Files
OSACA/osaca/parser/parser_x86intel.py
Metehan Dundar 1ceac6e9f3 Refactor: RISC-V parser, code formatting, and flake8 compliance
- Enhanced RISC-V parser to support reloc_type and symbol in ImmediateOperand.
- Added missing attributes (reloc_type, symbol) to ImmediateOperand and updated __eq__ for backward compatibility.
- Fixed all flake8 (E501, E265, F401, F841) and Black formatting issues across the codebase.
- Improved docstrings and split long lines for better readability.
- Fixed test failures related to ImmediateOperand instantiation and attribute errors.
- Ensured all tests pass, including edge cases for RISC-V, x86, and AArch64.
- Updated .gitignore and documentation as needed.
- Renamed example files for consistency (rv6 -> rv64).
2025-07-04 23:21:06 +02:00

857 lines
35 KiB
Python

#!/usr/bin/env python3
import pyparsing as pp
import unicodedata
from osaca.parser import ParserX86
from osaca.parser.directive import DirectiveOperand
from osaca.parser.identifier import IdentifierOperand
from osaca.parser.immediate import ImmediateOperand
from osaca.parser.instruction_form import InstructionForm
from osaca.parser.label import LabelOperand
from osaca.parser.memory import MemoryOperand
from osaca.parser.register import RegisterOperand
# We assume any non-ASCII characters except control characters and line terminators can be part of
# identifiers; this is based on the assumption that no assembler uses non-ASCII white space and
# syntax characters.
# This approach is described at the end of https://www.unicode.org/reports/tr55/#Whitespace-Syntax.
# It is appropriate for tools, such as this one, which process source code but do not fully validate
# it (in this case, that's the job of the assembler).
NON_ASCII_PRINTABLE_CHARACTERS = "".join(
chr(cp)
for cp in range(0x80, 0x10FFFF + 1)
if unicodedata.category(chr(cp)) not in ("Cc", "Zl", "Zp", "Cs", "Cn")
)
# References:
# ASM386 Assembly Language Reference, document number 469165-003,
# https://mirror.math.princeton.edu/pub/oldlinux/Linux.old/Ref-docs/asm-ref.pdf.
# Microsoft Macro Assembler BNF Grammar,
# https://learn.microsoft.com/en-us/cpp/assembler/masm/masm-bnf-grammar?view=msvc-170.
# Intel Architecture Code Analyzer User's Guide,
# https://www.intel.com/content/dam/develop/external/us/en/documents/
# intel-architecture-code-analyzer-3-0-users-guide-157552.pdf.
class ParserX86Intel(ParserX86):
_instance = None
# Singleton pattern, as this is created very many times.
def __new__(cls):
if cls._instance is None:
cls._instance = super(ParserX86Intel, cls).__new__(cls)
return cls._instance
def __init__(self):
super().__init__()
self._equ = {}
# The IACA manual says: "For For Microsoft* Visual C++ compiler, 64-bit version, use
# IACA_VC64_START and IACA_VC64_END, instead" (of IACA_START and IACA_END).
# TODO: Inconveniently, the code generated with optimization disabled (/Od) has two
# instructions. We should support both patterns, but then who runs OSACA with /Od?
def start_marker(self):
return [
InstructionForm(
mnemonic="mov",
operands=[
MemoryOperand(
base=RegisterOperand(name="GS"),
offset=ImmediateOperand(value=111),
),
ImmediateOperand(value=111),
],
),
]
def end_marker(self):
return [
InstructionForm(
mnemonic="mov",
operands=[
MemoryOperand(
base=RegisterOperand(name="GS"),
offset=ImmediateOperand(value=222),
),
ImmediateOperand(value=222),
],
),
]
def normalize_instruction_form(self, instruction_form, isa_model, arch_model):
"""
If the model indicates that this instruction has a single destination that is the last
operand, move the first operand to the last position. This effectively converts the Intel
syntax to the AT&T one.
