref:`constants <machine_constants>` for the possible return values.
Miscellaneous functions
-----------------------
.. function:: main(filename)
.. only:: port_wipy
Set the filename of the main script to run after boot.py is finished. If
this function is not called then the default file main.py will be executed.
.. function:: main(filename)
It only makes sense to call this function from within boot.py.
Set the filename of the main script to run after boot.py is finished. If
this function is not called then the default file main.py will be executed.
.. function:: rng()
It only makes sense to call this function from within boot.py.
Return a 24-bit software generated random number.
.. function:: rng()
Return a 24-bit software generated random number.
.. function:: unique_id()
Returns a string of 6 bytes (48 bits), which is the unique ID of the MCU.
This also corresponds to the ``MAC address`` of the WiPy.
Returns a byte string with a unique idenifier of a board/SoC. It will vary
from a board/SoC instance to another, if underlying hardware allows. Length
varies by hardware (so use substring of a full value if you expect a short
ID). In some MicroPython ports, ID corresponds to the network MAC address.
.. _machine_constants:

View File

@@ -30,27 +30,27 @@ For example::
.. only:: port_wipy
.. _network.server:
.. _network.Server:
class server
class Server
============
The server class controls the behaviour and the configuration of the FTP and telnet
The ``Server`` class controls the behaviour and the configuration of the FTP and telnet
services running on the WiPy. Any changes performed using this class' methods will
affect both.
Example::
import network
s = network.server()
s.deinit() # disable the server
server = network.Server()
server.deinit() # disable the server
# enable the server again with new settings
s.init(login=('user', 'password'), timeout=600)
server.init(login=('user', 'password'), timeout=600)
Constructors
------------
.. class:: network.server(id, ...)
.. class:: network.Server(id, ...)
Create a server instance, see ``init`` for parameters of initialization.
@@ -229,26 +229,52 @@ For example::
.. only:: port_esp8266
Functions
=========
.. function:: phy_mode([mode])
Get or set the PHY mode.
If the ``mode`` parameter is provided, sets the mode to its value. If
the function is called wihout parameters, returns the current mode.
The possible modes are defined as constants:
* ``MODE_11B`` -- IEEE 802.11b,
* ``MODE_11G`` -- IEEE 802.11g,
* ``MODE_11N`` -- IEEE 802.11n.
class WLAN
==========
This class provides a driver for WiFi network processor in the ESP8266. Example usage::
import network
# setup as a station
nic = network.WLAN()
# enable station interface and connect to WiFi access point
nic = network.WLAN(network.STA_IF)
nic.active(True)
nic.connect('your-ssid', 'your-password')
# now use socket as usual
# now use sockets as usual
Constructors
------------
.. class:: WLAN()
.. class:: WLAN(interface_id)
Create a WLAN driver object.
Create a WLAN network interface object. Supported interfaces are
``network.STA_IF`` (station aka client, connects to upstream WiFi access
points) and ``network.AP_IF`` (access point, allows other WiFi clients to
connect). Availability of the methods below depends on interface type.
For example, only STA interface may ``connect()`` to an access point.
Methods
-------
.. method:: wlan.active([is_active])
Activate ("up") or deactivate ("down") network interface, if boolean
argument is passed. Otherwise, query current state if no argument is
provided. Most other methods require active interface.
.. method:: wlan.connect(ssid, password)
Connect to the specified wireless network, using the specified password.
@@ -257,19 +283,18 @@ For example::
Disconnect from the currently connected wireless network.
.. method:: wlan.scan(cb)
.. method:: wlan.scan()
Initiate scanning for the available wireless networks.
Scan for the available wireless networks.
Scanning is only possible if the radio is in station or station+AP mode; if
called while in AP only mode, an OSError exception will be raised.
Once the scanning is complete, the provided callback function ``cb`` will
be called once for each network found, and passed a tuple with information
about that network:
Scanning is only possible on STA interface. Returns list of tuples with
the information about WiFi access points:
(ssid, bssid, channel, RSSI, authmode, hidden)
`bssid` is hardware address of an access point, in binary form, returned as
bytes object. You can use ``ubinascii.hexlify()`` to convert it to ASCII form.
There are five values for authmode:
* 0 -- open
@@ -283,7 +308,7 @@ For example::
* 0 -- visible
* 1 -- hidden
.. method:: status()
.. method:: wlan.status()
Return the current status of the wireless connection.
@@ -302,6 +327,46 @@ For example::
point and has a valid IP address. In AP mode returns ``True`` when a
station is connected. Returns ``False`` otherwise.
.. method:: wlan.ifconfig([(ip, subnet, gateway, dns)])
Get/set IP-level network interface paremeters: IP address, subnet mask,
gateway and DNS server. When called with no arguments, this method returns
a 4-tuple with the above information. To set the above values, pass a
4-tuple with the required information. For example::
nic.ifconfig(('192.168.0.4', '255.255.255.0', '192.168.0.1', '8.8.8.8'))
.. method:: wlan.config('param')
.. method:: wlan.config(param=value, ...)
Get or set general network interface parameters. These methods allow to work
with additional parameters beyond standard IP configuration (as dealt with by
``wlan.ifconfig()``). These include network-specific and hardware-specific
parameters. For setting parameters, keyword argument syntax should be used,
multiple parameters can be set at once. For querying, paremeters name should
be quoted as a string, and only one paramter can be queries at time::
# Set WiFi access point name (formally known as ESSID) and WiFi channel
ap.config(essid='My AP', channel=11)
# Queey params one by one
print(ap.config('essid'))
print(ap.config('channel'))
Following are commonly supported parameters (availability of a specific parameter
depends on network technology type, driver, and MicroPython port).
========= ===========
Parameter Description
========= ===========
mac MAC address (bytes)
essid WiFi access point name (string)
channel WiFi channel (integer)
hidden Whether ESSID is hidden (boolean)
authmode Authentication mode supported (enumeration, see module constants)
password Access password (string)
========= ===========
.. only:: port_wipy

View File

@@ -18,6 +18,7 @@ class ADC -- analog to digital conversion
val = adc.read_core_vbat() # read MCU VBAT
val = adc.read_core_vref() # read MCU VREF
Constructors
------------
@@ -77,6 +78,65 @@ Methods
The ADCAll Object
-----------------
Instantiating this changes all ADC pins to analog inputs. It is possible to read the
MCU temperature, VREF and VBAT without using ADCAll. The raw data can be accessed on
ADC channels 16, 17 and 18 respectively. However appropriate scaling will need to be applied.
.. only:: port_pyboard
Instantiating this changes all ADC pins to analog inputs. The raw MCU temperature,
VREF and VBAT data can be accessed on ADC channels 16, 17 and 18 respectively.
Appropriate scaling will need to be applied. The temperature sensor on the chip
has poor absolute accuracy and is suitable only for detecting temperature changes.
The ``ADCAll`` ``read_core_vbat()`` and ``read_core_vref()`` methods read
the backup battery voltage and the (1.21V nominal) reference voltage using the
3.3V supply as a reference. Assuming the ``ADCAll`` object has been Instantiated with
``adc = pyb.ADCAll(12)`` the 3.3V supply voltage may be calculated:
``v33 = 3.3 * 1.21 / adc.read_core_vref()``
If the 3.3V supply is correct the value of ``adc.read_core_vbat()`` will be
valid. If the supply voltage can drop below 3.3V, for example in in battery
powered systems with a discharging battery, the regulator will fail to preserve
the 3.3V supply resulting in an incorrect reading. To produce a value which will
remain valid under these circumstances use the following:
``vback = adc.read_core_vbat() * 1.21 / adc.read_core_vref()``
It is possible to access these values without incurring the side effects of ``ADCAll``::
def adcread(chan): # 16 temp 17 vbat 18 vref
assert chan >= 16 and chan <= 18, 'Invalid ADC channel'
start = pyb.millis()
timeout = 100
stm.mem32[stm.RCC + stm.RCC_APB2ENR] |= 0x100 # enable ADC1 clock.0x4100
stm.mem32[stm.ADC1 + stm.ADC_CR2] = 1 # Turn on ADC
stm.mem32[stm.ADC1 + stm.ADC_CR1] = 0 # 12 bit
if chan == 17:
stm.mem32[stm.ADC1 + stm.ADC_SMPR1] = 0x200000 # 15 cycles
stm.mem32[stm.ADC + 4] = 1 << 23
elif chan == 18:
stm.mem32[stm.ADC1 + stm.ADC_SMPR1] = 0x1000000
stm.mem32[stm.ADC + 4] = 0xc00000
else:
stm.mem32[stm.ADC1 + stm.ADC_SMPR1] = 0x40000
stm.mem32[stm.ADC + 4] = 1 << 23
stm.mem32[stm.ADC1 + stm.ADC_SQR3] = chan
stm.mem32[stm.ADC1 + stm.ADC_CR2] = 1 | (1 << 30) | (1 << 10) # start conversion
while not stm.mem32[stm.ADC1 + stm.ADC_SR] & 2: # wait for EOC
if pyb.elapsed_millis(start) > timeout:
raise OSError('ADC timout')
data = stm.mem32[stm.ADC1 + stm.ADC_DR] # clear down EOC
stm.mem32[stm.ADC1 + stm.ADC_CR2] = 0 # Turn off ADC
return data
def v33():
return 4096 * 1.21 / adcread(17)
def vbat():
return 1.21 * 2 * adcread(18) / adcread(17) # 2:1 divider on Vbat channel
def vref():
return 3.3 * adcread(17) / 4096
def temperature():
return 25 + 400 * (3.3 * adcread(16) / 4096 - 0.76)

View File

@@ -63,16 +63,24 @@ Constructors
.. class:: pyb.I2C(bus, ...)
Construct an I2C object on the given bus. ``bus`` can be 1 or 2.
With no additional parameters, the I2C object is created but not
Construct an I2C object on the given bus. ``bus`` can be 1 or 2, 'X' or
'Y'. With no additional parameters, the I2C object is created but not
initialised (it has the settings from the last initialisation of
the bus, if any). If extra arguments are given, the bus is initialised.
See ``init`` for parameters of initialisation.
The physical pins of the I2C busses are:
The physical pins of the I2C busses on Pyboards V1.0 and V1.1 are:
- ``I2C(1)`` is on the X position: ``(SCL, SDA) = (X9, X10) = (PB6, PB7)``
- ``I2C(2)`` is on the Y position: ``(SCL, SDA) = (Y9, Y10) = (PB10, PB11)``
On the Pyboard Lite:
- ``I2C(1)`` is on the X position: ``(SCL, SDA) = (X9, X10) = (PB6, PB7)``
- ``I2C(3)`` is on the Y position: ``(SCL, SDA) = (Y9, Y10) = (PA8, PB8)``
Calling the constructor with 'X' or 'Y' enables portability between Pyboard
types.
Methods
-------

View File

@@ -33,9 +33,9 @@ Constructors
.. class:: pyb.SPI(bus, ...)
Construct an SPI object on the given bus. ``bus`` can be 1 or 2.
With no additional parameters, the SPI object is created but not
initialised (it has the settings from the last initialisation of
Construct an SPI object on the given bus. ``bus`` can be 1 or 2, or
'X' or 'Y'. With no additional parameters, the SPI object is created but
not initialised (it has the settings from the last initialisation of
the bus, if any). If extra arguments are given, the bus is initialised.
See ``init`` for parameters of initialisation.

View File

@@ -40,7 +40,8 @@ using the standard stream methods::
To check if there is anything to be read, use::
uart.any() # returns True if any characters waiting
uart.any() # returns the number of characters waiting
*Note:* The stream functions ``read``, ``write``, etc. are new in MicroPython v1.3.4.
Earlier versions use ``uart.send`` and ``uart.recv``.
@@ -57,7 +58,7 @@ Constructors
initialised (it has the settings from the last initialisation of
the bus, if any). If extra arguments are given, the bus is initialised.
See ``init`` for parameters of initialisation.
The physical pins of the UART busses are:
- ``UART(4)`` is on ``XA``: ``(TX, RX) = (X1, X2) = (PA0, PA1)``
@@ -66,12 +67,16 @@ Constructors
- ``UART(3)`` is on ``YB``: ``(TX, RX) = (Y9, Y10) = (PB10, PB11)``
- ``UART(2)`` is on: ``(TX, RX) = (X3, X4) = (PA2, PA3)``
The Pyboard Lite supports UART(1), UART(2) and UART(6) only. Pins are as above except:
- ``UART(2)`` is on: ``(TX, RX) = (X1, X2) = (PA2, PA3)``
Methods
-------
.. only:: port_pyboard
.. method:: uart.init(baudrate, bits=8, parity=None, stop=1, \*, timeout=1000, flow=None, timeout_char=0, read_buf_len=64)
.. method:: uart.init(baudrate, bits=8, parity=None, stop=1, \*, timeout=1000, flow=0, timeout_char=0, read_buf_len=64)
Initialise the UART bus with the given parameters:
@@ -79,7 +84,7 @@ Methods
- ``bits`` is the number of bits per character, 7, 8 or 9.
- ``parity`` is the parity, ``None``, 0 (even) or 1 (odd).
- ``stop`` is the number of stop bits, 1 or 2.
- ``flow`` sets the flow control type. Can be None, ``UART.RTS``, ``UART.CTS``
- ``flow`` sets the flow control type. Can be 0, ``UART.RTS``, ``UART.CTS``
or ``UART.RTS | UART.CTS``.
- ``timeout`` is the timeout in milliseconds to wait for the first character.
- ``timeout_char`` is the timeout in milliseconds to wait between characters.
@@ -103,16 +108,18 @@ Methods
.. method:: uart.any()
Return ``True`` if any characters waiting, else ``False``.
Returns the number of bytes waiting (may be 0).
.. method:: uart.writechar(char)
Write a single character on the bus. ``char`` is an integer to write.
Return value: ``None``.
Return value: ``None``. See note below if CTS flow control is used.
.. method:: uart.read([nbytes])
Read characters. If ``nbytes`` is specified then read at most that many bytes.
If ``nbytes`` are available in the buffer, returns immediately, otherwise returns
when sufficient characters arrive or the timeout elapses.
.. only:: port_pyboard
@@ -124,9 +131,9 @@ Methods
.. method:: uart.readall()
Read as much data as possible.
Read as much data as possible. Returns after the timeout has elapsed.
Return value: a bytes object or ``None`` on timeout.
Return value: a bytes object or ``None`` if timeout prevents any data being read.
.. method:: uart.readchar()
@@ -144,9 +151,11 @@ Methods
.. method:: uart.readline()
Read a line, ending in a newline character.
Read a line, ending in a newline character. If such a line exists, return is
immediate. If the timeout elapses, all available data is returned regardless
of whether a newline exists.
Return value: the line read or ``None`` on timeout.
Return value: the line read or ``None`` on timeout if no data is available.
.. method:: uart.write(buf)
@@ -157,7 +166,8 @@ Methods
bytes are used for each character (little endian), and ``buf`` must contain
an even number of bytes.
Return value: number of bytes written or ``None`` on timeout.
Return value: number of bytes written. If a timeout occurs and no bytes
were written returns ``None``.
.. method:: uart.sendbreak()
@@ -173,4 +183,63 @@ Constants
.. data:: UART.RTS
.. data:: UART.CTS
to select the flow control type
to select the flow control type.
Flow Control
------------
.. only:: port_pyboard
On Pyboards V1 and V1.1 ``UART(2)`` and ``UART(3)`` support RTS/CTS hardware flow control
using the following pins:
- ``UART(2)`` is on: ``(TX, RX, nRTS, nCTS) = (X3, X4, X2, X1) = (PA2, PA3, PA1, PA0)``
- ``UART(3)`` is on :``(TX, RX, nRTS, nCTS) = (Y9, Y10, Y7, Y6) = (PB10, PB11, PB14, PB13)``
On the Pyboard Lite only ``UART(2)`` supports flow control on these pins:
``(TX, RX, nRTS, nCTS) = (X1, X2, X4, X3) = (PA2, PA3, PA1, PA0)``
In the following paragraphs the term "target" refers to the device connected to
the UART.
When the UART's ``init()`` method is called with ``flow`` set to one or both of
``UART.RTS`` and ``UART.CTS`` the relevant flow control pins are configured.
``nRTS`` is an active low output, ``nCTS`` is an active low input with pullup
enabled. To achieve flow control the Pyboard's ``nCTS`` signal should be connected
to the target's ``nRTS`` and the Pyboard's ``nRTS`` to the target's ``nCTS``.
CTS: target controls Pyboard transmitter
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If CTS flow control is enabled the write behaviour is as follows:
If the Pyboard's ``uart.write(buf)`` method is called, transmission will stall for
any periods when ``nCTS`` is ``False``. This will result in a timeout if the entire
buffer was not transmitted in the timeout period. The method returns the number of
bytes written, enabling the user to write the remainder of the data if required. In
the event of a timeout, a character will remain in the UART pending ``nCTS``. The
number of bytes composing this character will be included in the return value.
If ``uart.writechar()`` is called when ``nCTS`` is ``False`` the method will time
out unless the target asserts ``nCTS`` in time. If it times out ``OSError 116``
will be raised. The character will be transmitted as soon as the target asserts ``nCTS``.
RTS: Pyboard controls target's transmitter
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If RTS flow control is enabled, behaviour is as follows:
If buffered input is used (``read_buf_len`` > 0), incoming characters are buffered.
If the buffer becomes full, the next character to arrive will cause ``nRTS`` to go
``False``: the target should cease transmission. ``nRTS`` will go ``True`` when
characters are read from the buffer.
Note that the ``any()`` method returns the number of bytes in the buffer. Assume a
buffer length of ``N`` bytes. If the buffer becomes full, and another character arrives,
``nRTS`` will be set False, and ``any()`` will return the count ``N``. When
characters are read the additional character will be placed in the buffer and will
be included in the result of a subsequent ``any()`` call.
If buffered input is not used (``read_buf_len`` == 0) the arrival of a character will
cause ``nRTS`` to go ``False`` until the character is read.

