Files
micropython/ports/alif/machine_rtc.c
Damien George e58848a21e alif/machine_rtc: Implement RTC.datetime to get and set the RTC.
The LPRTC peripheral is a 32-bit counter with a 16-bit prescaler.  It's
configured here to count at 1Hz (to get maximum date range) and then the
prescaler value is used to get 30 microsecond resolution.  That's
essentially a 32+15=47-bit counter.

Signed-off-by: Damien George <damien@micropython.org>
2025-08-15 12:34:28 +10:00

200 lines
7.7 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2024-2025 OpenMV LLC.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/runtime.h"
#include "py/mphal.h"
#include "py/mperrno.h"
#include "extmod/modmachine.h"
#include "shared/timeutils/timeutils.h"
#include "rtc.h"
#include "sys_ctrl_rtc.h"
// The LPRTC (low-power real-time counter) is a 32-bit counter with a 16-bit prescaler,
// and usually clocked by a 32768Hz clock source. To get a large date range of around
// 136 years, the prescaler is set to 32768 and so the counter clocks at 1Hz. Then the
// counter counts the number of seconds since the 1970 Epoch. The prescaler is used to
// get the subseconds which are then converted to microseconds.
//
// The combined counter+prescaler counts starting at 0 from the year 1970 up to the year
// 2106, with a resolution of 30.52 microseconds.
#define LPRTC_PRESCALER_SETTING (32768)
typedef struct _machine_rtc_obj_t {
mp_obj_base_t base;
LPRTC_Type *rtc;
} machine_rtc_obj_t;
// Singleton RTC object.
static const machine_rtc_obj_t machine_rtc = {{&machine_rtc_type}, (LPRTC_Type *)LPRTC_BASE};
void LPRTC_IRQHandler(void) {
lprtc_interrupt_ack(machine_rtc.rtc);
lprtc_interrupt_disable(machine_rtc.rtc);
}
// Returns the number of seconds and microseconds since the Epoch.
uint32_t mp_hal_time_get(uint32_t *microseconds) {
uint32_t atomic_state = MICROPY_BEGIN_ATOMIC_SECTION();
uint32_t count = lprtc_get_count(machine_rtc.rtc);
if (microseconds == NULL) {
MICROPY_END_ATOMIC_SECTION(atomic_state);
return count;
}
uint32_t prescaler = machine_rtc.rtc->LPRTC_CPCVR;
uint32_t count2 = lprtc_get_count(machine_rtc.rtc);
if (count != count2) {
// The counter incremented during sampling of the prescaler, so resample the prescaler.
prescaler = machine_rtc.rtc->LPRTC_CPCVR;
}
MICROPY_END_ATOMIC_SECTION(atomic_state);
// Compute the microseconds from the up-counting prescaler value.
MP_STATIC_ASSERT(LPRTC_PRESCALER_SETTING == 32768);
*microseconds = 15625UL * prescaler / 512UL;
return count2;
}
static mp_obj_t machine_rtc_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
const machine_rtc_obj_t *self = &machine_rtc;
// Check arguments.
mp_arg_check_num(n_args, n_kw, 0, 0, false);
lprtc_interrupt_disable(self->rtc);
lprtc_interrupt_unmask(self->rtc);
// Initialise the LPRTC if it's not already enabled.
if (!((VBAT->RTC_CLK_EN & RTC_CLK_ENABLE)
&& (self->rtc->LPRTC_CCR & CCR_LPRTC_EN)
&& (self->rtc->LPRTC_CPSR == LPRTC_PRESCALER_SETTING))) {
enable_lprtc_clk();
self->rtc->LPRTC_CCR = 0;
lprtc_load_prescaler(self->rtc, LPRTC_PRESCALER_SETTING);
lprtc_load_count(self->rtc, 0);
self->rtc->LPRTC_CCR = CCR_LPRTC_PSCLR_EN | CCR_LPRTC_EN;
}
NVIC_SetPriority(LPRTC_IRQ_IRQn, IRQ_PRI_RTC);
NVIC_ClearPendingIRQ(LPRTC_IRQ_IRQn);
NVIC_EnableIRQ(LPRTC_IRQ_IRQn);
return MP_OBJ_FROM_PTR(self);
}
static mp_obj_t machine_rtc_datetime(mp_uint_t n_args, const mp_obj_t *args) {
if (n_args == 1) {
// Get datetime.