"""
if instruction_form.normalized:
return
instruction_form.normalized = True
mnemonic = instruction_form.mnemonic
if not mnemonic:
return
# The model may only contain the VEX-encoded instruction and we may have the non-VEX-encoded
# one, or vice-versa. Note that this doesn't work when the arguments differ between VEX-
# encoded and non-VEX-encoded, e.g., for psubq.
if not arch_model.get_instruction(mnemonic, len(instruction_form.operands)):
if mnemonic[0] == "v":
unvexed_mnemonic = mnemonic[1:]
if arch_model.get_instruction(
unvexed_mnemonic, len(instruction_form.operands)
):
mnemonic = unvexed_mnemonic
else:
vexed_mnemonic = "v" + mnemonic
if arch_model.get_instruction(
vexed_mnemonic, len(instruction_form.operands)
):
mnemonic = vexed_mnemonic
instruction_form.mnemonic = mnemonic
# We cannot pass the operands because they may not match before the reordering. We just
# pass the arity instead. Also, this must use the ISA model, because that's where the
# source/destination information is found.
model = isa_model.get_instruction(mnemonic, len(instruction_form.operands))
has_single_destination_at_end = False
has_destination = False
if model:
for o in model.operands:
if o.source:
if has_destination:
has_single_destination_at_end = False
if o.destination:
if has_destination:
has_single_destination_at_end = False
else:
has_destination = True
has_single_destination_at_end = True
else:
# if there is only one operand, assume it is a source operand
has_single_destination_at_end = len(instruction_form.operands) > 1
if has_single_destination_at_end:
# It is important to reverse the operands, we cannot just move the first one last. This
# makes a difference for instructions with 3 operands or more, such as roundsd: the
# model files expect the rounding mode (an immediate) first but the Intel syntax has it
# last.
instruction_form.operands.reverse()
# A hack to help with comparison instruction: if the instruction is in the model, and has
# exactly two sources, swap its operands.
if (
model
and not has_destination
and len(instruction_form.operands) == 2
and not isa_model.get_instruction(mnemonic, instruction_form.operands)
and not arch_model.get_instruction(mnemonic, instruction_form.operands)
):
instruction_form.operands.reverse()
# If the instruction has a well-known data type, append a suffix.
data_type_to_suffix = {"DWORD": "d", "QWORD": "q"}
for o in instruction_form.operands:
if isinstance(o, MemoryOperand) and o.data_type:
suffix = data_type_to_suffix.get(o.data_type, None)
if suffix:
suffixed_mnemonic = mnemonic + suffix
if isa_model.get_instruction(
suffixed_mnemonic, len(instruction_form.operands)
) or arch_model.get_instruction(
suffixed_mnemonic, len(instruction_form.operands)
):
instruction_form.mnemonic = suffixed_mnemonic
break
def construct_parser(self):
"""Create parser for x86 Intel ISA."""
# Numeric literal.
binary_number = pp.Combine(pp.Word("01") + pp.CaselessLiteral("B"))
octal_number = pp.Combine(pp.Word("01234567") + pp.CaselessLiteral("O"))
decimal_number = pp.Combine(pp.Optional(pp.Literal("-")) + pp.Word(pp.nums))
hex_number = pp.Combine(pp.Word(pp.hexnums) + pp.CaselessLiteral("H"))
float_number = pp.Combine(
pp.Optional(pp.Literal("-")) + pp.Word(pp.nums) + pp.Word(".", pp.nums)
).setResultsName("value")
integer_number = (
binary_number ^ octal_number ^ decimal_number ^ hex_number
).setResultsName("value")
# Comment.
self.comment = pp.Word(";#", exact=1) + pp.Group(
pp.ZeroOrMore(pp.Word(pp.printables + NON_ASCII_PRINTABLE_CHARACTERS))
).setResultsName(self.comment_id)