View File

@@ -1,25 +0,0 @@
:mod:`struct` -- pack and unpack primitive data types
=====================================================
.. module:: struct
:synopsis: pack and unpack primitive data types
See `Python struct <https://docs.python.org/3/library/struct.html>`_ for more
information.
Functions
---------
.. function:: calcsize(fmt)
Return the number of bytes needed to store the given ``fmt``.
.. function:: pack(fmt, v1, v2, ...)
Pack the values ``v1``, ``v2``, ... according to the format string ``fmt``.
The return value is a bytes object encoding the values.
.. function:: unpack(fmt, data)
Unpack from the ``data`` according to the format string ``fmt``.
The return value is a tuple of the unpacked values.

View File

@@ -7,14 +7,15 @@
Functions
---------
.. function:: exit([retval])
.. function:: exit(retval=0)
Raise a ``SystemExit`` exception. If an argument is given, it is the
value given to ``SystemExit``.
Terminate current program with a given exit code. Underlyingly, this
function raise as ``SystemExit`` exception. If an argument is given, its
value given as an argument to ``SystemExit``.
.. function:: print_exception(exc, [file])
.. function:: print_exception(exc, file=sys.stdout)
Print exception with a traceback to a file-like object ``file`` (or
Print exception with a traceback to a file-like object `file` (or
``sys.stdout`` by default).
.. admonition:: Difference to CPython
@@ -27,38 +28,89 @@ Constants
.. data:: argv
a mutable list of arguments this program started with
A mutable list of arguments the current program was started with.
.. data:: byteorder
the byte order of the system ("little" or "big")
The byte order of the system ("little" or "big").
.. data:: implementation
Object with information about the current Python implementation. For
MicroPython, it has following attributes:
* `name` - string "micropython"
* `version` - tuple (major, minor, micro), e.g. (1, 7, 0)
This object is the recommended way to distinguish MicroPython from other
Python implementations (note that it still may not exist in the very
minimal ports).
.. admonition:: Difference to CPython
:class: attention
CPython mandates more attributes for this object, but the actual useful
bare minimum is implemented in MicroPython.
.. data:: maxsize
Maximum value which a native integer type can hold on the current platform,
or maximum value representable by MicroPython integer type, if it's smaller
than platform max value (that is the case for MicroPython ports without
long int support).
This attribute is useful for detecting "bitness" of a platform (32-bit vs
64-bit, etc.). It's recommended to not compare this attribute to some
value directly, but instead count number of bits in it::
bits = 0
v = sys.maxsize
while v:
bits += 1
v >>= 1
if bits > 32:
# 64-bit (or more) platform
...
else:
# 32-bit (or less) platform
# Note that on 32-bit platform, value of bits may be less than 32
# (e.g. 31) due to peculiarities described above, so use "> 16",
# "> 32", "> 64" style of comparisons.
.. data:: modules
Dictionary of loaded modules. On some ports, it may not include builtin
modules.
.. data:: path
a mutable list of directories to search for imported modules
A mutable list of directories to search for imported modules.
.. data:: platform
The platform that MicroPython is running on. This is "pyboard" on the
pyboard and provides a robust way of determining if a script is running
on the pyboard or not.
The platform that MicroPython is running on. For OS/RTOS ports, this is
usually an identifier of the OS, e.g. ``"linux"``. For baremetal ports it
is an identifier of a board, e.g. "pyboard" for the original MicroPython
reference board. It thus can be used to distinguish one board from another.
If you need to check whether your program runs on MicroPython (vs other
Python implementation), use ``sys.implementation`` instead.
.. data:: stderr
standard error (connected to USB VCP, and optional UART object)
Standard error stream.
.. data:: stdin
standard input (connected to USB VCP, and optional UART object)
Standard input stream.
.. data:: stdout
standard output (connected to USB VCP, and optional UART object)
Standard output stream.
.. data:: version
Python language version that this implementation conforms to, as a string
Python language version that this implementation conforms to, as a string.
.. data:: version_info
Python language version that this implementation conforms to, as a tuple of ints
Python language version that this implementation conforms to, as a tuple of ints.

View File

@@ -1,89 +0,0 @@
:mod:`time` -- time related functions
=====================================
.. module:: time
:synopsis: time related functions
The ``time`` module provides functions for getting the current time and date,
and for sleeping.
Functions
---------
.. function:: localtime([secs])
Convert a time expressed in seconds since Jan 1, 2000 into an 8-tuple which
contains: (year, month, mday, hour, minute, second, weekday, yearday)
If secs is not provided or None, then the current time from the RTC is used.
year includes the century (for example 2014).
* month is 1-12
* mday is 1-31
* hour is 0-23
* minute is 0-59
* second is 0-59
* weekday is 0-6 for Mon-Sun
* yearday is 1-366
.. function:: mktime()
This is inverse function of localtime. It's argument is a full 8-tuple
which expresses a time as per localtime. It returns an integer which is
the number of seconds since Jan 1, 2000.
.. only:: port_pyboard
.. function:: sleep(seconds)
Sleep for the given number of seconds. Seconds can be a floating-point number to
sleep for a fractional number of seconds.
.. only:: port_esp8266 or port_wipy
.. function:: sleep(seconds)
Sleep for the given number of seconds.
.. only:: port_wipy or port_pyboard
.. function:: sleep_ms(ms)
Delay for given number of milliseconds, should be positive or 0.
.. function:: sleep_us(us)
Delay for given number of microseconds, should be positive or 0
.. function:: ticks_ms()
Returns an increasing millisecond counter with arbitrary reference point,
that wraps after some (unspecified) value. The value should be treated as
opaque, suitable for use only with ticks_diff().
.. function:: ticks_us()
Just like ``ticks_ms`` above, but in microseconds.
.. function:: ticks_cpu()
Similar to ``ticks_ms`` and ``ticks_us``, but with higher resolution (usually CPU clocks).
.. function:: ticks_diff(old, new)
Measure period between consecutive calls to ticks_ms(), ticks_us(), or ticks_cpu().
The value returned by these functions may wrap around at any time, so directly
subtracting them is not supported. ticks_diff() should be used instead. "old" value should
actually precede "new" value in time, or result is undefined. This function should not be
used to measure arbitrarily long periods of time (because ticks_*() functions wrap around
and usually would have short period). The expected usage pattern is implementing event
polling with timeout::
# Wait for GPIO pin to be asserted, but at most 500us
start = time.ticks_us()
while pin.value() == 0:
if time.ticks_diff(start, time.ticks_us()) > 500:
raise TimeoutError
.. function:: time()
Returns the number of seconds, as an integer, since 1/1/2000.

View File

@@ -10,11 +10,25 @@ encodings of it in ASCII form (in both directions).
Functions
---------
.. function:: hexlify(data)
.. function:: hexlify(data, [sep])
Convert binary data to hexadecimal representation. Return bytes string.
Convert binary data to hexadecimal representation. Returns bytes string.
.. admonition:: Difference to CPython
:class: attention
If additional argument, `sep` is supplied, it is used as a seperator
between hexadecimal values.
.. function:: unhexlify(data)
Convert hexadecimal data to binary representation. Return bytes string.
Convert hexadecimal data to binary representation. Returns bytes string.
(i.e. inverse of hexlify)
.. function:: a2b_base64(data)
Convert Base64-encoded data to binary representation. Returns bytes string.
.. function:: b2a_base64(data)
Encode binary data in Base64 format. Returns string.

View File

@@ -0,0 +1,53 @@
:mod:`ucollections` -- collection and container types
=====================================================
.. module:: ucollections
:synopsis: collection and container types
This module implements advanced collection and container types to
hold/accumulate various objects.
Classes
-------
.. function:: namedtuple(name, fields)
This is factory function to create a new namedtuple type with a specific
name and set of fields. A namedtyple is a subclass of tuple which allows
to access its fields not just by numeric index, but also with an attribute
access syntax using symbolic field names. Fields is a sequence of strings
specifying field names. For compatibily with CPython it can also be a
a string with space-separated field named (but this is less efficient).
Example of use::
from ucollections import namedtuple
MyTuple = namedtuple("MyTuple", ("id", "name"))
t1 = MyTuple(1, "foo")
t2 = MyTuple(2, "bar")
print(t1.name)
assert t2.name == t2[1]
.. function:: OrderedDict(...)
``dict`` type subclass which remembers and preserves the order of keys
added. When ordered dict is iterated over, keys/items are returned in
the order they were added::
from ucollections import OrderedDict
# To make benefit of ordered keys, OrderedDict should be initialized
# from sequence of (key, value) pairs.
d = OrderedDict([("z", 1), ("a", 2)])
# More items can be added as usual
d["w"] = 5
d["b"] = 3
for k, v in d.items():
print(k, v)
Output::
z 1
a 2
w 5
b 3

View File

@@ -6,7 +6,7 @@
This module implements "foreign data interface" for MicroPython. The idea
behind it is similar to CPython's ``ctypes`` modules, but actual API is
different, steamlined and optimized for small size.
different, streamlined and optimized for small size.
Defining structure layout
-------------------------

46
docs/library/uio.rst Normal file
View File

@@ -0,0 +1,46 @@
:mod:`uio` -- input/output streams
==================================
.. module:: uio
:synopsis: input/output streams
This module contains additional types of stream (file-like) objects
and helper functions.
Functions
---------
.. function:: open(name, mode='r', **kwargs)
Open a file. Builtin ``open()`` function is alised to this function.
All ports (which provide access to file system) are required to support
`mode` parameter, but support for other arguments vary by port.
Classes
-------
.. class:: FileIO(...)
This is type of a file open in binary mode, e.g. using ``open(name, "rb")``.
You should not instantiate this class directly.
.. class:: TextIOWrapper(...)
This is type of a file open in text mode, e.g. using ``open(name, "rt")``.
You should not instantiate this class directly.
.. class:: StringIO([string])
.. class:: BytesIO([string])
In-memory file-like objects for input/output. `StringIO` is used for
text-mode I/O (similar to a normal file opened with "t" modifier).
`BytesIO` is used for binary-mode I/O (similar to a normal file
opened with "b" modifier). Initial contents of file-like objects
can be specified with `string` parameter (should be normal string
for `StringIO` or bytes object for `BytesIO`). All the usual file
methods like ``read()``, ``write()``, ``close()`` are available on
these objects, and additionally, following method:
.. method:: getvalue()
Get the current contents of the underlying buffer which holds data.

View File

@@ -1,15 +1,16 @@
:mod:`os` -- basic "operating system" services
==============================================
:mod:`uos` -- basic "operating system" services
===============================================
.. module:: os
.. module:: uos
:synopsis: basic "operating system" services
The ``os`` module contains functions for filesystem access and ``urandom``.
The ``os`` module contains functions for filesystem access and ``urandom``
function.
Pyboard specifics
-----------------
Port specifics
--------------
The filesystem on the pyboard has ``/`` as the root directory and the
The filesystem has ``/`` as the root directory and the
available physical drives are accessible from here. They are currently:
``/flash`` -- the internal flash filesystem

View File

@@ -7,6 +7,18 @@
This module provides access to the BSD socket interface.
See corresponding `CPython module <https://docs.python.org/3/library/socket.html>`_ for
comparison.
Socket address format(s)
------------------------
Functions below which expect a network address, accept it in the format of
`(ipv4_address, port)`, where `ipv4_address` is a string with dot-notation numeric
IPv4 address, e.g. ``"8.8.8.8"``, and port is integer port number in the range
1-65535. Note the domain names are not accepted as `ipv4_address`, they should be
resolved first using ``socket.getaddrinfo()``.
Functions
---------
@@ -37,13 +49,15 @@ Functions
The following example shows how to connect to a given url::
s = socket.socket()
s.connect(socket.getaddrinfo('www.micropython.org', 80)[0][4])
s.connect(socket.getaddrinfo('www.micropython.org', 80)[0][-1])
Exceptions
----------
.. only:: port_wipy
.. data:: socket.error
.. data:: socket.timeout
Exceptions
----------
.. data:: socket.error
.. data:: socket.timeout
Constants
---------
@@ -59,9 +73,10 @@ Constants
.. data:: socket.IPPROTO_UDP
.. data:: socket.IPPROTO_TCP
.. data:: socket.IPPROTO_SEC
.. only:: port_wipy
.. data:: socket.IPPROTO_SEC
protocol numbers
protocol numbers
class socket
============
@@ -79,8 +94,7 @@ Methods
.. method:: socket.bind(address)
Bind the socket to address. The socket must not already be bound. The format of ``address``
is: ``(ipv4 address, port)``
Bind the socket to address. The socket must not already be bound.
.. method:: socket.listen([backlog])
@@ -98,7 +112,7 @@ Methods
.. method:: socket.connect(address)
Connect to a remote socket at address. The format of address is: ``(ipv4 address, port)``
Connect to a remote socket at address.
.. method:: socket.send(bytes)
@@ -116,8 +130,7 @@ Methods
.. method:: socket.sendto(bytes, address)
Send data to the socket. The socket should not be connected to a remote socket, since the
destination socket is specified by address. The ``address`` has the same format as the
rest of the methods, see above.
destination socket is specified by `address`.
.. method:: socket.recvfrom(bufsize)
@@ -158,9 +171,10 @@ Methods
The socket must be in blocking mode; it can have a timeout, but the file objects internal buffer
may end up in a inconsistent state if a timeout occurs.
.. note::
.. admonition:: Difference to CPython
:class: attention
**CPython difference:** closing the file object returned by makefile() WILL close the
Closing the file object returned by makefile() WILL close the
original socket as well.
.. method:: socket.read(size)

View File

@@ -21,7 +21,7 @@ Functions
import ssl
s = socket(socket.AF_INET, socket.SOCK_STREAM, socket.IPPROTO_SEC)
ss = ssl.wrap_socket(s)
ss.connect(socket.getaddrinfo('www.google.com', 443)[0][4])
ss.connect(socket.getaddrinfo('www.google.com', 443)[0][-1])
Certificates must be used in order to validate the other side of the connection, and also to
authenticate ourselves with the other end. Such certificates must be stored as files using the
@@ -44,7 +44,7 @@ Functions
import ssl
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM, socket.IPPROTO_SEC)
ss = ssl.wrap_socket(s, cert_reqs=ssl.CERT_REQUIRED, ca_certs='/flash/cert/ca.pem')
ss.connect(socket.getaddrinfo('cloud.blynk.cc', 8441)[0][4])
ss.connect(socket.getaddrinfo('cloud.blynk.cc', 8441)[0][-1])
SSL sockets inherit all methods and from the standard sockets, see the :mod:`usocket` module.

37
docs/library/ustruct.rst Normal file
View File

@@ -0,0 +1,37 @@
:mod:`ustruct` -- pack and unpack primitive data types
======================================================
.. module:: ustruct
:synopsis: pack and unpack primitive data types
See `Python struct <https://docs.python.org/3/library/struct.html>`_ for more
information.
Functions
---------
.. function:: calcsize(fmt)
Return the number of bytes needed to store the given `fmt`.
.. function:: pack(fmt, v1, v2, ...)
Pack the values `v1`, `v2`, ... according to the format string `fmt`.
The return value is a bytes object encoding the values.
.. function:: pack_into(fmt, buffer, offset, v1, v2, ...)
Pack the values `v1`, `v2`, ... according to the format string `fmt`
into a `buffer` starting at `offset`. `offset` may be negative to count
from the end of `buffer`.
.. function:: unpack(fmt, data)
Unpack from the `data` according to the format string `fmt`.
The return value is a tuple of the unpacked values.
.. function:: unpack_from(fmt, data, offset=0)
Unpack from the `data` starting at `offset` according to the format string
`fmt`. `offset` may be negative to count from the end of `buffer`. The return
value is a tuple of the unpacked values.