uint32_t microseconds;
mp_timestamp_t s = mp_hal_time_get(&microseconds);
timeutils_struct_time_t tm;
timeutils_seconds_since_epoch_to_struct_time(s, &tm);
mp_obj_t tuple[8] = {
mp_obj_new_int(tm.tm_year),
mp_obj_new_int(tm.tm_mon),
mp_obj_new_int(tm.tm_mday),
mp_obj_new_int(tm.tm_wday),
mp_obj_new_int(tm.tm_hour),
mp_obj_new_int(tm.tm_min),
mp_obj_new_int(tm.tm_sec),
mp_obj_new_int(microseconds),
};
return mp_obj_new_tuple(8, tuple);
} else {
// Set datetime.
mp_obj_t *items;
mp_obj_get_array_fixed_n(args[1], 8, &items);
timeutils_struct_time_t tm = {
.tm_year = mp_obj_get_int(items[0]),
.tm_mon = mp_obj_get_int(items[1]),
.tm_mday = mp_obj_get_int(items[2]),
.tm_hour = mp_obj_get_int(items[4]),
.tm_min = mp_obj_get_int(items[5]),
.tm_sec = mp_obj_get_int(items[6]),
};
mp_timestamp_t s = timeutils_seconds_since_epoch(tm.tm_year, tm.tm_mon, tm.tm_mday, tm.tm_hour, tm.tm_min, tm.tm_sec);
// Disable then re-enable the LPRTC so that the prescaler counter resets to 0.
machine_rtc.rtc->LPRTC_CCR = 0;
lprtc_load_count(machine_rtc.rtc, s);
machine_rtc.rtc->LPRTC_CCR = CCR_LPRTC_PSCLR_EN | CCR_LPRTC_EN;
}
return mp_const_none;
}
static MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_rtc_datetime_obj, 1, 2, machine_rtc_datetime);
static mp_obj_t machine_rtc_alarm(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_id, ARG_time, ARG_repeat };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_id, MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_time, MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_repeat, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
};
machine_rtc_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
// Parse args.
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(args), allowed_args, args);
if (mp_obj_is_int(args[ARG_time].u_obj)) {
uint32_t seconds = mp_obj_get_int(args[1].u_obj) / 1000;
// Make sure we are guaranteed an interrupt:
// - if seconds = 0 it won't fire
// - if seconds = 1 it may miss if the counter rolls over just after it's read
// - if seconds >= 2 then it will always fire (when read/written close enough)
seconds = MAX(2, seconds);
// Configure the counter match as atomically as possible.
uint32_t atomic_state = MICROPY_BEGIN_ATOMIC_SECTION();
lprtc_interrupt_ack(self->rtc);
lprtc_load_counter_match_register(self->rtc, lprtc_get_count(self->rtc) + seconds);
lprtc_interrupt_enable(self->rtc);
MICROPY_END_ATOMIC_SECTION(atomic_state);
} else {
mp_raise_ValueError(MP_ERROR_TEXT("invalid argument(s)"));
}
return mp_const_none;
}
static MP_DEFINE_CONST_FUN_OBJ_KW(machine_rtc_alarm_obj, 1, machine_rtc_alarm);
static const mp_rom_map_elem_t machine_rtc_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_datetime), MP_ROM_PTR(&machine_rtc_datetime_obj) },
{ MP_ROM_QSTR(MP_QSTR_alarm), MP_ROM_PTR(&machine_rtc_alarm_obj) },
};
static MP_DEFINE_CONST_DICT(machine_rtc_locals_dict, machine_rtc_locals_dict_table);
MP_DEFINE_CONST_OBJ_TYPE(
machine_rtc_type,
MP_QSTR_RTC,
MP_TYPE_FLAG_NONE,
make_new, machine_rtc_make_new,
locals_dict, &machine_rtc_locals_dict
);