# Types.
data_type = (
pp.CaselessKeyword("BYTE")
| pp.CaselessKeyword("DWORD")
| pp.CaselessKeyword("FWORD")
| pp.CaselessKeyword("MMWORD")
| pp.CaselessKeyword("OWORD")
| pp.CaselessKeyword("QWORD")
| pp.CaselessKeyword("REAL10")
| pp.CaselessKeyword("REAL4")
| pp.CaselessKeyword("REAL8")
| pp.CaselessKeyword("SBYTE")
| pp.CaselessKeyword("SDWORD")
| pp.CaselessKeyword("SQWORD")
| pp.CaselessKeyword("SWORD")
| pp.CaselessKeyword("TBYTE")
| pp.CaselessKeyword("WORD")
| pp.CaselessKeyword("XMMWORD")
| pp.CaselessKeyword("YMMWORD")
).setResultsName("data_type")
# Identifier. Note that $ is not mentioned in the ASM386 Assembly Language Reference,
# but it is mentioned in the MASM syntax. < and > apparently show up in C++ mangled names.
# ICC allows ".", at least in labels.
first = pp.Word(pp.alphas + NON_ASCII_PRINTABLE_CHARACTERS + ".$?@_<>", exact=1)
rest = pp.Word(pp.alphanums + NON_ASCII_PRINTABLE_CHARACTERS + ".$?@_<>")
identifier = pp.Group(
pp.Combine(first + pp.Optional(rest)).setResultsName("name")
).setResultsName("identifier")
# Register.
# This follows the MASM grammar.
special_register = (
pp.CaselessKeyword("CR0")
| pp.CaselessKeyword("CR2")
| pp.CaselessKeyword("CR3")
| pp.CaselessKeyword("DR0")
| pp.CaselessKeyword("DR1")
| pp.CaselessKeyword("DR2")
| pp.CaselessKeyword("DR3")
| pp.CaselessKeyword("DR6")
| pp.CaselessKeyword("DR7")
| pp.CaselessKeyword("TR3")
| pp.CaselessKeyword("TR4")
| pp.CaselessKeyword("TR5")
| pp.CaselessKeyword("TR6")
| pp.CaselessKeyword("TR7")
).setResultsName("name")
gp_register = (
pp.CaselessKeyword("AX")
| pp.CaselessKeyword("EAX")
| pp.CaselessKeyword("CX")
| pp.CaselessKeyword("ECX")
| pp.CaselessKeyword("DX")
| pp.CaselessKeyword("EDX")
| pp.CaselessKeyword("BX")
| pp.CaselessKeyword("EBX")
| pp.CaselessKeyword("DI")
| pp.CaselessKeyword("EDI")
| pp.CaselessKeyword("SI")
| pp.CaselessKeyword("ESI")
| pp.CaselessKeyword("BP")
| pp.CaselessKeyword("EBP")
| pp.CaselessKeyword("SP")
| pp.CaselessKeyword("ESP")
| pp.CaselessKeyword("R8W")
| pp.CaselessKeyword("R8D")
| pp.CaselessKeyword("R9W")
| pp.CaselessKeyword("R9D")
| pp.CaselessKeyword("R12D")
| pp.CaselessKeyword("R13W")
| pp.CaselessKeyword("R13D")
| pp.CaselessKeyword("R14W")
| pp.CaselessKeyword("R14D")
).setResultsName("name")
byte_register = (
pp.CaselessKeyword("AL")
| pp.CaselessKeyword("AH")
| pp.CaselessKeyword("CL")
| pp.CaselessKeyword("CH")
| pp.CaselessKeyword("DL")
| pp.CaselessKeyword("DH")
| pp.CaselessKeyword("BL")
| pp.CaselessKeyword("BH")
| pp.CaselessKeyword("R8B")
| pp.CaselessKeyword("R9B")
| pp.CaselessKeyword("R10B")
| pp.CaselessKeyword("R11B")
| pp.CaselessKeyword("R12B")
| pp.CaselessKeyword("R13B")
).setResultsName("name")
qword_register = (
pp.CaselessKeyword("RAX")
| pp.CaselessKeyword("RCX")
| pp.CaselessKeyword("RDX")
| pp.CaselessKeyword("RBX")
| pp.CaselessKeyword("RSP")
| pp.CaselessKeyword("RBP")
| pp.CaselessKeyword("RSI")
| pp.CaselessKeyword("RDI")