139
docs/library/utime.rst Normal file
View File

@@ -0,0 +1,139 @@
:mod:`utime` -- time related functions
======================================
.. module:: utime
:synopsis: time related functions
The ``utime`` module provides functions for getting the current time and date,
measuring time intervals, and for delays.
**Time Epoch**: Unix port uses standard for POSIX systems epoch of
1970-01-01 00:00:00 UTC. However, embedded ports use epoch of
2000-01-01 00:00:00 UTC.
**Maintaining actual calendar date/time**: This requires a
Real Time Clock (RTC). On systems with underlying OS (including some
RTOS), an RTC may be implicit. Setting and maintaining actual calendar
time is responsibility of OS/RTOS and is done outside of MicroPython,
it just uses OS API to query date/time. On baremetal ports however
system time depends on ``machine.RTC()`` object. The current calendar time
may be set using ``machine.RTC().datetime(tuple)`` function, and maintained
by following means:
* By a backup battery (which may be an additional, optional component for
a particular board).
* Using networked time protocol (requires setup by a port/user).
* Set manually by a user on each power-up (many boards then maintain
RTC time across hard resets, though some may require setting it again
in such case).
If actual calendar time is not maintained with a system/MicroPython RTC,
functions below which require reference to current absolute time may
behave not as expected.
Functions
---------
.. function:: localtime([secs])
Convert a time expressed in seconds since the Epoch (see above) into an 8-tuple which
contains: (year, month, mday, hour, minute, second, weekday, yearday)
If secs is not provided or None, then the current time from the RTC is used.
* year includes the century (for example 2014).
* month is 1-12
* mday is 1-31
* hour is 0-23
* minute is 0-59
* second is 0-59
* weekday is 0-6 for Mon-Sun
* yearday is 1-366
.. function:: mktime()
This is inverse function of localtime. It's argument is a full 8-tuple
which expresses a time as per localtime. It returns an integer which is
the number of seconds since Jan 1, 2000.
.. only:: port_unix or port_pyboard or port_esp8266
.. function:: sleep(seconds)
Sleep for the given number of seconds. Seconds can be a floating-point number to
sleep for a fractional number of seconds. Note that other MicroPython ports may
not accept floating-point argument, for compatibility with them use ``sleep_ms()``
and ``sleep_us()`` functions.
.. only:: port_wipy
.. function:: sleep(seconds)
Sleep for the given number of seconds.
.. only:: port_unix or port_pyboard or port_wipy or port_esp8266
.. function:: sleep_ms(ms)
Delay for given number of milliseconds, should be positive or 0.
.. function:: sleep_us(us)
Delay for given number of microseconds, should be positive or 0
.. function:: ticks_ms()
Returns an increasing millisecond counter with arbitrary reference point,
that wraps after some (unspecified) value. The value should be treated as
opaque, suitable for use only with ticks_diff().
.. function:: ticks_us()
Just like ``ticks_ms`` above, but in microseconds.
.. only:: port_wipy or port_pyboard
.. function:: ticks_cpu()
Similar to ``ticks_ms`` and ``ticks_us``, but with higher resolution (usually CPU clocks).
.. only:: port_unix or port_pyboard or port_wipy or port_esp8266
.. function:: ticks_diff(old, new)
Measure period between consecutive calls to ticks_ms(), ticks_us(), or ticks_cpu().
The value returned by these functions may wrap around at any time, so directly
subtracting them is not supported. ticks_diff() should be used instead. "old" value should
actually precede "new" value in time, or result is undefined. This function should not be
used to measure arbitrarily long periods of time (because ticks_*() functions wrap around
and usually would have short period). The expected usage pattern is implementing event
polling with timeout::
# Wait for GPIO pin to be asserted, but at most 500us
start = time.ticks_us()
while pin.value() == 0:
if time.ticks_diff(start, time.ticks_us()) > 500:
raise TimeoutError
.. function:: time()
Returns the number of seconds, as an integer, since the Epoch, assuming that underlying
RTC is set and maintained as decsribed above. If an RTC is not set, this function returns
number of seconds since a port-specific reference point in time (for embedded boards without
a battery-backed RTC, usually since power up or reset). If you want to develop portable
MicroPython application, you should not rely on this function to provide higher than second
precision. If you need higher precision, use ``ticks_ms()`` and ``ticks_us()`` functions,
if you need calendar time, ``localtime()`` without an argument is a better choice.
.. admonition:: Difference to CPython
:class: attention
In CPython, this function returns number of
seconds since Unix epoch, 1970-01-01 00:00 UTC, as a floating-point,
usually having microsecond precision. With MicroPython, only Unix port
uses the same Epoch, and if floating-point precision allows,
returns sub-second precision. Embedded hardware usually doesn't have
floating-point precision to represent both long time ranges and subsecond
precision, so they use integer value with second precision. Some embedded
hardware also lacks battery-powered RTC, so returns number of seconds
since last power-up or from other relative, hardware-specific point
(e.g. reset).

View File

@@ -64,8 +64,8 @@ This code uses a few new concepts:
Accepting arguments
-------------------
Inline assembler functions can accept up to 3 arguments. If they are
used, they must be named ``r0``, ``r1`` and ``r2`` to reflect the registers
Inline assembler functions can accept up to 4 arguments. If they are
used, they must be named ``r0``, ``r1``, ``r2`` and ``r3`` to reflect the registers
and the calling conventions.
Here is a function that adds its arguments::

View File

@@ -78,11 +78,23 @@ three arguments, which must (if used) be named ``r0``, ``r1`` and ``r2``. When
the code executes the registers will be initialised to those values.
The data types which can be passed in this way are integers and memory
addresses. With current firmware all possible 32 bit values may be passed.
Returned integers are restricted in that the top two bits must be identical,
limiting the range to -2**30 to 2**30 -1. The limitations on number of arguments
and return values can be overcome by means of the ``array`` module which enables
any number of values of any type to be accessed.
addresses. With current firmware all possible 32 bit values may be passed and
returned. If the return value may have the most significant bit set a Python
type hint should be employed to enable MicroPython to determine whether the
value should be interpreted as a signed or unsigned integer: types are
``int`` or ``uint``.
::
@micropython.asm_thumb
def uadd(r0, r1) -> uint:
add(r0, r0, r1)
``hex(uadd(0x40000000,0x40000000))`` will return 0x80000000, demonstrating the
passing and return of integers where bits 30 and 31 differ.
The limitations on the number of arguments and return values can be overcome by means
of the ``array`` module which enables any number of values of any type to be accessed.
Multiple arguments
~~~~~~~~~~~~~~~~~~

View File

@@ -14,6 +14,7 @@ MicroPython are described in the sections here.
repl.rst
isr_rules.rst
speed_python.rst
.. only:: port_pyboard

View File

@@ -0,0 +1,332 @@
Maximising Python Speed
=======================
This tutorial describes ways of improving the performance of MicroPython code.
Optimisations involving other languages are covered elsewhere, namely the use
of modules written in C and the MicroPython inline ARM Thumb-2 assembler.
The process of developing high performance code comprises the following stages
which should be performed in the order listed.
* Design for speed.
* Code and debug.
Optimisation steps:
* Identify the slowest section of code.
* Improve the efficiency of the Python code.
* Use the native code emitter.
* Use the viper code emitter.
Designing for speed
-------------------
Performance issues should be considered at the outset. This involves taking a view
on the sections of code which are most performance critical and devoting particular
attention to their design. The process of optimisation begins when the code has
been tested: if the design is correct at the outset optimisation will be
straightforward and may actually be unnecessary.
Algorithms
~~~~~~~~~~
The most important aspect of designing any routine for performance is ensuring that
the best algorithm is employed. This is a topic for textbooks rather than for a
MicroPython guide but spectacular performance gains can sometimes be achieved
by adopting algorithms known for their efficiency.
RAM Allocation
~~~~~~~~~~~~~~
To design efficient MicroPython code it is necessary to have an understanding of the
way the interpreter allocates RAM. When an object is created or grows in size
(for example where an item is appended to a list) the necessary RAM is allocated
from a block known as the heap. This takes a significant amount of time;
further it will on occasion trigger a process known as garbage collection which
can take several milliseconds.
Consequently the performance of a function or method can be improved if an object is created
once only and not permitted to grow in size. This implies that the object persists
for the duration of its use: typically it will be instantiated in a class constructor
and used in various methods.
This is covered in further detail :ref:`Controlling garbage collection <gc>` below.
Buffers
~~~~~~~
An example of the above is the common case where a buffer is required, such as one
used for communication with a device. A typical driver will create the buffer in the
constructor and use it in its I/O methods which will be called repeatedly.
The MicroPython libraries typically provide support for pre-allocated buffers. For
example, objects which support stream interface (e.g., file or UART) provide ``read()``
method which allocate new buffer for read data, but also a ``readinto()`` method
to read data into an existing buffer.
Floating Point
~~~~~~~~~~~~~~
Some MicroPython ports allocate floating point numbers on heap. Some other ports
may lack dedicated floating-point coprocessor, and perform arithmetic operations
on them in "software" at considerably lower speed than on integers. Where
performance is important, use integer operations and restrict the use of floating
point to sections of the code where performance is not paramount. For example,
capture ADC readings as integers values to an array in one quick go, and only then
convert them to floating-point numbers for signal processing.
Arrays
~~~~~~
Consider the use of the various types of array classes as an alternative to lists.
The ``array`` module supports various element types with 8-bit elements supported
by Python's built in ``bytes`` and ``bytearray`` classes. These data structures all store
elements in contiguous memory locations. Once again to avoid memory allocation in critical
code these should be pre-allocated and passed as arguments or as bound objects.
When passing slices of objects such as ``bytearray`` instances, Python creates
a copy which involves allocation of the size proportional to the size of slice.
This can be alleviated using a ``memoryview`` object. ``memoryview`` itself
is allocated on heap, but is a small, fixed-size object, regardless of the size
of slice it points too.
.. code:: python
ba = bytearray(10000) # big array
func(ba[30:2000]) # a copy is passed, ~2K new allocation
mv = memoryview(ba) # small object is allocated
func(mv[30:2000]) # a pointer to memory is passed
A ``memoryview`` can only be applied to objects supporting the buffer protocol - this
includes arrays but not lists. Small caveat is that while memoryview object is live,
it also keeps alive the original buffer object. So, a memoryview isn't a universal
panacea. For instance, in the example above, if you are done with 10K buffer and
just need those bytes 30:2000 from it, it may be better to make a slice, and let
the 10K buffer go (be ready for garbage collection), instead of making a
long-living memoryview and keeping 10K blocked for GC.
Nonetheless, ``memoryview`` is indispensable for advanced preallocated buffer
management. ``.readinto()`` method discussed above puts data at the beginning
of buffer and fills in entire buffer. What if you need to put data in the
middle of existing buffer? Just create a memoryview into the needed section
of buffer and pass it to ``.readinto()``.
Identifying the slowest section of code
---------------------------------------
This is a process known as profiling and is covered in textbooks and
(for standard Python) supported by various software tools. For the type of
smaller embedded application likely to be running on MicroPython platforms
the slowest function or method can usually be established by judicious use
of the timing ``ticks`` group of functions documented
`here <http://docs.micropython.org/en/latest/pyboard/library/time.html>`_.
Code execution time can be measured in ms, us, or CPU cycles.
The following enables any function or method to be timed by adding an
``@timed_function`` decorator:
.. code:: python
def timed_function(f, *args, **kwargs):
myname = str(f).split(' ')[1]
def new_func(*args, **kwargs):
t = time.ticks_us()
result = f(*args, **kwargs)
delta = time.ticks_diff(t, time.ticks_us())
print('Function {} Time = {:6.3f}ms'.format(myname, delta/1000))
return result
return new_func
MicroPython code improvements
-----------------------------
The const() declaration
~~~~~~~~~~~~~~~~~~~~~~~
MicroPython provides a ``const()`` declaration. This works in a similar way
to ``#define`` in C in that when the code is compiled to bytecode the compiler
substitutes the numeric value for the identifier. This avoids a dictionary
lookup at runtime. The argument to ``const()`` may be anything which, at
compile time, evaluates to an integer e.g. ``0x100`` or ``1 << 8``.
.. _Caching:
Caching object references
~~~~~~~~~~~~~~~~~~~~~~~~~~
Where a function or method repeatedly accesses objects performance is improved
by caching the object in a local variable:
.. code:: python
class foo(object):
def __init__(self):
ba = bytearray(100)
def bar(self, obj_display):
ba_ref = self.ba
fb = obj_display.framebuffer
# iterative code using these two objects
This avoids the need repeatedly to look up ``self.ba`` and ``obj_display.framebuffer``
in the body of the method ``bar()``.
.. _gc:
Controlling garbage collection
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When memory allocation is required, MicroPython attempts to locate an adequately
sized block on the heap. This may fail, usually because the heap is cluttered
with objects which are no longer referenced by code. If a failure occurs, the
process known as garbage collection reclaims the memory used by these redundant
objects and the allocation is then tried again - a process which can take several
milliseconds.
There are benefits in pre-empting this by periodically issuing ``gc.collect()``.
Firstly doing a collection before it is actually required is quicker - typically on the
order of 1ms if done frequently. Secondly you can determine the point in code
where this time is used rather than have a longer delay occur at random points,
possibly in a speed critical section. Finally performing collections regularly
can reduce fragmentation in the heap. Severe fragmentation can lead to
non-recoverable allocation failures.
Accessing hardware directly
~~~~~~~~~~~~~~~~~~~~~~~~~~~
This comes into the category of more advanced programming and involves some knowledge
of the target MCU. Consider the example of toggling an output pin on the Pyboard. The
standard approach would be to write
.. code:: python
mypin.value(mypin.value() ^ 1) # mypin was instantiated as an output pin
This involves the overhead of two calls to the ``Pin`` instance's ``value()``
method. This overhead can be eliminated by performing a read/write to the relevant bit
of the chip's GPIO port output data register (odr). To facilitate this the ``stm``
module provides a set of constants providing the addresses of the relevant registers.
A fast toggle of pin ``P4`` (CPU pin ``A14``) - corresponding to the green LED -
can be performed as follows:
.. code:: python
BIT14 = const(1 << 14)
stm.mem16[stm.GPIOA + stm.GPIO_ODR] ^= BIT14
The Native code emitter
-----------------------
This causes the MicroPython compiler to emit ARM native opcodes rather than
bytecode. It covers the bulk of the Python language so most functions will require
no adaptation (but see below). It is invoked by means of a function decorator:
.. code:: python
@micropython.native
def foo(self, arg):
buf = self.linebuf # Cached object
# code
There are certain limitations in the current implementation of the native code emitter.
* Context managers are not supported (the ``with`` statement).
* Generators are not supported.
* If ``raise`` is used an argument must be supplied.
The trade-off for the improved performance (roughly twices as fast as bytecode) is an
increase in compiled code size.
The Viper code emitter
----------------------
The optimisations discussed above involve standards-compliant Python code. The
Viper code emitter is not fully compliant. It supports special Viper native data types
in pursuit of performance. Integer processing is non-compliant because it uses machine
words: arithmetic on 32 bit hardware is performed modulo 2**32.
Like the Native emitter Viper produces machine instructions but further optimisations
are performed, substantially increasing performance especially for integer arithmetic and
bit manipulations. It is invoked using a decorator:
.. code:: python
@micropython.viper
def foo(self, arg: int) -> int:
# code
As the above fragment illustrates it is beneficial to use Python type hints to assist the Viper optimiser.
Type hints provide information on the data types of arguments and of the return value; these
are a standard Python language feature formally defined here `PEP0484 <https://www.python.org/dev/peps/pep-0484/>`_.
Viper supports its own set of types namely ``int``, ``uint`` (unsigned integer), ``ptr``, ``ptr8``,
``ptr16`` and ``ptr32``. The ``ptrX`` types are discussed below. Currently the ``uint`` type serves
a single purpose: as a type hint for a function return value. If such a function returns ``0xffffffff``
Python will interpret the result as 2**32 -1 rather than as -1.
In addition to the restrictions imposed by the native emitter the following constraints apply:
* Functions may have up to four arguments.
* Default argument values are not permitted.
* Floating point may be used but is not optimised.
Viper provides pointer types to assist the optimiser. These comprise
* ``ptr`` Pointer to an object.
* ``ptr8`` Points to a byte.
* ``ptr16`` Points to a 16 bit half-word.
* ``ptr32`` Points to a 32 bit machine word.
The concept of a pointer may be unfamiliar to Python programmers. It has similarities
to a Python ``memoryview`` object in that it provides direct access to data stored in memory.
Items are accessed using subscript notation, but slices are not supported: a pointer can return
a single item only. Its purpose is to provide fast random access to data stored in contiguous
memory locations - such as data stored in objects which support the buffer protocol, and
memory-mapped peripheral registers in a microcontroller. It should be noted that programming
using pointers is hazardous: bounds checking is not performed and the compiler does nothing to
prevent buffer overrun errors.
Typical usage is to cache variables:
.. code:: python
@micropython.viper
def foo(self, arg: int) -> int:
buf = ptr8(self.linebuf) # self.linebuf is a bytearray or bytes object
for x in range(20, 30):
bar = buf[x] # Access a data item through the pointer
# code omitted
In this instance the compiler "knows" that ``buf`` is the address of an array of bytes;
it can emit code to rapidly compute the address of ``buf[x]`` at runtime. Where casts are
used to convert objects to Viper native types these should be performed at the start of
the function rather than in critical timing loops as the cast operation can take several
microseconds. The rules for casting are as follows:
* Casting operators are currently: ``int``, ``bool``, ``uint``, ``ptr``, ``ptr8``, ``ptr16`` and ``ptr32``.
* The result of a cast will be a native Viper variable.
* Arguments to a cast can be a Python object or a native Viper variable.
* If argument is a native Viper variable, then cast is a no-op (i.e. costs nothing at runtime)
that just changes the type (e.g. from ``uint`` to ``ptr8``) so that you can then store/load
using this pointer.
* If the argument is a Python object and the cast is ``int`` or ``uint``, then the Python object
must be of integral type and the value of that integral object is returned.
* The argument to a bool cast must be integral type (boolean or integer); when used as a return
type the viper function will return True or False objects.