| pp.CaselessKeyword("R8")
| pp.CaselessKeyword("R9")
| pp.CaselessKeyword("R10")
| pp.CaselessKeyword("R11")
| pp.CaselessKeyword("R12")
| pp.CaselessKeyword("R13")
| pp.CaselessKeyword("R14")
| pp.CaselessKeyword("R15")
).setResultsName("name")
fpu_register = pp.Combine(
pp.CaselessKeyword("ST")
+ pp.Optional(pp.Literal("(") + pp.Word("01234567") + pp.Literal(")"))
).setResultsName("name")
xmm_register = pp.Combine(
pp.CaselessLiteral("XMM") + pp.Word(pp.nums)
) | pp.Combine(pp.CaselessLiteral("XMM1") + pp.Word("012345"))
simd_register = (
pp.Combine(pp.CaselessLiteral("MM") + pp.Word("01234567"))
| xmm_register
| pp.Combine(pp.CaselessLiteral("YMM") + pp.Word(pp.nums))
| pp.Combine(pp.CaselessLiteral("YMM1") + pp.Word("012345"))
).setResultsName("name")
segment_register = (
pp.CaselessKeyword("CS")
| pp.CaselessKeyword("DS")
| pp.CaselessKeyword("ES")
| pp.CaselessKeyword("FS")
| pp.CaselessKeyword("GS")
| pp.CaselessKeyword("SS")
).setResultsName("name")
self.register = pp.Group(
special_register
| gp_register
| byte_register
| qword_register
| fpu_register
| simd_register
| segment_register
| pp.CaselessKeyword("RIP")
).setResultsName(self.register_id)
# Register expressions.
base_register = self.register
index_register = self.register
scale = pp.Word("1248", exact=1)
base = base_register.setResultsName("base")
displacement = pp.Group(
pp.Group(integer_number ^ identifier).setResultsName(self.immediate_id)
).setResultsName("displacement")
short_indexed = index_register.setResultsName("index")
long_indexed = (
index_register.setResultsName("index")
+ pp.Literal("*")
+ scale.setResultsName("scale")
)
indexed = pp.Group(short_indexed ^ long_indexed).setResultsName("indexed")
operator = pp.Word("+-", exact=1)
operator_index = pp.Word("+-", exact=1).setResultsName("operator_idx")
operator_displacement = pp.Word("+-", exact=1).setResultsName("operator_disp")
# Syntax:
# `base` always preceedes `indexed`.
# `short_indexed` is only allowed if it follows `base`, not alone.
# `displacement` can go anywhere.
# It's easier to list all the alternatives than to represent these rules using complicated
# `Optional` and what not.
register_expression = pp.Group(
pp.Literal("[")
+ (
base
^ (base + operator_displacement + displacement)
^ (
base
+ operator_displacement
+ displacement
+ operator_index
+ indexed
)
^ (base + operator_index + indexed)
^ (
base
+ operator_index
+ indexed
+ operator_displacement
+ displacement
)
^ (displacement + operator + base)
^ (displacement + operator + base + operator_index + indexed)
^ (
displacement
+ operator_index
+ pp.Group(long_indexed).setResultsName("indexed")
)
^ pp.Group(long_indexed).setResultsName("indexed")
^ (
pp.Group(long_indexed).setResultsName("indexed")
+ operator_displacement
+ displacement
)
)
+ pp.Literal("]")
).setResultsName("register_expression")
# Immediate.
immediate = pp.Group(integer_number | float_number | identifier).setResultsName(
self.immediate_id
)