* If the argument is a Python object and the cast is ``ptr``, ``ptr``, ``ptr16`` or ``ptr32``,
then the Python object must either have the buffer protocol with read-write capabilities
(in which case a pointer to the start of the buffer is returned) or it must be of integral
type (in which case the value of that integral object is returned).
The following example illustrates the use of a ``ptr16`` cast to toggle pin X1 ``n`` times:
.. code:: python
BIT0 = const(1)
@micropython.viper
def toggle_n(n: int):
odr = ptr16(stm.GPIOA + stm.GPIO_ODR)
for _ in range(n):
odr[0] ^= BIT0
A detailed technical description of the three code emitters may be found
on Kickstarter here `Note 1 <https://www.kickstarter.com/projects/214379695/micro-python-python-for-microcontrollers/posts/664832>`_
and here `Note 2 <https://www.kickstarter.com/projects/214379695/micro-python-python-for-microcontrollers/posts/665145>`_

39
docs/templates/versions.html vendored Normal file
View File

@@ -0,0 +1,39 @@
<div class="rst-versions" data-toggle="rst-versions" role="note" aria-label="versions">
<span class="rst-current-version" data-toggle="rst-current-version">
<span class="fa fa-book"> Ports and Versions</span>
{{ port }} ({{ port_version }})
<span class="fa fa-caret-down"></span>
</span>
<div class="rst-other-versions">
<dl>
<dt>Ports</dt>
{% for slug, url in all_ports %}
<dd><a href="{{ url }}">{{ slug }}</a></dd>
{% endfor %}
</dl>
<dl>
<dt>Versions</dt>
{% for slug, url in all_versions %}
<dd><a href="{{ url }}">{{ slug }}</a></dd>
{% endfor %}
</dl>
<!--
<dl>
<dt>Downloads</dt>
{% for type, url in downloads %}
<dd><a href="{{ url }}">{{ type }}</a></dd>
{% endfor %}
</dl>
-->
<hr/>
<dl>
<dt>External links</dt>
<dd>
<a href="http://www.micropython.org">micropython.org</a>
</dd>
<dd>
<a href="https://github.com/micropython/micropython">GitHub</a>
</dd>
</dl>
</div>
</div>

View File

@@ -25,7 +25,7 @@
<table class="contentstable"><tr>
<td width="40%" style="padding-left:2em;">
{% if port == "pyboard" or port == "wipy" %}
{% if port in ("pyboard", "wipy", "esp8266") %}
<p class="biglink">
<a class="biglink" href="{{ pathto(port + "/quickref") }}">Quick reference for {{ port_name }}</a><br/>
<span class="linkdescr">pinout for {{ port_name }} and snippets of useful code</span>
@@ -41,10 +41,10 @@
{% endif %}
<p class="biglink">
<a class="biglink" href="{{ pathto("library/index") }}">Library Reference</a><br/>
{% if port == "wipy" %}
<span class="linkdescr">MicroPython libraries, including the <a href="{{ pathto("library/machine") }}">machine module</a></span>
{% else %}
{% if port == "pyboard" %}
<span class="linkdescr">MicroPython libraries, including the <a href="{{ pathto("library/pyb") }}">pyb module</a></span>
{% else %}
<span class="linkdescr">MicroPython libraries, including the <a href="{{ pathto("library/machine") }}">machine module</a></span>
{% endif %}
</p>
</td>

View File

@@ -170,3 +170,12 @@ There are currently 2 kinds of errors that you might see:
2. If the heartbeat LED stays on, then there was a hard fault, you cannot
recover from this, the only way out is to press the reset switch.
Details on sleep modes
----------------------
* ``machine.idle()``: Power consumption: ~12mA (in WLAN STA mode). Wake sources:
any hardware interrupt (including systick with period of 1ms), no special
configuration required.
* ``machine.sleep()``: 950uA (in WLAN STA mode). Wake sources are ``Pin``, ``RTC``
and ``WLAN``
* ``machine.deepsleep()``: ~5uA. Wake sources are ``Pin`` and ``RTC``.

View File

@@ -49,10 +49,10 @@ See :ref:`machine.Timer <machine.Timer>` and :ref:`machine.Pin <machine.Pin>`. :
from machine import Timer
from machine import Pin
tim = Timer(1, mode=Timer.PERIODIC)
tim = Timer(0, mode=Timer.PERIODIC)
tim_a = tim.channel(Timer.A, freq=1000)
tim_a.time() # get the value in microseconds
tim_a.freq(1) # 1 Hz
tim_a.freq(5) # 5 Hz
p_out = Pin('GP2', mode=Pin.OUT)
tim_a.irq(handler=lambda t: p_out.toggle())
@@ -63,16 +63,12 @@ PWM (pulse width modulation)
See :ref:`machine.Pin <machine.Pin>` and :ref:`machine.Timer <machine.Timer>`. ::
from machine import Timer
from machine import Pin
# assign GP25 to alternate function 9 (PWM)
p_out = Pin('GP25', mode=Pin.AF, alt=9)
# timer 2 in PWM mode and width must be 16 buts
tim = Timer(2, mode=Timer.PWM, width=16)
# timer 1 in PWM mode and width must be 16 buts
tim = Timer(1, mode=Timer.PWM, width=16)
# enable channel A @1KHz with a 50% duty cycle
tim_a = tim.channel(Timer.A, freq=1000, duty_cycle=50)
# enable channel A @1KHz with a 50.55% duty cycle
tim_a = tim.channel(Timer.A, freq=1000, duty_cycle=5055)
ADC (analog to digital conversion)
----------------------------------
@@ -201,12 +197,12 @@ See :ref:`network.WLAN <network.WLAN>` and :mod:`machine`. ::
Telnet and FTP server
---------------------
See :ref:`network.server <network.server>` ::
See :ref:`network.Server <network.Server>` ::
from network import server
from network import Server
# init with new user, password and seconds timeout
server = server.init(login=('user', 'password'), timeout=60)
server = Server(login=('user', 'password'), timeout=60)
server.timeout(300) # change the timeout
server.timeout() # get the timeout
server.isrunning() # check wether the server is running or not

145
drivers/display/ssd1306.py Normal file
View File

@@ -0,0 +1,145 @@
# MicroPython SSD1306 OLED driver, I2C and SPI interfaces
import time
import framebuf
# register definitions
SET_CONTRAST = const(0x81)
SET_ENTIRE_ON = const(0xa4)
SET_NORM_INV = const(0xa6)
SET_DISP = const(0xae)
SET_MEM_ADDR = const(0x20)
SET_COL_ADDR = const(0x21)
SET_PAGE_ADDR = const(0x22)
SET_DISP_START_LINE = const(0x40)
SET_SEG_REMAP = const(0xa0)
SET_MUX_RATIO = const(0xa8)
SET_COM_OUT_DIR = const(0xc0)
SET_DISP_OFFSET = const(0xd3)
SET_COM_PIN_CFG = const(0xda)
SET_DISP_CLK_DIV = const(0xd5)
SET_PRECHARGE = const(0xd9)
SET_VCOM_DESEL = const(0xdb)
SET_CHARGE_PUMP = const(0x8d)
class SSD1306:
def __init__(self, height, external_vcc):
self.width = 128
self.height = height
self.external_vcc = external_vcc
self.pages = self.height // 8
self.buffer = bytearray(self.pages * self.width)
self.framebuf = framebuf.FrameBuffer1(self.buffer, self.width, self.height)
self.poweron()
self.init_display()
def init_display(self):
for cmd in (
SET_DISP | 0x00, # off
# address setting
SET_MEM_ADDR, 0x00, # horizontal
# resolution and layout
SET_DISP_START_LINE | 0x00,
SET_SEG_REMAP | 0x01, # column addr 127 mapped to SEG0
SET_MUX_RATIO, self.height - 1,
SET_COM_OUT_DIR | 0x08, # scan from COM[N] to COM0
SET_DISP_OFFSET, 0x00,
SET_COM_PIN_CFG, 0x02 if self.height == 32 else 0x12,
# timing and driving scheme
SET_DISP_CLK_DIV, 0x80,
SET_PRECHARGE, 0x22 if self.external_vcc else 0xf1,
SET_VCOM_DESEL, 0x30, # 0.83*Vcc
# display
SET_CONTRAST, 0xff, # maximum
SET_ENTIRE_ON, # output follows RAM contents
SET_NORM_INV, # not inverted
# charge pump
SET_CHARGE_PUMP, 0x10 if self.external_vcc else 0x14,
SET_DISP | 0x01): # on
self.write_cmd(cmd)
self.fill(0)
self.show()
def poweroff(self):
self.write_cmd(SET_DISP | 0x00)
def contrast(self, contrast):
self.write_cmd(SET_CONTRAST)
self.write_cmd(contrast)
def invert(self, invert):
self.write_cmd(SET_NORM_INV | (invert & 1))
def show(self):
self.write_cmd(SET_COL_ADDR)
self.write_cmd(0)
self.write_cmd(self.width - 1)
self.write_cmd(SET_PAGE_ADDR)
self.write_cmd(0)
self.write_cmd(self.pages - 1)
self.write_data(self.buffer)
def fill(self, col):
self.framebuf.fill(col)
def pixel(self, x, y, col):
self.framebuf.pixel(x, y, col)
def scroll(self, dx, dy):
self.framebuf.scroll(dx, dy)
def text(self, string, x, y, col=1):
self.framebuf.text(string, x, y, col)
class SSD1306_I2C(SSD1306):
def __init__(self, height, i2c, addr=0x3c, external_vcc=False):
self.i2c = i2c
self.addr = addr
self.temp = bytearray(2)
super().__init__(height, external_vcc)
def write_cmd(self, cmd):
self.temp[0] = 0x80 # Co=1, D/C#=0
self.temp[1] = cmd
self.i2c.writeto(self.addr, self.temp)
def write_data(self, buf):
self.temp[0] = self.addr << 1
self.temp[1] = 0x40 # Co=0, D/C#=1
self.i2c.start()
self.i2c.write(self.temp)
self.i2c.write(buf)
self.i2c.stop()
def poweron(self):
pass
# TODO convert this class to use the new hardware API
class SSD1306_SPI(SSD1306):
def __init__(self, height, spi, dc, res, cs=None, external_vcc=False):
rate = 10 * 1024 * 1024
spi.init(spi.MASTER, baudrate=rate, polarity=0, phase=0)
dc.init(dc.OUT, dc.PULL_NONE, value=0)
res.init(res.OUT, dc.PULL_NONE, value=0)
if cs is not None:
cs.init(cs.OUT, cs.PULL_NONE, value=0)
self.spi = spi
self.dc = dc
self.res = res
super().__init__(height, external_vcc)
def write_cmd(self, cmd):
self.dc.low()
self.spi.send(cmd)
def write_data(self, buf):
self.dc.high()
self.spi.send(buf)
def poweron(self):
self.res.high()
time.sleep_ms(1)
self.res.low()
time.sleep_ms(10)
self.res.high()
time.sleep_ms(10)

View File

@@ -25,6 +25,9 @@ class SDCard:
#R1_ERASE_SEQUENCE_ERROR = const(1 << 4)
#R1_ADDRESS_ERROR = const(1 << 5)
#R1_PARAMETER_ERROR = const(1 << 6)
TOKEN_CMD25 = const(0xfc)
TOKEN_STOP_TRAN = const(0xfd)
TOKEN_DATA = const(0xfe)
def __init__(self, spi, cs):
self.spi = spi
@@ -136,6 +139,18 @@ class SDCard:
self.spi.send(0xff)
return -1
def cmd_nodata(self, cmd):
self.spi.send(cmd)
self.spi.send_recv(0xff) # ignore stuff byte
for _ in range(CMD_TIMEOUT):
if self.spi.send_recv(0xff)[0] == 0xff:
self.cs.high()
self.spi.send(0xff)
return 0 # OK
self.cs.high()
self.spi.send(0xff)
return 1 # timeout
def readinto(self, buf):
self.cs.low()
@@ -154,11 +169,11 @@ class SDCard:
self.cs.high()
self.spi.send(0xff)
def write(self, buf):
def write(self, token, buf):
self.cs.low()
# send: start of block, data, checksum
self.spi.send(0xfe)
self.spi.send(token)
self.spi.send(buf)
self.spi.send(0xff)
self.spi.send(0xff)
@@ -176,29 +191,62 @@ class SDCard:
self.cs.high()
self.spi.send(0xff)
def write_token(self, token):
self.cs.low()
self.spi.send(token)
self.spi.send(0xff)
# wait for write to finish
while self.spi.send_recv(0xff)[0] == 0:
pass
self.cs.high()
self.spi.send(0xff)
def count(self):
return self.sectors
def readblocks(self, block_num, buf):
# TODO support multiple block reads
assert len(buf) == 512
# CMD17: set read address for single block
if self.cmd(17, block_num * self.cdv, 0) != 0:
return 1
# receive the data
self.readinto(buf)
nblocks, err = divmod(len(buf), 512)
assert nblocks and not err, 'Buffer length is invalid'
if nblocks == 1:
# CMD17: set read address for single block
if self.cmd(17, block_num * self.cdv, 0) != 0:
return 1
# receive the data
self.readinto(buf)
else:
# CMD18: set read address for multiple blocks
if self.cmd(18, block_num * self.cdv, 0) != 0:
return 1
offset = 0
mv = memoryview(buf)
while nblocks:
self.readinto(mv[offset : offset + 512])
offset += 512
nblocks -= 1
return self.cmd_nodata(12)
return 0
def writeblocks(self, block_num, buf):
# TODO support multiple block writes
assert len(buf) == 512
nblocks, err = divmod(len(buf), 512)
assert nblocks and not err, 'Buffer length is invalid'
if nblocks == 1:
# CMD24: set write address for single block
if self.cmd(24, block_num * self.cdv, 0) != 0:
return 1
# CMD24: set write address for single block
if self.cmd(24, block_num * self.cdv, 0) != 0:
return 1
# send the data
self.write(buf)
# send the data
self.write(TOKEN_DATA, buf)
else:
# CMD25: set write address for first block
if self.cmd(25, block_num * self.cdv, 0) != 0:
return 1
# send the data
offset = 0
mv = memoryview(buf)
while nblocks:
self.write(TOKEN_CMD25, mv[offset : offset + 512])
offset += 512
nblocks -= 1
self.write_token(TOKEN_STOP_TRAN)
return 0

57
drivers/sdcard/sdtest.py Normal file
View File

@@ -0,0 +1,57 @@
# Test for sdcard block protocol
# Peter hinch 30th Jan 2016
import os, sdcard, pyb
def sdtest():
sd = sdcard.SDCard(pyb.SPI(1), pyb.Pin.board.X21) # Compatible with PCB
pyb.mount(sd, '/fc')
print('Filesystem check')
print(os.listdir('/fc'))
line = 'abcdefghijklmnopqrstuvwxyz\n'
lines = line * 200 # 5400 chars
short = '1234567890\n'
fn = '/fc/rats.txt'
print()
print('Multiple block read/write')
with open(fn,'w') as f:
n = f.write(lines)
print(n, 'bytes written')
n = f.write(short)
print(n, 'bytes written')
n = f.write(lines)
print(n, 'bytes written')
with open(fn,'r') as f:
result1 = f.read()
print(len(result1), 'bytes read')
fn = '/fc/rats1.txt'
print()
print('Single block read/write')
with open(fn,'w') as f:
n = f.write(short) # one block
print(n, 'bytes written')
with open(fn,'r') as f:
result2 = f.read()
print(len(result2), 'bytes read')
pyb.mount(None, '/fc')
print()
print('Verifying data read back')
success = True
if result1 == ''.join((lines, short, lines)):
print('Large file Pass')
else:
print('Large file Fail')
success = False
if result2 == short:
print('Small file Pass')
else:
print('Small file Fail')
success = False
print()
print('Tests', 'passed' if success else 'failed')

View File

@@ -3,14 +3,16 @@ include ../py/mkenv.mk
# qstr definitions (must come before including py.mk)
QSTR_DEFS = qstrdefsport.h #$(BUILD)/pins_qstr.h
MICROPY_PY_USSL = 1
# include py core make definitions
include ../py/py.mk
MAKE_FROZEN = ../tools/make-frozen.py
SCRIPTDIR = scripts
PORT = /dev/ttyACM0
BAUD = 115200
PORT ?= /dev/ttyACM0
BAUD ?= 115200
CROSS_COMPILE = xtensa-lx106-elf-
ESP_SDK = $(shell $(CC) -print-sysroot)/usr
@@ -23,18 +25,21 @@ INC += -I../lib/timeutils
INC += -I$(BUILD)
INC += -I$(ESP_SDK)/include
UART_OS = 1
# UART for "os" messages. 0 is normal UART as used by MicroPython REPL,
# 1 is debug UART (tx only).
UART_OS = 0
CFLAGS_XTENSA = -fsingle-precision-constant -Wdouble-promotion \
-D__ets__ -DICACHE_FLASH \
-fno-inline-functions \
-Wl,-EL -mlongcalls -mtext-section-literals \
-Wl,-EL -mlongcalls -mtext-section-literals -mforce-l32 \
-DLWIP_OPEN_SRC
CFLAGS = $(INC) -Wall -Wpointer-arith -Werror -ansi -std=gnu99 -nostdlib -DUART_OS=$(UART_OS) \
$(CFLAGS_XTENSA) $(COPT) $(CFLAGS_EXTRA)
$(CFLAGS_XTENSA) $(CFLAGS_MOD) $(COPT) $(CFLAGS_EXTRA)
LDFLAGS = -nostdlib -T esp8266.ld -Map=$(@:.elf=.map) --cref
LIBS = -L$(ESP_SDK)/lib -lmain -ljson -llwip -lpp -lnet80211 -lwpa -lphy -lnet80211
LIBS = -L$(ESP_SDK)/lib -lmain -ljson -llwip_open -lpp -lnet80211 -lwpa -lphy -lnet80211 $(LDFLAGS_MOD)
LIBGCC_FILE_NAME = $(shell $(CC) $(CFLAGS) -print-libgcc-file-name)
LIBS += -L$(dir $(LIBGCC_FILE_NAME)) -lgcc
@@ -52,31 +57,70 @@ endif
SRC_C = \
strtoll.c \
main.c \
help.c \
esp_mphal.c \
gccollect.c \
lexerstr32.c \
uart.c \
esppwm.c \
esponewire.c \
espneopixel.c \
intr.c \
modpyb.c \
modpybpin.c \
modpybpwm.c \
modpybrtc.c \
modpybadc.c \
modpybuart.c \
modpybspi.c \
modesp.c \
modnetwork.c \
modutime.c \
moduos.c \
utils.c \
modmachine.c \
modonewire.c \
ets_alt_task.c \
$(BUILD)/frozen.c \
fatfs_port.c \
axtls_helpers.c \
STM_SRC_C = $(addprefix stmhal/,\
pybstdio.c \
input.c \
)
EXTMOD_SRC_C = $(addprefix extmod/,\
modlwip.c \
)
LIB_SRC_C = $(addprefix lib/,\
libc/string0.c \
libm/math.c \
libm/fmodf.c \
libm/roundf.c \
libm/ef_sqrt.c \
libm/kf_rem_pio2.c \
libm/kf_sin.c \
libm/kf_cos.c \
libm/kf_tan.c \
libm/ef_rem_pio2.c \
libm/sf_sin.c \
libm/sf_cos.c \
libm/sf_tan.c \
libm/sf_frexp.c \
libm/sf_modf.c \
libm/sf_ldexp.c \
libm/asinfacosf.c \
libm/atanf.c \
libm/atan2f.c \
mp-readline/readline.c \
netutils/netutils.c \
timeutils/timeutils.c \
utils/pyexec.c \
utils/pyhelp.c \
utils/printf.c \
fatfs/ff.c \
fatfs/option/ccsbcs.c \
)
SRC_S = \
@@ -87,9 +131,15 @@ OBJ += $(PY_O)
OBJ += $(addprefix $(BUILD)/, $(SRC_C:.c=.o))
OBJ += $(addprefix $(BUILD)/, $(SRC_S:.s=.o))
OBJ += $(addprefix $(BUILD)/, $(STM_SRC_C:.c=.o))
OBJ += $(addprefix $(BUILD)/, $(EXTMOD_SRC_C:.c=.o))
OBJ += $(addprefix $(BUILD)/, $(LIB_SRC_C:.c=.o))
#OBJ += $(BUILD)/pins_$(BOARD).o
# List of sources for qstr extraction
SRC_QSTR += $(SRC_C) $(STM_SRC_C) $(EXTMOD_SRC_C)
# Append any auto-generated sources that are needed by sources listed in SRC_QSTR
SRC_QSTR_AUTO_DEPS +=
all: $(BUILD)/firmware-combined.bin
CONFVARS_FILE = $(BUILD)/confvars
@@ -111,16 +161,16 @@ $(BUILD)/frozen.c: $(wildcard $(SCRIPTDIR)/*) $(CONFVARS_FILE)
deploy: $(BUILD)/firmware-combined.bin
$(ECHO) "Writing $< to the board"
#$(Q)esptool.py --port $(PORT) write_flash 0 $<
$(Q)esptool.py --port $(PORT) --baud $(BAUD) write_flash 0 $(BUILD)/firmware.elf-0x00000.bin 0x10000 $(BUILD)/firmware.elf-0x10000.bin
$(Q)esptool.py --port $(PORT) --baud $(BAUD) write_flash --flash_size=8m 0 $<
#$(Q)esptool.py --port $(PORT) --baud $(BAUD) write_flash --flash_size=8m 0 $(BUILD)/firmware.elf-0x00000.bin 0x9000 $(BUILD)/firmware.elf-0x0[1-f]000.bin
reset:
echo -e "\r\nimport pyb; pyb.hard_reset()\r\n" >$(PORT)
echo -e "\r\nimport machine; machine.reset()\r\n" >$(PORT)
$(BUILD)/firmware-combined.bin: $(BUILD)/firmware.elf
$(ECHO) "Create $@"
$(Q)esptool.py elf2image $^
$(Q)$(PYTHON) makeimg.py $(BUILD)/firmware.elf-0x00000.bin $(BUILD)/firmware.elf-0x10000.bin $@
$(Q)$(PYTHON) makeimg.py $(BUILD)/firmware.elf-0x00000.bin $(BUILD)/firmware.elf-0x0[1-f]000.bin $@
$(BUILD)/firmware.elf: $(OBJ)
$(ECHO) "LINK $@"
@@ -154,3 +204,9 @@ $(BUILD)/firmware.elf: $(OBJ)
# $(call compile_c)
include ../py/mkrules.mk
axtls:
cd ../lib/axtls; cp config/upyconfig config/.config
cd ../lib/axtls; make oldconfig -B
cd ../lib/axtls; make clean
cd ../lib/axtls; make all CC="$(CC)" LD="$(LD)" AR="$(AR)" CFLAGS_EXTRA="$(CFLAGS_XTENSA) -Dabort=abort_ -DRT_MAX_PLAIN_LENGTH=1024 -DRT_EXTRA=3072"

View File

@@ -8,49 +8,79 @@ WARNING: The port is highly experimental and any APIs are subject to change.
Currently implemented features include:
- REPL (Python prompt) over UART0.
- 24k heap RAM available for Python code.
- Garbage collector, exceptions.
- Unicode support.
- Builtin modules: gc, array, collections, io, struct, sys, esp, network.
- C long-long type used as bignum implementation (gives 64 bit signed ints).
- Rudimentary WiFi support in station mode.
- Sockets with callbacks.
- Basic GPIO support.
Note that floating-point numbers are not supported.
On the TODO list:
- Full wifi support.
- Builtin modules: gc, array, collections, io, struct, sys, esp, network,
many more.
- Arbitrary-precision long integers and 30-bit precision floats.
- WiFi support.
- Sockets using modlwip.
- GPIO and bit-banging I2C, SPI support.
- 1-Wire and WS2812 (aka Neopixel) protocols support.
- Internal filesystem using the flash.
- ...
- WebREPL over WiFi from a browser (clients at https://github.com/micropython/webrepl).
Work-in-progress documentation is available at
http://docs.micropython.org/en/latest/esp8266/ .
Build instructions
------------------
The tool chain required for the build is the OpenSource ESP SDK, which can be
found at <https://github.com/pfalcon/esp-open-sdk>. Clone this repository and
run `make` in its directory to build and install the SDK locally.
run `make` in its directory to build and install the SDK locally. Make sure
to add toolchain bin directory to your PATH. Read esp-open-sdk's README for
additional important information on toolchain setup.
Add the external dependencies to the MicroPython repository checkout:
```bash
$ git submodule update --init
```
See the README in the repository root for more information about external
dependencies.
Then, to build MicroPython for the ESP8266, just run:
```bash
$ cd esp8266
$ make axtls
$ make
```
This should produce binary images in the `build/` subdirectory. To flash them
to your ESP8266, use:
This will produce binary images in the `build/` subdirectory. If you install
MicroPython to your module for the first time, or after installing any other
firmware, you should erase flash completely:
```
esptool.py --port /dev/ttyXXX erase_flash
```
Erase flash also as a troubleshooting measure, if a module doesn't behave as
expected.
To flash MicroPython image to your ESP8266, use:
```bash
$ make deploy
```
This will use the `esptool.py` script to download the images. You must have
your ESP module in the bootloader, and connected to a serial port on your PC.
your ESP module in the bootloader mode, and connected to a serial port on your PC.
The default serial port is `/dev/ttyACM0`. To specify another, use, eg:
```bash
$ make PORT=/dev/ttyUSB0 deploy
```
The images that are built are:
- `firmware.elf-0x00000.bin`: to be flashed at 0x00000
- `firmware.elf-0x10000.bin`: to be flashed at 0x10000
The image produced is `firmware-combined.bin`, to be flashed at 0x00000.
There is also a combined image, made up of the above 2 binary files with the
appropriate padding:
- `firmware-combined.bin`: to be flashed at 0x00000
Troubleshooting
---------------
While the port is still in alpha, it's known to be generally stable. If you
experience strange bootloops, crashes, lockups, here's a list to check against:
- You didn't erase flash before programming MicroPython firmware.
- Firmware can be occasionally flashed incorrectly. Just retry. Recent
esptool.py versions have --verify option.
- Power supply you use doesn't provide enough power for ESP8266 or isn't
stable enough.
- A module/flash may be defective (not unheard of for cheap modules).
Please consult dedicated ESP8266 forums/resources for hardware-related
problems.

66
esp8266/axtls_helpers.c Normal file
View File

@@ -0,0 +1,66 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016 Paul Sokolovsky
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdint.h>
#include <stdio.h>
#include "py/mphal.h"
#include "py/gc.h"
// Functions for axTLS
void *malloc(size_t size) {
return gc_alloc(size, false);
}
void free(void *ptr) {
gc_free(ptr);
}
void *calloc(size_t nmemb, size_t size) {
return m_malloc0(nmemb * size);
}
void *realloc(void *ptr, size_t size) {
return gc_realloc(ptr, size, true);
}
void abort_(void) {
printf("Aborted\n");
}
#define PLATFORM_HTONL(_n) ((uint32_t)( (((_n) & 0xff) << 24) | (((_n) & 0xff00) << 8) | (((_n) >> 8) & 0xff00) | (((_n) >> 24) & 0xff) ))
#undef htonl
#undef ntohl
uint32_t ntohl(uint32_t netlong) {
return PLATFORM_HTONL(netlong);
}
uint32_t htonl(uint32_t netlong) {
return PLATFORM_HTONL(netlong);
}
time_t time(time_t *t) {
return mp_hal_ticks_ms() / 1000;
}
time_t mktime(void *tm) {
return 0;
}

View File

@@ -50,8 +50,8 @@ PROVIDE ( _UserExceptionVector = 0x40000050 );
PROVIDE ( __adddf3 = 0x4000c538 );
PROVIDE ( __addsf3 = 0x4000c180 );
PROVIDE ( __divdf3 = 0x4000cb94 );
PROVIDE ( __divdi3 = 0x4000ce60 );
PROVIDE ( __divsi3 = 0x4000dc88 );
__divdi3 = 0x4000ce60;
__divsi3 = 0x4000dc88;
PROVIDE ( __extendsfdf2 = 0x4000cdfc );
PROVIDE ( __fixdfsi = 0x4000ccb8 );
PROVIDE ( __fixunsdfsi = 0x4000cd00 );
@@ -61,16 +61,16 @@ PROVIDE ( __floatsisf = 0x4000e2ac );
PROVIDE ( __floatunsidf = 0x4000e2e8 );
PROVIDE ( __floatunsisf = 0x4000e2a4 );
PROVIDE ( __muldf3 = 0x4000c8f0 );
PROVIDE ( __muldi3 = 0x40000650 );
__muldi3 = 0x40000650;
PROVIDE ( __mulsf3 = 0x4000c3dc );
PROVIDE ( __subdf3 = 0x4000c688 );
PROVIDE ( __subsf3 = 0x4000c268 );
PROVIDE ( __truncdfsf2 = 0x4000cd5c );
PROVIDE ( __udivdi3 = 0x4000d310 );
PROVIDE ( __udivsi3 = 0x4000e21c );
PROVIDE ( __umoddi3 = 0x4000d770 );
PROVIDE ( __umodsi3 = 0x4000e268 );
PROVIDE ( __umulsidi3 = 0x4000dcf0 );
__udivdi3 = 0x4000d310;
__udivsi3 = 0x4000e21c;
__umoddi3 = 0x4000d770;
__umodsi3 = 0x4000e268;
__umulsidi3 = 0x4000dcf0;
PROVIDE ( _rom_store = 0x4000e388 );
PROVIDE ( _rom_store_table = 0x4000e328 );
PROVIDE ( _start = 0x4000042c );
@@ -132,12 +132,12 @@ PROVIDE ( ets_memcmp = 0x400018d4 );
PROVIDE ( ets_memcpy = 0x400018b4 );
PROVIDE ( ets_memmove = 0x400018c4 );
PROVIDE ( ets_memset = 0x400018a4 );
PROVIDE ( ets_post = 0x40000e24 );
PROVIDE ( _ets_post = 0x40000e24 );
PROVIDE ( ets_printf = 0x400024cc );
PROVIDE ( ets_putc = 0x40002be8 );
PROVIDE ( ets_rtc_int_register = 0x40002a40 );
PROVIDE ( ets_run = 0x40000e04 );
PROVIDE ( ets_set_idle_cb = 0x40000dc0 );
PROVIDE ( _ets_run = 0x40000e04 );
PROVIDE ( _ets_set_idle_cb = 0x40000dc0 );
PROVIDE ( ets_set_user_start = 0x40000fbc );
PROVIDE ( ets_str2macaddr = 0x40002af8 );
PROVIDE ( ets_strcmp = 0x40002aa8 );
@@ -146,12 +146,12 @@ PROVIDE ( ets_strlen = 0x40002ac8 );
PROVIDE ( ets_strncmp = 0x40002ab8 );
PROVIDE ( ets_strncpy = 0x40002a98 );
PROVIDE ( ets_strstr = 0x40002ad8 );
PROVIDE ( ets_task = 0x40000dd0 );
PROVIDE ( _ets_task = 0x40000dd0 );
PROVIDE ( ets_timer_arm = 0x40002cc4 );
PROVIDE ( ets_timer_disarm = 0x40002d40 );
PROVIDE ( ets_timer_done = 0x40002d80 );
PROVIDE ( ets_timer_handler_isr = 0x40002da8 );
PROVIDE ( ets_timer_init = 0x40002e68 );
PROVIDE ( _ets_timer_init = 0x40002e68 );
PROVIDE ( ets_timer_setfn = 0x40002c48 );
PROVIDE ( ets_uart_printf = 0x40002544 );
PROVIDE ( ets_update_cpu_frequency = 0x40002f04 );
@@ -343,5 +343,8 @@ PROVIDE ( xthal_window_spill = 0x4000e324 );
PROVIDE ( xthal_window_spill_nw = 0x4000e320 );
PROVIDE ( Te0 = 0x3fffccf0 );
PROVIDE ( Td0 = 0x3fffd100 );
PROVIDE ( Td4s = 0x3fffd500);
PROVIDE ( rcons = 0x3fffd0f0);
PROVIDE ( UartDev = 0x3fffde10 );
PROVIDE ( flashchip = 0x3fffc714);

View File

@@ -5,7 +5,7 @@ MEMORY
dport0_0_seg : org = 0x3ff00000, len = 0x10
dram0_0_seg : org = 0x3ffe8000, len = 0x14000
iram1_0_seg : org = 0x40100000, len = 0x8000
irom0_0_seg : org = 0x40210000, len = 0x5A000
irom0_0_seg : org = 0x40209000, len = 0x80000
}
/* define the top of RAM */
@@ -80,26 +80,86 @@ SECTIONS
*(.irom0.literal .irom.literal .irom.text.literal .irom0.text .irom.text)
/* we put some specific text in this section */
*py/*.o*(.literal* .text*)
*pyexec.o(.literal*, .text*)
*readline.o(.literal*, .text*)
*pybstdio.o(.literal*, .text*)
*py/argcheck.o*(.literal* .text*)
*py/asm*.o*(.literal* .text*)
*py/bc.o*(.literal* .text*)
*py/binary.o*(.literal* .text*)
*py/builtin*.o*(.literal* .text*)
*py/compile.o*(.literal* .text*)
*py/emit*.o*(.literal* .text*)
*py/formatfloat.o*(.literal* .text*)
*py/frozenmod.o*(.literal* .text*)
*py/gc.o*(.literal* .text*)
*py/lexer*.o*(.literal* .text*)
*py/malloc*.o*(.literal* .text*)
*py/map*.o*(.literal* .text*)
*py/mod*.o*(.literal* .text*)
*py/mpprint.o*(.literal* .text*)
*py/mpstate.o*(.literal* .text*)
*py/mpz.o*(.literal* .text*)
*py/native*.o*(.literal* .text*)
*py/nlr*.o*(.literal* .text*)
*py/obj*.o*(.literal* .text*)
*py/opmethods.o*(.literal* .text*)
*py/parse*.o*(.literal* .text*)
*py/qstr.o*(.literal* .text*)
*py/repl.o*(.literal* .text*)
*py/runtime.o*(.literal* .text*)
*py/scope.o*(.literal* .text*)
*py/sequence.o*(.literal* .text*)
*py/showbc.o*(.literal* .text*)
*py/smallint.o*(.literal* .text*)
*py/stackctrl.o*(.literal* .text*)
*py/stream.o*(.literal* .text*)
*py/unicode.o*(.literal* .text*)
*py/vm.o*(.literal* .text*)
*py/vstr.o*(.literal* .text*)
*py/warning.o*(.literal* .text*)
*extmod/*.o*(.literal* .text*)
*lib/fatfs/*.o*(.literal*, .text*)
*/libaxtls.a:(.literal*, .text*)
*lib/libm/*.o*(.literal*, .text*)
*lib/mp-readline/*.o(.literal*, .text*)
*lib/netutils/*.o*(.literal*, .text*)
*lib/timeutils/*.o*(.literal*, .text*)
*lib/utils/*.o*(.literal*, .text*)
*stmhal/pybstdio.o(.literal*, .text*)
*gccollect.o(.literal* .text*)
*gchelper.o(.literal* .text*)
*lexerstr32.o(.literal* .text*)
*utils.o(.literal* .text*)
*modpyb.o(.literal*, .text*)
*modpybpin.o(.literal*, .text*)
*modpybpwm.o(.literal*, .text*)
*modpybrtc.o(.literal*, .text*)
*modpybadc.o(.literal*, .text*)
*modpybuart.o(.literal*, .text*)
*modpybi2c.o(.literal*, .text*)
*modpybspi.o(.literal*, .text*)
*modesp.o(.literal* .text*)
*modnetwork.o(.literal* .text*)
*moduos.o(.literal* .text*)
*modutime.o(.literal* .text*)
*modlwip.o(.literal* .text*)
*modsocket.o(.literal* .text*)
*modonewire.o(.literal* .text*)
/* we put as much rodata as possible in this section */
/* note that only rodata accessed as a machine word is allowed here */
*py/qstr.o(.rodata.const_pool)
*py/*.o(.rodata.mp_type_*) /* catches type: mp_obj_type_t */
*py/*.o(.rodata.*_locals_dict*) /* catches types: mp_obj_dict_t, mp_map_elem_t */
*py/*.o(.rodata.mp_module_*) /* catches types: mp_obj_module_t, mp_obj_dict_t, mp_map_elem_t */
*.o(.rodata.mp_type_*) /* catches type: mp_obj_type_t */
*.o(.rodata.*_locals_dict*) /* catches types: mp_obj_dict_t, mp_map_elem_t */
*.o(.rodata.mp_module_*) /* catches types: mp_obj_module_t, mp_obj_dict_t, mp_map_elem_t */
*/frozen.o(.rodata.mp_frozen_sizes) /* frozen modules */
*/frozen.o(.rodata.mp_frozen_content) /* frozen modules */
/* for -mforce-l32 */
build/*.o(.rodata*)
_irom0_text_end = ABSOLUTE(.);
} >irom0_0_seg :irom0_0_phdr
@@ -172,6 +232,7 @@ SECTIONS
.rodata : ALIGN(4)
{
_rodata_start = ABSOLUTE(.);
*(.sdk.version)
*(.rodata)
*(.rodata.*)
*(.gnu.linkonce.r.*)

View File

@@ -30,50 +30,81 @@
#include "uart.h"
#include "esp_mphal.h"
#include "user_interface.h"
#include "ets_alt_task.h"
#include "py/obj.h"
#include "py/mpstate.h"
#include "extmod/misc.h"
#include "lib/utils/pyexec.h"
extern void ets_wdt_disable(void);
extern void wdt_feed(void);
extern void ets_delay_us();
STATIC byte input_buf_array[256];
ringbuf_t input_buf = {input_buf_array, sizeof(input_buf_array)};
void mp_hal_debug_tx_strn_cooked(void *env, const char *str, uint32_t len);
const mp_print_t mp_debug_print = {NULL, mp_hal_debug_tx_strn_cooked};
void mp_hal_init(void) {
ets_wdt_disable(); // it's a pain while developing
mp_hal_rtc_init();
uart_init(UART_BIT_RATE_115200, UART_BIT_RATE_115200);
}
void mp_hal_feed_watchdog(void) {
//ets_wdt_disable(); // it's a pain while developing
//WRITE_PERI_REG(0x60000914, 0x73);
//wdt_feed(); // might also work
}
void mp_hal_delay_us(uint32_t us) {
ets_delay_us(us);
uint32_t start = system_get_time();
while (system_get_time() - start < us) {
ets_event_poll();
}
}
int mp_hal_stdin_rx_chr(void) {
for (;;) {
int c = uart0_rx();
int c = ringbuf_get(&input_buf);
if (c != -1) {
return c;
}
mp_hal_delay_us(1);
mp_hal_feed_watchdog();
}
}
void mp_hal_stdout_tx_str(const char *str) {
void mp_hal_stdout_tx_char(char c) {
uart_tx_one_char(UART0, c);
mp_uos_dupterm_tx_strn(&c, 1);
}
#if 0
void mp_hal_debug_str(const char *str) {
while (*str) {
uart_tx_one_char(UART0, *str++);
}
uart_flush(UART0);
}
#endif
void mp_hal_stdout_tx_str(const char *str) {
while (*str) {
mp_hal_stdout_tx_char(*str++);
}
}
void mp_hal_stdout_tx_strn(const char *str, uint32_t len) {
while (len--) {
uart_tx_one_char(UART0, *str++);
mp_hal_stdout_tx_char(*str++);
}
}
void mp_hal_stdout_tx_strn_cooked(const char *str, uint32_t len) {
while (len--) {
if (*str == '\n') {
mp_hal_stdout_tx_char('\r');
}
mp_hal_stdout_tx_char(*str++);
}
}
void mp_hal_debug_tx_strn_cooked(void *env, const char *str, uint32_t len) {
(void)env;
while (len--) {
if (*str == '\n') {
uart_tx_one_char(UART0, '\r');
@@ -86,10 +117,142 @@ uint32_t mp_hal_ticks_ms(void) {
return system_get_time() / 1000;
}
uint32_t mp_hal_ticks_us(void) {