# Expressions.
# The ASM86 manual has weird expressions on page 130 (displacement outside of the register
# expression, multiple register expressions). Let's ignore those for now, but see
# https://stackoverflow.com/questions/71540754/why-sometimes-use-offset-flatlabel-and-sometimes-not.
address_expression = pp.Group(
self.register.setResultsName("segment") + pp.Literal(":") + immediate
^ immediate + register_expression
^ register_expression
^ identifier + pp.Optional(operator + immediate)
).setResultsName("address_expression")
offset_expression = pp.Group(
pp.CaselessKeyword("OFFSET")
+ pp.Group(
pp.CaselessKeyword("GROUP")
| pp.CaselessKeyword("SEGMENT")
| pp.CaselessKeyword("FLAT")
)
# The MASM grammar has the ":" immediately after "OFFSET", but that's not what MSVC
# outputs.
+ pp.Literal(":")
+ identifier.setResultsName("identifier")
+ pp.Optional(pp.Literal("+") + immediate.setResultsName("displacement"))
).setResultsName("offset_expression")
ptr_expression = pp.Group(
data_type + pp.CaselessKeyword("PTR") + address_expression
).setResultsName("ptr_expression")
short_expression = pp.Group(
pp.CaselessKeyword("SHORT") + identifier
).setResultsName("short_expression")
# Instructions.
mnemonic = pp.Word(pp.alphas, pp.alphanums).setResultsName("mnemonic")
operand = pp.Group(
self.register
| pp.Group(
offset_expression
| ptr_expression
| short_expression
| address_expression
).setResultsName(self.memory_id)
| immediate
)
self.instruction_parser = (
mnemonic
+ pp.Optional(operand.setResultsName("operand1"))
+ pp.Optional(pp.Suppress(pp.Literal(",")))
+ pp.Optional(operand.setResultsName("operand2"))
+ pp.Optional(pp.Suppress(pp.Literal(",")))
+ pp.Optional(operand.setResultsName("operand3"))
+ pp.Optional(pp.Suppress(pp.Literal(",")))
+ pp.Optional(operand.setResultsName("operand4"))
+ pp.Optional(self.comment)
)
# Label.
self.label = pp.Group(
identifier.setResultsName("name")
+ pp.Literal(":")
+ pp.Optional(self.instruction_parser)
+ pp.Optional(self.comment)
).setResultsName(self.label_id)
# Directives.
# The identifiers at the beginnig of a directive cannot start with a "." otherwise we end up
# with ambiguities.
directive_first = pp.Word(
pp.alphas + NON_ASCII_PRINTABLE_CHARACTERS + "$?@_<>", exact=1
)
directive_rest = pp.Word(
pp.alphanums + NON_ASCII_PRINTABLE_CHARACTERS + ".$?@_<>"
)
directive_identifier = pp.Group(
pp.Combine(directive_first + pp.Optional(directive_rest)).setResultsName(
"name"
)
).setResultsName("identifier")
# Parameter can be any quoted string or sequence of characters besides ';' (for comments)
# or ',' (parameter delimiter). See ASM386 p. 38.
directive_parameter = (
pp.quotedString
^ (
pp.Word(
pp.printables + NON_ASCII_PRINTABLE_CHARACTERS, excludeChars=",;"
)
+ pp.Optional(pp.Suppress(pp.Literal(",")))
)
^ pp.Suppress(pp.Literal(","))
)