return system_get_time();
}
void mp_hal_delay_ms(uint32_t delay) {
mp_hal_delay_us(delay * 1000);
}
void mp_hal_set_interrupt_char(int c) {
// TODO
if (c != -1) {
mp_obj_exception_clear_traceback(MP_STATE_PORT(mp_kbd_exception));
}
extern int interrupt_char;
interrupt_char = c;
}
void ets_event_poll(void) {
ets_loop_iter();
if (MP_STATE_VM(mp_pending_exception) != NULL) {
mp_obj_t obj = MP_STATE_VM(mp_pending_exception);
MP_STATE_VM(mp_pending_exception) = MP_OBJ_NULL;
nlr_raise(obj);
}
}
void __assert_func(const char *file, int line, const char *func, const char *expr) {
printf("assert:%s:%d:%s: %s\n", file, line, func, expr);
nlr_raise(mp_obj_new_exception_msg(&mp_type_AssertionError,
"C-level assert"));
}
void mp_hal_signal_input(void) {
#if MICROPY_REPL_EVENT_DRIVEN
system_os_post(UART_TASK_ID, 0, 0);
#endif
}
static int call_dupterm_read(void) {
if (MP_STATE_PORT(term_obj) == NULL) {
return -1;
}
nlr_buf_t nlr;
if (nlr_push(&nlr) == 0) {
mp_obj_t read_m[3];
mp_load_method(MP_STATE_PORT(term_obj), MP_QSTR_read, read_m);
read_m[2] = MP_OBJ_NEW_SMALL_INT(1);
mp_obj_t res = mp_call_method_n_kw(1, 0, read_m);
if (res == mp_const_none) {
return -2;
}
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(res, &bufinfo, MP_BUFFER_READ);
if (bufinfo.len == 0) {
MP_STATE_PORT(term_obj) = NULL;
mp_printf(&mp_plat_print, "dupterm: EOF received, deactivating\n");
return -1;
}
nlr_pop();
return *(byte*)bufinfo.buf;
} else {
MP_STATE_PORT(term_obj) = NULL;
mp_printf(&mp_plat_print, "dupterm: Exception in read() method, deactivating: ");
mp_obj_print_exception(&mp_plat_print, nlr.ret_val);
}
return -1;
}
STATIC void dupterm_task_handler(os_event_t *evt) {
static byte lock;
if (lock) {
return;
}
lock = 1;
while (1) {
int c = call_dupterm_read();
if (c < 0) {
break;
}
ringbuf_put(&input_buf, c);
}
mp_hal_signal_input();
lock = 0;
}
STATIC os_event_t dupterm_evt_queue[4];
void dupterm_task_init() {
system_os_task(dupterm_task_handler, DUPTERM_TASK_ID, dupterm_evt_queue, MP_ARRAY_SIZE(dupterm_evt_queue));
}
void mp_hal_signal_dupterm_input(void) {
system_os_post(DUPTERM_TASK_ID, 0, 0);
}
void mp_hal_pin_config_od(mp_hal_pin_obj_t pin_id) {
const pyb_pin_obj_t *pin = &pyb_pin_obj[pin_id];
if (pin->phys_port == 16) {
// configure GPIO16 as input with output register holding 0
WRITE_PERI_REG(PAD_XPD_DCDC_CONF, (READ_PERI_REG(PAD_XPD_DCDC_CONF) & 0xffffffbc) | 1);
WRITE_PERI_REG(RTC_GPIO_CONF, READ_PERI_REG(RTC_GPIO_CONF) & ~1);
WRITE_PERI_REG(RTC_GPIO_ENABLE, (READ_PERI_REG(RTC_GPIO_ENABLE) & ~1)); // input
WRITE_PERI_REG(RTC_GPIO_OUT, (READ_PERI_REG(RTC_GPIO_OUT) & ~1)); // out=0
return;
}
ETS_GPIO_INTR_DISABLE();
PIN_FUNC_SELECT(pin->periph, pin->func);
GPIO_REG_WRITE(GPIO_PIN_ADDR(GPIO_ID_PIN(pin->phys_port)),
GPIO_REG_READ(GPIO_PIN_ADDR(GPIO_ID_PIN(pin->phys_port)))
| GPIO_PIN_PAD_DRIVER_SET(GPIO_PAD_DRIVER_ENABLE)); // open drain
GPIO_REG_WRITE(GPIO_ENABLE_ADDRESS,
GPIO_REG_READ(GPIO_ENABLE_ADDRESS) | (1 << pin->phys_port));
ETS_GPIO_INTR_ENABLE();
}
// Get pointer to esf_buf bookkeeping structure
void *ets_get_esf_buf_ctlblk(void) {
// Get literal ptr before start of esf_rx_buf_alloc func
extern void *esf_rx_buf_alloc();
return ((void**)esf_rx_buf_alloc)[-1];
}
// Get number of esf_buf free buffers of given type, as encoded by index
// idx 0 corresponds to buf types 1, 2; 1 - 4; 2 - 5; 3 - 7; 4 - 8
// Only following buf types appear to be used:
// 1 - tx buffer, 5 - management frame tx buffer; 8 - rx buffer
int ets_esf_free_bufs(int idx) {
uint32_t *p = ets_get_esf_buf_ctlblk();
uint32_t *b = (uint32_t*)p[idx];
int cnt = 0;
while (b) {
b = (uint32_t*)b[0x20 / 4];
cnt++;
}
return cnt;
}

View File

@@ -27,18 +27,57 @@
#ifndef _INCLUDED_MPHAL_H_
#define _INCLUDED_MPHAL_H_
// SDK functions not declared in SDK itself
void ets_isr_mask(unsigned);
#include "py/ringbuf.h"
struct _mp_print_t;
// Structure for UART-only output via mp_printf()
extern const struct _mp_print_t mp_debug_print;
extern ringbuf_t input_buf;
// Call this after putting data to input_buf
void mp_hal_signal_input(void);
// Call this when data is available in dupterm object
void mp_hal_signal_dupterm_input(void);
void mp_hal_init(void);
void mp_hal_feed_watchdog(void);
void mp_hal_rtc_init(void);
uint32_t mp_hal_ticks_us(void);
void mp_hal_delay_us(uint32_t);
void mp_hal_set_interrupt_char(int c);
uint32_t mp_hal_get_cpu_freq(void);
#define UART_TASK_ID 0
#define DUPTERM_TASK_ID 1
void uart_task_init();
void dupterm_task_init();
void ets_event_poll(void);
#define ETS_POLL_WHILE(cond) { while (cond) ets_event_poll(); }
// needed for machine.I2C
#include "osapi.h"
#define mp_hal_delay_us_fast(us) os_delay_us(us)
// C-level pin HAL
#include "etshal.h"
#include "gpio.h"
#include "esp8266/modpyb.h"
#define mp_hal_pin_obj_t uint32_t
#define mp_hal_get_pin_obj(o) mp_obj_get_pin(o)
void mp_hal_pin_config_od(mp_hal_pin_obj_t pin);
#define mp_hal_pin_low(p) do { \
if ((p) == 16) { WRITE_PERI_REG(RTC_GPIO_ENABLE, (READ_PERI_REG(RTC_GPIO_ENABLE) & ~1) | 1); } \
else { gpio_output_set(0, 1 << (p), 1 << (p), 0); } \
} while (0)
#define mp_hal_pin_od_high(p) do { \
if ((p) == 16) { WRITE_PERI_REG(RTC_GPIO_ENABLE, (READ_PERI_REG(RTC_GPIO_ENABLE) & ~1)); } \
else { gpio_output_set(1 << (p), 0, 1 << (p), 0); } \
} while (0)
#define mp_hal_pin_read(p) pin_get(p)
#define mp_hal_pin_write(p, v) pin_set((p), (v))
void *ets_get_esf_buf_ctlblk(void);
int ets_esf_free_bufs(int idx);
#endif // _INCLUDED_MPHAL_H_

64
esp8266/espneopixel.c Normal file
View File

@@ -0,0 +1,64 @@
// Original version from https://github.com/adafruit/Adafruit_NeoPixel
// Modifications by dpgeorge to support auto-CPU-frequency detection
// This is a mash-up of the Due show() code + insights from Michael Miller's
// ESP8266 work for the NeoPixelBus library: github.com/Makuna/NeoPixelBus
// Needs to be a separate .c file to enforce ICACHE_RAM_ATTR execution.
#include "c_types.h"
#include "eagle_soc.h"
#include "user_interface.h"
#include "espneopixel.h"
#define NEO_KHZ400 (1)
static uint32_t _getCycleCount(void) __attribute__((always_inline));
static inline uint32_t _getCycleCount(void) {
uint32_t ccount;
__asm__ __volatile__("rsr %0,ccount":"=a" (ccount));
return ccount;
}
void /*ICACHE_RAM_ATTR*/ esp_neopixel_write(uint8_t pin, uint8_t *pixels, uint32_t numBytes, bool is800KHz) {
uint8_t *p, *end, pix, mask;
uint32_t t, time0, time1, period, c, startTime, pinMask;
pinMask = 1 << pin;
p = pixels;
end = p + numBytes;
pix = *p++;
mask = 0x80;
startTime = 0;
uint32_t fcpu = system_get_cpu_freq() * 1000000;
#ifdef NEO_KHZ400
if(is800KHz) {
#endif
time0 = fcpu / 2500000; // 0.4us
time1 = fcpu / 1250000; // 0.8us
period = fcpu / 800000; // 1.25us per bit
#ifdef NEO_KHZ400
} else { // 400 KHz bitstream
time0 = fcpu / 2000000; // 0.5uS
time1 = fcpu / 833333; // 1.2us
period = fcpu / 400000; // 2.5us per bit
}
#endif
for(t = time0;; t = time0) {
if(pix & mask) t = time1; // Bit high duration
while(((c = _getCycleCount()) - startTime) < period); // Wait for bit start
GPIO_REG_WRITE(GPIO_OUT_W1TS_ADDRESS, pinMask); // Set high
startTime = c; // Save start time
while(((c = _getCycleCount()) - startTime) < t); // Wait high duration
GPIO_REG_WRITE(GPIO_OUT_W1TC_ADDRESS, pinMask); // Set low
if(!(mask >>= 1)) { // Next bit/byte
if(p >= end) break;
pix = *p++;
mask = 0x80;
}
}
while((_getCycleCount() - startTime) < period); // Wait for last bit
}

1
esp8266/espneopixel.h Normal file
View File

@@ -0,0 +1 @@
void esp_neopixel_write(uint8_t pin, uint8_t *pixels, uint32_t numBytes, bool is800KHz);

99
esp8266/esponewire.c Normal file
View File

@@ -0,0 +1,99 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2015-2016 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdint.h>
#include "etshal.h"
#include "user_interface.h"
#include "modpyb.h"
#include "esponewire.h"
#define TIMING_RESET1 (0)
#define TIMING_RESET2 (1)
#define TIMING_RESET3 (2)
#define TIMING_READ1 (3)
#define TIMING_READ2 (4)
#define TIMING_READ3 (5)
#define TIMING_WRITE1 (6)
#define TIMING_WRITE2 (7)
#define TIMING_WRITE3 (8)
uint16_t esp_onewire_timings[9] = {480, 40, 420, 5, 5, 40, 10, 50, 10};
static uint32_t disable_irq(void) {
ets_intr_lock();
return 0;
}
static void enable_irq(uint32_t i) {
ets_intr_unlock();
}
static void mp_hal_delay_us_no_irq(uint32_t us) {
uint32_t start = system_get_time();
while (system_get_time() - start < us) {
}
}
#define DELAY_US mp_hal_delay_us_no_irq
int esp_onewire_reset(uint pin) {
pin_set(pin, 0);
DELAY_US(esp_onewire_timings[TIMING_RESET1]);
uint32_t i = disable_irq();
pin_set(pin, 1);
DELAY_US(esp_onewire_timings[TIMING_RESET2]);
int status = !pin_get(pin);
enable_irq(i);
DELAY_US(esp_onewire_timings[TIMING_RESET3]);
return status;
}
int esp_onewire_readbit(uint pin) {
pin_set(pin, 1);
uint32_t i = disable_irq();
pin_set(pin, 0);
DELAY_US(esp_onewire_timings[TIMING_READ1]);
pin_set(pin, 1);
DELAY_US(esp_onewire_timings[TIMING_READ2]);
int value = pin_get(pin);
enable_irq(i);
DELAY_US(esp_onewire_timings[TIMING_READ3]);
return value;
}
void esp_onewire_writebit(uint pin, int value) {
uint32_t i = disable_irq();
pin_set(pin, 0);
DELAY_US(esp_onewire_timings[TIMING_WRITE1]);
if (value) {
pin_set(pin, 1);
}
DELAY_US(esp_onewire_timings[TIMING_WRITE2]);
pin_set(pin, 1);
DELAY_US(esp_onewire_timings[TIMING_WRITE3]);
enable_irq(i);
}

36
esp8266/esponewire.h Normal file
View File

@@ -0,0 +1,36 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef __MICROPY_INCLUDED_ESP8266_ESPONEWIRE_H__
#define __MICROPY_INCLUDED_ESP8266_ESPONEWIRE_H__
extern uint16_t esp_onewire_timings[9];
int esp_onewire_reset(uint pin);
int esp_onewire_readbit(uint pin);
void esp_onewire_writebit(uint pin, int value);
#endif // __MICROPY_INCLUDED_ESP8266_ESPONEWIRE_H__

428
esp8266/esppwm.c Normal file
View File

@@ -0,0 +1,428 @@
/******************************************************************************
* Copyright 2013-2014 Espressif Systems (Wuxi)
*
* FileName: pwm.c
*
* Description: pwm driver
*
* Modification history:
* 2014/5/1, v1.0 create this file.
* 2016/3/2: Modifications by dpgeorge to suit MicroPython
*******************************************************************************/
#include <stdio.h>
#include <string.h>
#include "etshal.h"
#include "os_type.h"
#include "gpio.h"
#include "esppwm.h"
#include "py/mpprint.h"
#define PWM_DBG(...)
//#define PWM_DBG(...) mp_printf(&mp_plat_print, __VA_ARGS__)
#define ICACHE_RAM_ATTR // __attribute__((section(".text")))
#define PWM_CHANNEL 8
#define PWM_DEPTH 1023
#define PWM_FREQ_MAX 1000
#define PWM_1S 1000000
struct pwm_single_param {
uint16_t gpio_set;
uint16_t gpio_clear;
uint32_t h_time;
};
struct pwm_param {
uint32_t period;
uint16_t freq;
uint16_t duty[PWM_CHANNEL];
};
STATIC const uint8_t pin_num[PWM_CHANNEL] = {0, 2, 4, 5, 12, 13, 14, 15};
STATIC struct pwm_single_param pwm_single_toggle[2][PWM_CHANNEL + 1];
STATIC struct pwm_single_param *pwm_single;
STATIC struct pwm_param pwm;
STATIC int8_t pwm_out_io_num[PWM_CHANNEL] = {-1, -1, -1, -1, -1, -1, -1, -1};
STATIC uint8_t pwm_channel_toggle[2];
STATIC uint8_t *pwm_channel;
STATIC uint8_t pwm_toggle = 1;
STATIC uint8_t pwm_timer_down = 1;
STATIC uint8_t pwm_current_channel = 0;
STATIC uint16_t pwm_gpio = 0;
STATIC uint8_t pwm_channel_num = 0;
//XXX: 0xffffffff/(80000000/16)=35A
#define US_TO_RTC_TIMER_TICKS(t) \
((t) ? \
(((t) > 0x35A) ? \
(((t)>>2) * ((APB_CLK_FREQ>>4)/250000) + ((t)&0x3) * ((APB_CLK_FREQ>>4)/1000000)) : \
(((t) *(APB_CLK_FREQ>>4)) / 1000000)) : \
0)
//FRC1
#define FRC1_ENABLE_TIMER BIT7
typedef enum {
DIVDED_BY_1 = 0,
DIVDED_BY_16 = 4,
DIVDED_BY_256 = 8,
} TIMER_PREDIVED_MODE;
typedef enum {
TM_LEVEL_INT = 1,
TM_EDGE_INT = 0,
} TIMER_INT_MODE;
STATIC void ICACHE_FLASH_ATTR
pwm_insert_sort(struct pwm_single_param pwm[], uint8 n)
{
uint8 i;
for (i = 1; i < n; i++) {
if (pwm[i].h_time < pwm[i - 1].h_time) {
int8 j = i - 1;
struct pwm_single_param tmp;
memcpy(&tmp, &pwm[i], sizeof(struct pwm_single_param));
memcpy(&pwm[i], &pwm[i - 1], sizeof(struct pwm_single_param));
while (tmp.h_time < pwm[j].h_time) {
memcpy(&pwm[j + 1], &pwm[j], sizeof(struct pwm_single_param));
j--;
if (j < 0) {
break;
}
}
memcpy(&pwm[j + 1], &tmp, sizeof(struct pwm_single_param));
}
}
}
STATIC volatile uint8 critical = 0;
#define LOCK_PWM(c) do { \
while( (c)==1 ); \
(c) = 1; \
} while (0)
#define UNLOCK_PWM(c) do { \
(c) = 0; \
} while (0)
void ICACHE_FLASH_ATTR
pwm_start(void)
{
uint8 i, j;
PWM_DBG("--Function pwm_start() is called\n");
PWM_DBG("pwm_gpio:%x,pwm_channel_num:%d\n",pwm_gpio,pwm_channel_num);
PWM_DBG("pwm_out_io_num[0]:%d,[1]:%d,[2]:%d\n",pwm_out_io_num[0],pwm_out_io_num[1],pwm_out_io_num[2]);
PWM_DBG("pwm.period:%d,pwm.duty[0]:%d,[1]:%d,[2]:%d\n",pwm.period,pwm.duty[0],pwm.duty[1],pwm.duty[2]);
LOCK_PWM(critical); // enter critical
struct pwm_single_param *local_single = pwm_single_toggle[pwm_toggle ^ 0x01];
uint8 *local_channel = &pwm_channel_toggle[pwm_toggle ^ 0x01];
// step 1: init PWM_CHANNEL+1 channels param
for (i = 0; i < pwm_channel_num; i++) {
uint32 us = pwm.period * pwm.duty[i] / PWM_DEPTH;
local_single[i].h_time = US_TO_RTC_TIMER_TICKS(us);
PWM_DBG("i:%d us:%d ht:%d\n",i,us,local_single[i].h_time);
local_single[i].gpio_set = 0;
local_single[i].gpio_clear = 1 << pin_num[pwm_out_io_num[i]];
}
local_single[pwm_channel_num].h_time = US_TO_RTC_TIMER_TICKS(pwm.period);
local_single[pwm_channel_num].gpio_set = pwm_gpio;
local_single[pwm_channel_num].gpio_clear = 0;
PWM_DBG("i:%d period:%d ht:%d\n",pwm_channel_num,pwm.period,local_single[pwm_channel_num].h_time);
// step 2: sort, small to big
pwm_insert_sort(local_single, pwm_channel_num + 1);
*local_channel = pwm_channel_num + 1;
PWM_DBG("1channel:%d,single[0]:%d,[1]:%d,[2]:%d,[3]:%d\n",*local_channel,local_single[0].h_time,local_single[1].h_time,local_single[2].h_time,local_single[3].h_time);
// step 3: combine same duty channels
for (i = pwm_channel_num; i > 0; i--) {
if (local_single[i].h_time == local_single[i - 1].h_time) {
local_single[i - 1].gpio_set |= local_single[i].gpio_set;
local_single[i - 1].gpio_clear |= local_single[i].gpio_clear;
for (j = i + 1; j < *local_channel; j++) {
memcpy(&local_single[j - 1], &local_single[j], sizeof(struct pwm_single_param));
}
(*local_channel)--;
}
}
PWM_DBG("2channel:%d,single[0]:%d,[1]:%d,[2]:%d,[3]:%d\n",*local_channel,local_single[0].h_time,local_single[1].h_time,local_single[2].h_time,local_single[3].h_time);
// step 4: cacl delt time
for (i = *local_channel - 1; i > 0; i--) {
local_single[i].h_time -= local_single[i - 1].h_time;
}
// step 5: last channel needs to clean
local_single[*local_channel-1].gpio_clear = 0;
// step 6: if first channel duty is 0, remove it
if (local_single[0].h_time == 0) {
local_single[*local_channel - 1].gpio_set &= ~local_single[0].gpio_clear;
local_single[*local_channel - 1].gpio_clear |= local_single[0].gpio_clear;
for (i = 1; i < *local_channel; i++) {
memcpy(&local_single[i - 1], &local_single[i], sizeof(struct pwm_single_param));
}
(*local_channel)--;
}
// if timer is down, need to set gpio and start timer
if (pwm_timer_down == 1) {
pwm_channel = local_channel;
pwm_single = local_single;
// start
gpio_output_set(local_single[0].gpio_set, local_single[0].gpio_clear, pwm_gpio, 0);
// yeah, if all channels' duty is 0 or 255, don't need to start timer, otherwise start...