# The directives that don't start with a "." are ambiguous with instructions, so we list
# them explicitly.
# TODO: The directives that are types introduce a nasty ambiguity with instructions. Skip
# them for now, apparently the MSVC output uses the short D? directives.
directive_keywords = (
pp.CaselessKeyword("ALIAS")
| pp.CaselessKeyword("ALIGN")
| pp.CaselessKeyword("ASSUME")
# | pp.CaselessKeyword("BYTE")
| pp.CaselessKeyword("CATSTR")
| pp.CaselessKeyword("COMM")
| pp.CaselessKeyword("COMMENT")
| pp.CaselessKeyword("DB")
| pp.CaselessKeyword("DD")
| pp.CaselessKeyword("DF")
| pp.CaselessKeyword("DQ")
| pp.CaselessKeyword("DT")
| pp.CaselessKeyword("DW")
# | pp.CaselessKeyword("DWORD")
| pp.CaselessKeyword("ECHO")
| pp.CaselessKeyword("END")
| pp.CaselessKeyword("ENDP")
| pp.CaselessKeyword("ENDS")
| pp.CaselessKeyword("EQU")
| pp.CaselessKeyword("EVEN")
| pp.CaselessKeyword("EXTRN")
| pp.CaselessKeyword("EXTERNDEF")
# | pp.CaselessKeyword("FWORD")
| pp.CaselessKeyword("GROUP")
| pp.CaselessKeyword("INCLUDE")
| pp.CaselessKeyword("INCLUDELIB")
| pp.CaselessKeyword("INSTR")
| pp.CaselessKeyword("INVOKE")
| pp.CaselessKeyword("LABEL")
# | pp.CaselessKeyword("MMWORD")
| pp.CaselessKeyword("OPTION")
| pp.CaselessKeyword("ORG")
| pp.CaselessKeyword("PAGE")
| pp.CaselessKeyword("POPCONTEXT")
| pp.CaselessKeyword("PROC")
| pp.CaselessKeyword("PROTO")
| pp.CaselessKeyword("PUBLIC")
| pp.CaselessKeyword("PUSHCONTEXT")
# | pp.CaselessKeyword("QWORD")
# | pp.CaselessKeyword("REAL10")
# | pp.CaselessKeyword("REAL4")
# | pp.CaselessKeyword("REAL8")
| pp.CaselessKeyword("RECORD")
# | pp.CaselessKeyword("SBYTE")
# | pp.CaselessKeyword("SDWORD")
| pp.CaselessKeyword("SEGMENT")
| pp.CaselessKeyword("SIZESTR")
| pp.CaselessKeyword("STRUCT")
| pp.CaselessKeyword("SUBSTR")
| pp.CaselessKeyword("SUBTITLE")
# | pp.CaselessKeyword("SWORD")
# | pp.CaselessKeyword("TBYTE")
| pp.CaselessKeyword("TEXTEQU")
| pp.CaselessKeyword("TITLE")
| pp.CaselessKeyword("TYPEDEF")
| pp.CaselessKeyword("UNION")
# | pp.CaselessKeyword("WORD")
# | pp.CaselessKeyword("XMMWORD")
# | pp.CaselessKeyword("YMMWORD")
)
self.directive = pp.Group(
pp.Optional(~directive_keywords + directive_identifier)
+ (
pp.Combine(pp.Literal(".") + pp.Word(pp.alphanums + "_"))
| pp.Literal("=")
| directive_keywords
).setResultsName("name")
+ pp.ZeroOrMore(directive_parameter).setResultsName("parameters")
+ pp.Optional(self.comment)
).setResultsName(self.directive_id)
def parse_line(self, line, line_number=None):
"""
Parse line and return instruction form.
:param str line: line of assembly code
:param line_number: default None, identifier of instruction form
:type line_number: int, optional
:return: ``dict`` -- parsed asm line (comment, label, directive or instruction form)
"""
instruction_form = InstructionForm(line=line, line_number=line_number)
result = None
# 1. Parse comment.
try:
result = self.process_operand(self.comment.parseString(line, parseAll=True))
instruction_form.comment = " ".join(result[self.comment_id])
except pp.ParseException:
pass
# 2. Parse label.
if not result:
try:
# Returns tuple with label operand and comment, if any.
result = self.process_operand(
self.label.parseString(line, parseAll=True)
)
instruction_form.label = result[0].name
if result[1]:
instruction_form.comment = " ".join(result[1])
except pp.ParseException:
pass
# 3. Parse directive.
if not result:
try:
# Returns tuple with directive operand and comment, if any.
result = self.process_operand(
self.directive.parseString(line, parseAll=True)
)
instruction_form.directive = result[0]
if result[1]:
instruction_form.comment = " ".join(result[1])
except pp.ParseException:
pass
# 4. Parse instruction.
if not result:
try:
result = self.parse_instruction(line)
except pp.ParseException as e:
raise ValueError(
"Could not parse instruction on line {}: {!r}".format(
line_number, line
)
) from e
instruction_form.mnemonic = result.mnemonic
instruction_form.operands = result.operands
instruction_form.comment = result.comment
return instruction_form
def make_instruction(self, parse_result):
"""
Parse instruction in asm line.
:param parse_result: tuple resulting from calling `parseString` on the `instruction_parser`.
:returns: `dict` -- parsed instruction form
"""
operands = []
# Add operands to list
# Check first operand
if "operand1" in parse_result:
operands.append(self.process_operand(parse_result.operand1))
# Check second operand
if "operand2" in parse_result:
operands.append(self.process_operand(parse_result.operand2))
# Check third operand
if "operand3" in parse_result:
operands.append(self.process_operand(parse_result.operand3))
# Check fourth operand
if "operand4" in parse_result:
operands.append(self.process_operand(parse_result.operand4))
return_dict = InstructionForm(
mnemonic=parse_result.mnemonic,
operands=operands,
label_id=None,
comment_id=(
" ".join(parse_result[self.comment_id])
if self.comment_id in parse_result
else None
),
)
return return_dict
def parse_instruction(self, instruction):
"""
Parse instruction in asm line.
:param str instruction: Assembly line string.
:returns: `dict` -- parsed instruction form
"""
return self.make_instruction(
self.instruction_parser.parseString(instruction, parseAll=True)
)
def parse_register(self, register_string):
"""Parse register string"""
try:
return self.process_operand(
self.register.parseString(register_string, parseAll=True)
)
except pp.ParseException:
return None
def process_operand(self, operand):
"""Post-process operand"""
if self.directive_id in operand:
return self.process_directive(operand[self.directive_id])
if self.identifier in operand:
return self.process_identifier(operand[self.identifier])
if self.immediate_id in operand:
return self.process_immediate(operand[self.immediate_id])
if self.label_id in operand:
return self.process_label(operand[self.label_id])
if self.memory_id in operand:
return self.process_memory_address(operand[self.memory_id])
if self.register_id in operand:
return self.process_register(operand[self.register_id])
return operand
def process_directive(self, directive):
# TODO: This is putting the identifier in the parameters. No idea if it's right.
parameters = [directive.identifier.name] if "identifier" in directive else []
parameters.extend(directive.parameters)
directive_new = DirectiveOperand(
name=directive.name, parameters=parameters or None
)
# Interpret the "=" directives because the generated assembly is full of symbols that are
# defined there.
if directive.name == "=":
self._equ[parameters[0]] = parameters[1]
return directive_new, directive.get("comment")
def process_register(self, operand):
return RegisterOperand(name=operand.name)
def process_register_expression(self, register_expression):
base = register_expression.get("base")
displacement = register_expression.get("displacement")
indexed = register_expression.get("indexed")
index = None
scale = 1
if indexed:
index = indexed.get("index")
scale = int(indexed.get("scale", "1"), 0)
if register_expression.get("operator_index") == "-":
scale *= -1
displacement_op = (
self.process_immediate(displacement.immediate) if displacement else None
)
if displacement_op and register_expression.get("operator_disp") == "-":
displacement_op.value *= -1
base_op = RegisterOperand(name=base.name) if base else None
index_op = RegisterOperand(name=index.name) if index else None
new_memory = MemoryOperand(
offset=displacement_op, base=base_op, index=index_op, scale=scale
)
return new_memory
def process_address_expression(self, address_expression, data_type=None):