if (*local_channel != 1) {
pwm_timer_down = 0;
RTC_REG_WRITE(FRC1_LOAD_ADDRESS, local_single[0].h_time);
}
}
if (pwm_toggle == 1) {
pwm_toggle = 0;
} else {
pwm_toggle = 1;
}
UNLOCK_PWM(critical); // leave critical
PWM_DBG("3channel:%d,single[0]:%d,[1]:%d,[2]:%d,[3]:%d\n",*local_channel,local_single[0].h_time,local_single[1].h_time,local_single[2].h_time,local_single[3].h_time);
}
/******************************************************************************
* FunctionName : pwm_set_duty
* Description : set each channel's duty params
* Parameters : uint8 duty : 0 ~ PWM_DEPTH
* uint8 channel : channel index
* Returns : NONE
*******************************************************************************/
void ICACHE_FLASH_ATTR
pwm_set_duty(uint16 duty, uint8 channel)
{
uint8 i;
for(i=0;i<pwm_channel_num;i++){
if(pwm_out_io_num[i] == channel){
channel = i;
break;
}
}
if(i==pwm_channel_num) // non found
return;
LOCK_PWM(critical); // enter critical
if (duty < 1) {
pwm.duty[channel] = 0;
} else if (duty >= PWM_DEPTH) {
pwm.duty[channel] = PWM_DEPTH;
} else {
pwm.duty[channel] = duty;
}
UNLOCK_PWM(critical); // leave critical
}
/******************************************************************************
* FunctionName : pwm_set_freq
* Description : set pwm frequency
* Parameters : uint16 freq : 100hz typically
* Returns : NONE
*******************************************************************************/
void ICACHE_FLASH_ATTR
pwm_set_freq(uint16 freq, uint8 channel)
{
LOCK_PWM(critical); // enter critical
if (freq > PWM_FREQ_MAX) {
pwm.freq = PWM_FREQ_MAX;
} else if (freq < 1) {
pwm.freq = 1;
} else {
pwm.freq = freq;
}
pwm.period = PWM_1S / pwm.freq;
UNLOCK_PWM(critical); // leave critical
}
/******************************************************************************
* FunctionName : pwm_get_duty
* Description : get duty of each channel
* Parameters : uint8 channel : channel index
* Returns : NONE
*******************************************************************************/
uint16 ICACHE_FLASH_ATTR
pwm_get_duty(uint8 channel)
{
uint8 i;
for(i=0;i<pwm_channel_num;i++){
if(pwm_out_io_num[i] == channel){
channel = i;
break;
}
}
if(i==pwm_channel_num) // non found
return 0;
return pwm.duty[channel];
}
/******************************************************************************
* FunctionName : pwm_get_freq
* Description : get pwm frequency
* Parameters : NONE
* Returns : uint16 : pwm frequency
*******************************************************************************/
uint16 ICACHE_FLASH_ATTR
pwm_get_freq(uint8 channel)
{
return pwm.freq;
}
/******************************************************************************
* FunctionName : pwm_period_timer
* Description : pwm period timer function, output high level,
* start each channel's high level timer
* Parameters : NONE
* Returns : NONE
*******************************************************************************/
STATIC void ICACHE_RAM_ATTR
pwm_tim1_intr_handler(void *dummy)
{
(void)dummy;
uint8 local_toggle = pwm_toggle; // pwm_toggle may change outside
RTC_CLR_REG_MASK(FRC1_INT_ADDRESS, FRC1_INT_CLR_MASK);
if (pwm_current_channel >= (*pwm_channel - 1)) { // *pwm_channel may change outside
pwm_single = pwm_single_toggle[local_toggle];
pwm_channel = &pwm_channel_toggle[local_toggle];
gpio_output_set(pwm_single[*pwm_channel - 1].gpio_set,
pwm_single[*pwm_channel - 1].gpio_clear,
pwm_gpio,
0);
pwm_current_channel = 0;
if (*pwm_channel != 1) {
RTC_REG_WRITE(FRC1_LOAD_ADDRESS, pwm_single[pwm_current_channel].h_time);
} else {
pwm_timer_down = 1;
}
} else {
gpio_output_set(pwm_single[pwm_current_channel].gpio_set,
pwm_single[pwm_current_channel].gpio_clear,
pwm_gpio, 0);
pwm_current_channel++;
RTC_REG_WRITE(FRC1_LOAD_ADDRESS, pwm_single[pwm_current_channel].h_time);
}
}
/******************************************************************************
* FunctionName : pwm_init
* Description : pwm gpio, params and timer initialization
* Parameters : uint16 freq : pwm freq param
* uint16 *duty : each channel's duty
* Returns : NONE
*******************************************************************************/
void ICACHE_FLASH_ATTR
pwm_init(void)
{
uint8 i;
RTC_REG_WRITE(FRC1_CTRL_ADDRESS, //FRC2_AUTO_RELOAD|
DIVDED_BY_16
| FRC1_ENABLE_TIMER
| TM_EDGE_INT);
RTC_REG_WRITE(FRC1_LOAD_ADDRESS, 0);
for (i = 0; i < PWM_CHANNEL; i++) {
pwm_gpio = 0;
pwm.duty[i] = 0;
}
pwm_set_freq(500, 0);
pwm_start();
ETS_FRC_TIMER1_INTR_ATTACH(pwm_tim1_intr_handler, NULL);
TM1_EDGE_INT_ENABLE();
ETS_FRC1_INTR_ENABLE();
}
int ICACHE_FLASH_ATTR
pwm_add(uint8_t pin_id, uint32_t pin_mux, uint32_t pin_func){
PWM_DBG("--Function pwm_add() is called. channel:%d\n", channel);
PWM_DBG("pwm_gpio:%x,pwm_channel_num:%d\n",pwm_gpio,pwm_channel_num);
PWM_DBG("pwm_out_io_num[0]:%d,[1]:%d,[2]:%d\n",pwm_out_io_num[0],pwm_out_io_num[1],pwm_out_io_num[2]);
PWM_DBG("pwm.duty[0]:%d,[1]:%d,[2]:%d\n",pwm.duty[0],pwm.duty[1],pwm.duty[2]);
int channel = -1;
for (int i = 0; i < PWM_CHANNEL; ++i) {
if (pin_num[i] == pin_id) {
channel = i;
break;
}
}
if (channel == -1) {
return -1;
}
uint8 i;
for(i=0;i<PWM_CHANNEL;i++){
if(pwm_out_io_num[i]==channel) // already exist
return channel;
if(pwm_out_io_num[i] == -1){ // empty exist
LOCK_PWM(critical); // enter critical
pwm_out_io_num[i] = channel;
pwm.duty[i] = 0;
pwm_gpio |= (1 << pin_num[channel]);
PIN_FUNC_SELECT(pin_mux, pin_func);
GPIO_REG_WRITE(GPIO_PIN_ADDR(GPIO_ID_PIN(pin_num[channel])), GPIO_REG_READ(GPIO_PIN_ADDR(GPIO_ID_PIN(pin_num[channel]))) & (~ GPIO_PIN_PAD_DRIVER_SET(GPIO_PAD_DRIVER_ENABLE))); //disable open drain;
pwm_channel_num++;
UNLOCK_PWM(critical); // leave critical
return channel;
}
}
return -1;
}
bool ICACHE_FLASH_ATTR
pwm_delete(uint8 channel){
PWM_DBG("--Function pwm_delete() is called. channel:%d\n", channel);
PWM_DBG("pwm_gpio:%x,pwm_channel_num:%d\n",pwm_gpio,pwm_channel_num);
PWM_DBG("pwm_out_io_num[0]:%d,[1]:%d,[2]:%d\n",pwm_out_io_num[0],pwm_out_io_num[1],pwm_out_io_num[2]);
PWM_DBG("pwm.duty[0]:%d,[1]:%d,[2]:%d\n",pwm.duty[0],pwm.duty[1],pwm.duty[2]);
uint8 i,j;
for(i=0;i<pwm_channel_num;i++){
if(pwm_out_io_num[i]==channel){ // exist
LOCK_PWM(critical); // enter critical
pwm_out_io_num[i] = -1;
pwm_gpio &= ~(1 << pin_num[channel]); //clear the bit
for(j=i;j<pwm_channel_num-1;j++){
pwm_out_io_num[j] = pwm_out_io_num[j+1];
pwm.duty[j] = pwm.duty[j+1];
}
pwm_out_io_num[pwm_channel_num-1] = -1;
pwm.duty[pwm_channel_num-1] = 0;
pwm_channel_num--;
UNLOCK_PWM(critical); // leave critical
return true;
}
}
// non found
return true;
}

17
esp8266/esppwm.h Normal file
View File

@@ -0,0 +1,17 @@
#ifndef __ESPPWM_H__
#define __ESPPWM_H__
#include <stdbool.h>
#include <stdint.h>
void pwm_init(void);
void pwm_start(void);
void pwm_set_duty(uint16_t duty, uint8_t channel);
uint16_t pwm_get_duty(uint8_t channel);
void pwm_set_freq(uint16_t freq, uint8_t channel);
uint16_t pwm_get_freq(uint8_t channel);
int pwm_add(uint8_t pin_id, uint32_t pin_mux, uint32_t pin_func);
bool pwm_delete(uint8_t channel);
#endif

194
esp8266/ets_alt_task.c Normal file
View File

@@ -0,0 +1,194 @@
#include <stdio.h>
#include "osapi.h"
#include "os_type.h"
#include "ets_sys.h"
#include <esp_sdk_ver.h>
#include "etshal.h"
#include "user_interface.h"
// Use standard ets_task or alternative impl
#define USE_ETS_TASK 0
#define MP_ARRAY_SIZE(a) (sizeof(a) / sizeof((a)[0]))
struct task_entry {
os_event_t *queue;
os_task_t task;
uint8_t qlen;
uint8_t prio;
int8_t i_get;
int8_t i_put;
};
static void (*idle_cb)(void *);
static void *idle_arg;
#if ESP_SDK_VERSION >= 010500
# define FIRST_PRIO 0
#else
# define FIRST_PRIO 0x14
#endif
#define LAST_PRIO 0x20
#define PRIO2ID(prio) ((prio) - FIRST_PRIO)
volatile struct task_entry emu_tasks[PRIO2ID(LAST_PRIO) + 1];
static inline int prio2id(uint8_t prio) {
int id = PRIO2ID(prio);
if (id < 0 || id >= MP_ARRAY_SIZE(emu_tasks)) {
printf("task prio out of range: %d\n", prio);
while (1);
}
return id;
}
#if DEBUG
void dump_task(int prio, volatile struct task_entry *t) {
printf("q for task %d: queue: %p, get ptr: %d, put ptr: %d, qlen: %d\n",
prio, t->queue, t->i_get, t->i_put, t->qlen);
}
void dump_tasks(void) {
for (int i = 0; i < MP_ARRAY_SIZE(emu_tasks); i++) {
if (emu_tasks[i].qlen) {
dump_task(i + FIRST_PRIO, &emu_tasks[i]);
}
}
printf("====\n");
}
#endif
bool ets_task(os_task_t task, uint8 prio, os_event_t *queue, uint8 qlen) {
static unsigned cnt;
printf("#%d ets_task(%p, %d, %p, %d)\n", cnt++, task, prio, queue, qlen);
#if USE_ETS_TASK
return _ets_task(task, prio, queue, qlen);
#else
int id = prio2id(prio);
emu_tasks[id].task = task;
emu_tasks[id].queue = queue;
emu_tasks[id].qlen = qlen;
emu_tasks[id].i_get = 0;
emu_tasks[id].i_put = 0;
return true;
#endif
}
bool ets_post(uint8 prio, os_signal_t sig, os_param_t param) {
// static unsigned cnt; printf("#%d ets_post(%d, %x, %x)\n", cnt++, prio, sig, param);
#if USE_ETS_TASK
return _ets_post(prio, sig, param);
#else
ets_intr_lock();
const int id = prio2id(prio);
os_event_t *q = emu_tasks[id].queue;
if (emu_tasks[id].i_put == -1) {
// queue is full
printf("ets_post: task %d queue full\n", prio);
return false;
}
q = &q[emu_tasks[id].i_put++];
q->sig = sig;
q->par = param;
if (emu_tasks[id].i_put == emu_tasks[id].qlen) {
emu_tasks[id].i_put = 0;
}
if (emu_tasks[id].i_put == emu_tasks[id].i_get) {
// queue got full
emu_tasks[id].i_put = -1;
}
//printf("after ets_post: "); dump_task(prio, &emu_tasks[id]);
//dump_tasks();
ets_intr_unlock();
return true;
#endif
}
bool ets_loop_iter(void) {
//static unsigned cnt;
bool progress = false;
for (volatile struct task_entry *t = emu_tasks; t < &emu_tasks[MP_ARRAY_SIZE(emu_tasks)]; t++) {
system_soft_wdt_feed();
ets_intr_lock();
//printf("etc_loop_iter: "); dump_task(t - emu_tasks + FIRST_PRIO, t);
if (t->i_get != t->i_put) {
progress = true;
//printf("#%d Calling task %d(%p) (%x, %x)\n", cnt++,
// t - emu_tasks + FIRST_PRIO, t->task, t->queue[t->i_get].sig, t->queue[t->i_get].par);
int idx = t->i_get;
if (t->i_put == -1) {
t->i_put = t->i_get;
}
if (++t->i_get == t->qlen) {
t->i_get = 0;
}
//ets_intr_unlock();
t->task(&t->queue[idx]);
//ets_intr_lock();
//printf("Done calling task %d\n", t - emu_tasks + FIRST_PRIO);
}
ets_intr_unlock();
}
return progress;
}
#if SDK_BELOW_1_1_1
void my_timer_isr(void *arg) {
// uart0_write_char('+');
ets_post(0x1f, 0, 0);
}
// Timer init func is in ROM, and calls ets_task by relative addr directly in ROM
// so, we have to re-init task using our handler
void ets_timer_init() {
printf("ets_timer_init\n");
// _ets_timer_init();
ets_isr_attach(10, my_timer_isr, NULL);
SET_PERI_REG_MASK(0x3FF00004, 4);
ETS_INTR_ENABLE(10);
ets_task((os_task_t)0x40002E3C, 0x1f, (os_event_t*)0x3FFFDDC0, 4);
WRITE_PERI_REG(PERIPHS_TIMER_BASEDDR + 0x30, 0);
WRITE_PERI_REG(PERIPHS_TIMER_BASEDDR + 0x28, 0x88);
WRITE_PERI_REG(PERIPHS_TIMER_BASEDDR + 0x30, 0);
printf("Installed timer ISR\n");
}
#endif
bool ets_run(void) {
#if USE_ETS_TASK
#if SDK_BELOW_1_1_1
ets_isr_attach(10, my_timer_isr, NULL);
#endif
_ets_run();
#else
// ets_timer_init();
*(char*)0x3FFFC6FC = 0;
ets_intr_lock();
printf("ets_alt_task: ets_run\n");
#if DEBUG
dump_tasks();
#endif
ets_intr_unlock();
while (1) {
if (!ets_loop_iter()) {
//printf("idle\n");
ets_intr_lock();
if (idle_cb) {
idle_cb(idle_arg);
}
asm("waiti 0");
ets_intr_unlock();
}
}
#endif
}
void ets_set_idle_cb(void (*handler)(void *), void *arg) {
//printf("ets_set_idle_cb(%p, %p)\n", handler, arg);
idle_cb = handler;
idle_arg = arg;
}

1
esp8266/ets_alt_task.h Normal file
View File

@@ -0,0 +1 @@
bool ets_loop_iter(void);

View File

@@ -1,9 +1,27 @@
#ifndef _INCLUDED_ETSHAL_H_
#define _INCLUDED_ETSHAL_H_
void ets_isr_unmask();
#include <os_type.h>
// see http://esp8266-re.foogod.com/wiki/Random_Number_Generator
#define WDEV_HWRNG ((volatile uint32_t*)0x3ff20e44)
void ets_delay_us();
void ets_intr_lock(void);
void ets_intr_unlock(void);
void ets_isr_mask(uint32_t mask);
void ets_isr_unmask(uint32_t mask);
void ets_isr_attach(int irq_no, void (*handler)(void *), void *arg);
void ets_install_putc1();
void ets_isr_attach();
void uart_div_modify();
void ets_set_idle_cb(void (*handler)(void *), void *arg);
void ets_timer_arm_new(os_timer_t *tim, uint32_t millis, bool repeat, bool is_milli_timer);
void ets_timer_setfn(os_timer_t *tim, ETSTimerFunc callback, void *cb_data);
void ets_timer_disarm(os_timer_t *tim);
// These prototypes are for recent SDKs with "malloc tracking"
void *pvPortMalloc(unsigned sz, const char *fname, int line);
void vPortFree(void *p, const char *fname, int line);
#endif // _INCLUDED_ETSHAL_H_

6
esp8266/fatfs_port.c Normal file
View File

@@ -0,0 +1,6 @@
#include "lib/fatfs/ff.h"
#include "lib/fatfs/diskio.h"
DWORD get_fattime(void) {
return 0;
}

View File

@@ -39,10 +39,6 @@ void gc_collect(void) {
// start the GC
gc_collect_start();
// We need to scan everything in RAM that can hold a pointer.
// The data segment is used, but should not contain pointers, so we just scan the bss.
gc_collect_root((void**)&_bss_start, ((uint32_t)&_bss_end - (uint32_t)&_bss_start) / sizeof(uint32_t));
// get the registers and the sp
mp_uint_t regs[8];
mp_uint_t sp = gc_helper_get_regs_and_sp(regs);

70
esp8266/help.c Normal file
View File

@@ -0,0 +1,70 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013-2016 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include "lib/utils/pyhelp.h"
STATIC const char *help_text =
"Welcome to MicroPython!\n"
"\n"
"For online docs please visit http://docs.micropython.org/en/latest/esp8266/ .\n"
"For diagnostic information to include in bug reports execute 'import port_diag'.\n"
"\n"
"Basic WiFi configuration:\n"
"\n"
"import network\n"
"sta_if = network.WLAN(network.STA_IF)\n"
"sta_if.scan() # Scan for available access points\n"
"sta_if.connect(\"<AP_name>\", \"<password>\") # Connect to an AP\n"
"sta_if.isconnected() # Check for successful connection\n"
"# Change name/password of ESP8266's AP:\n"
"ap_if = network.WLAN(network.AP_IF)\n"
"ap_if.config(essid=\"<AP_NAME>\", authmode=network.AUTH_WPA_WPA2_PSK, password=\"<password>\")\n"
"\n"
"Control commands:\n"
" CTRL-A -- on a blank line, enter raw REPL mode\n"
" CTRL-B -- on a blank line, enter normal REPL mode\n"
" CTRL-C -- interrupt a running program\n"
" CTRL-D -- on a blank line, do a soft reset of the board\n"
" CTRL-E -- on a blank line, enter paste mode\n"
"\n"
"For further help on a specific object, type help(obj)\n"
;
STATIC mp_obj_t builtin_help(uint n_args, const mp_obj_t *args) {
if (n_args == 0) {
// print a general help message
printf("%s", help_text);
} else {
// try to print something sensible about the given object
pyhelp_print_obj(args[0]);
}
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(mp_builtin_help_obj, 0, 1, builtin_help);

37
esp8266/intr.c Normal file
View File

@@ -0,0 +1,37 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "etshal.h"
#include "ets_alt_task.h"
#include "modpyb.h"
// this is in a separate file so it can go in iRAM
void pin_intr_handler_iram(void *arg) {
uint32_t status = GPIO_REG_READ(GPIO_STATUS_ADDRESS);
GPIO_REG_WRITE(GPIO_STATUS_W1TC_ADDRESS, status);
pin_intr_handler(status);
}

Some files were not shown because too many files have changed in this diff Show More