# TODO: It seems that we could have a prefix immediate operand, a displacement in the
# brackets, and an offset. How all of this works together is somewhat mysterious.
immediate_operand = (
self.process_immediate(address_expression.immediate)
if "immediate" in address_expression
else None
)
register_expression = (
self.process_register_expression(address_expression.register_expression)
if "register_expression" in address_expression
else None
)
segment = (
self.process_register(address_expression.segment)
if "segment" in address_expression
else None
)
identifier = (
self.process_identifier(address_expression.identifier)
if "identifier" in address_expression
else None
)
if register_expression:
if immediate_operand:
register_expression.offset = immediate_operand
if data_type:
register_expression.data_type = data_type
return register_expression
elif segment:
return MemoryOperand(
base=segment, offset=immediate_operand, data_type=data_type
)
elif identifier:
if immediate_operand:
identifier.offset = immediate_operand
elif not data_type:
# An address expression without a data type or an offset is just an identifier.
# This matters for jumps.
return identifier
return MemoryOperand(offset=identifier, data_type=data_type)
else:
return MemoryOperand(base=immediate_operand, data_type=data_type)
def process_offset_expression(self, offset_expression):
# TODO: Record that this is an offset expression.
displacement = (
self.process_immediate(offset_expression.displacement)
if "displacement" in offset_expression
else None
)
if displacement and "operator_disp" == "-":
displacement.value *= -1
identifier = self.process_identifier(offset_expression.identifier)
identifier.offset = displacement
return MemoryOperand(offset=identifier)
def process_ptr_expression(self, ptr_expression):
# TODO: Do something with the data_type.
return self.process_address_expression(
ptr_expression.address_expression, ptr_expression.data_type
)
def process_short_expression(self, short_expression):
# TODO: Do something with the fact that it is short.
return LabelOperand(name=short_expression.identifier.name)
def process_memory_address(self, memory_address):
"""Post-process memory address operand"""
if "address_expression" in memory_address:
return self.process_address_expression(memory_address.address_expression)
elif "offset_expression" in memory_address:
return self.process_offset_expression(memory_address.offset_expression)
elif "ptr_expression" in memory_address:
return self.process_ptr_expression(memory_address.ptr_expression)
elif "short_expression" in memory_address:
return self.process_short_expression(memory_address.short_expression)
return memory_address
def process_label(self, label):
"""Post-process label asm line"""
# Remove duplicated 'name' level due to identifier. Note that there is no place to put the
# comment, if any.
label["name"] = label["name"]["name"]
return (
LabelOperand(name=label.name),
self.make_instruction(label) if "mnemonic" in label else None,
)
def process_immediate(self, immediate):
"""Post-process immediate operand"""
if "identifier" in immediate:
# Actually an identifier, change declaration.
return self.process_identifier(immediate.identifier)
new_immediate = ImmediateOperand(
value=immediate.get("sign", "") + immediate.value
)
new_immediate.value = self.normalize_imd(new_immediate)
return new_immediate
def process_identifier(self, identifier):
if identifier.name in self._equ:
# Actually an immediate, change declaration.
new_immediate = ImmediateOperand(
identifier=identifier.name, value=self._equ[identifier.name]
)
new_immediate.value = self.normalize_imd(new_immediate)
return new_immediate
return IdentifierOperand(name=identifier.name)
def normalize_imd(self, imd):
"""Normalize immediate to decimal based representation"""
if isinstance(imd.value, str):
if "." in imd.value:
return float(imd.value)
# Now parse depending on the base.
base = {"B": 2, "O": 8, "H": 16}.get(imd.value[-1], 10)
value = 0
negative = imd.value[0] == "-"
positive = imd.value[0] == "+"
start = +(negative or positive)
stop = len(imd.value) if base == 10 else -1
for c in imd.value[start:stop]:
value = value * base + int(c, base)
return -value if negative else value
else:
return imd.value